ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA INCORPORANDO PARTÍCULAS RESIDUALES DEL CHANCADO DE PIEDRA DE LA CANtera TALAMBO, CHEPÉN

TESIS PARA OPTAR EL TÍTULO DE INGENIERO CIVIL AMBIENTAL

GUIDO CHAVARRY BOY

Chiclayo, Agosto de 2018.
ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA
INCORPORANDO PARTÍCULAS RESIDUALES DEL CHANCADO
DE PIEDRA DE LA CANtera TALAMBO, CHEPÉN

POR

GUIDO CHAVARRY BOY

Presentada a la Facultad de Ingeniería de la Universidad
Católica Santo Toribio de Mogrovejo para optar el título de

INGENIERO CIVIL AMBIENTAL

APROBADA POR EL JURADO INTEGRADO POR

Ing. Eduardo Antonio Larrea Wong
PRESIDENTE

Ing. Cesar Eduardo Cachay Lazo
SECRETARIO

Ing. Juan Ignacio Luna Mera
ASESOR
DEDICATORIA

A Dios, por ayudarme a superar los obstáculos.

A mis padres, porque sin su apoyo incondicional jamás hubiese podido conseguir lo que hasta ahora he logrado.

AGRADECIMIENTOS

A mis hermanos, por ser ejemplo a seguir.

A mi novia, por su motivación constante en la consecución de mis logros profesionales.

A mi asesor, por su invalorable apoyo en el desarrollo de esta investigación.
4.5 Determinación del contenido de aire del concreto .. 111
4.6 Determinación de la exudación del concreto ... 113
4.7 Resistencia a la compresión del concreto ... 116
4.8 Pruebas de durabilidad del concreto ... 123
4.8.1 Resistencia al desgaste del concreto .. 123
4.8.2 Reactividad potencial álcali sílice ... 125
4.9 Análisis de costo unitario del concreto .. 126
V. DISCUSIÓN ... 132
5.1 Pruebas preliminares .. 132
5.2 Porcentaje de polvo de granito ... 133
5.3 Propiedades del concreto con polvo de granito .. 134
5.4 Influencia del curado en la resistencia del concreto .. 135
5.5 Pruebas de durabilidad del concreto ... 136
5.6 Costo unitario del concreto con polvo de granito ... 136
VI. CONCLUSIONES Y RECOMENDACIONES ... 138
VII. REFERENCIAS BIBLIOGRÁFICAS .. 142
Índice de tablas

Tabla N°. 1. Operacionalización de variables ..42
Tabla N°. 2. Concreto patrón ..43
Tabla N°. 3. Concreto adicionado en porcentajes de 5, 10 y 15 % de polvo granito ..43
Tabla N°. 4. Especificaciones de límite pasante de agregado fino en porcentaje ..46
Tabla N°. 5. Especificaciones de límite pasante de agregado grueso en porcentaje ..48
Tabla N°. 6. Calidad mínima de muestra ..60
Tabla N°. 7. Número de esferas por clase de granulometría65
Tabla N°. 8. Granulometría de la muestra de agregado para ensayo65
Tabla N°. 9. Valores de asentamiento para diferentes tipos de obra70
Tabla N°. 10. Resistencia a la compresión promedio ..71
Tabla N°. 11. Agua en l/t/m³ para los tamaños máximos nominales de agregado grueso ..71
Tabla N°. 12. Relación agua/cemento por resistencia72
Tabla N°. 13. Peso del agregado grueso por unidad de volumen del concreto73
Tabla N°. 14. Slump recomendado para concretos de alta resistencia con y sin superplastificante ..75
Tabla N°. 15. Tamaño máximo del agregado grueso76
Tabla N°. 16. Volumen de agregado grueso por unidad de volumen de concreto (para ag. fino con modulo de finura entre 2.5 - 3.2) ..76
Tabla N°. 17. Requerimientos aproximados de agua de mezclado y contenido de aire del concreto basado en el uso de una arena con 35 % de vacíos77
Tabla N°. 18. Relación agua/materiales cementícos para concretos sin superplastificante ..78
Tabla N°. 19. Relación agua/materiales cementícos para concretos con superplastificante ..79
Tabla N°. 20. Tolerancias para rotura de cilindros a compresión93
Tabla N°. 21. Velocidad de aplicación de carga ...94
Tabla N°. 22. Gradación de agregados para RAS ..98
Tabla N°. 23. Pruebas de asentamiento, peso unitario y temperatura del concreto elaborado con cemento portland Tipo I ..110
Tabla N°. 24. Prueba de resistencia al desgaste de los concretos 350, 420, 500 y 550, elaborados con cemento Portland Tipo I ..125
Tabla N°. 25. Ensayos de reactividad potencial álcali-sílice en los agregados elaborados con cemento Portland Tipo I ...126
Tabla N°. 26. Análisis de costos unitarios para extracción de polvo de granito por vía húmeda ..127
Tabla N°. 27. Costo de metro cúbico de concreto f°c=350 kg/cm² sin adición.....127
Tabla N°. 28. Costo de metro cúbico de concreto f°c=350 kg/cm² con un porcentaje de 10 % de polvo de granito ...128
Tabla N°. 29. Costo de metro cúbico de concreto f°c=420 kg/cm² sin adición...128
Tabla N°. 30. Costo de metro cúbico de concreto f°c=420 kg/cm² con un porcentaje de 10 % de polvo de granito ...129
Tabla N°. 31. Costo de metro cúbico de concreto f°c=500 kg/cm² sin adición...129
Tabla N°. 32. Costo de metro cúbico de concreto f°c=500 kg/cm² con un porcentaje de 10 % de polvo de granito ...130
Tabla N°. 33. Costo de metro cúbico de concreto $f'_c = 550 \text{ kg/cm}^2$ sin adición...130
Tabla N°. 34. Costo de metro cúbico de concreto $f'_c = 550 \text{ kg/cm}^2$ con un porcentaje de 10 % de polvo de granito...131
Tabla N°. 35. Comparación de ensayos de agregados finos...132
Tabla N°. 36. Comparación de ensayos de agregados gruesos132
Tabla N°. 37. Análisis de costo unitario para extracción de polvo de granito por vía húmeda...138
Tabla N°. 38. Clasificación general de uso de suelo ...217
Tabla N°. 39. Cobertura de recolección de residuos sólidos ..218
Tabla N°. 40. Matriz de acciones y factores ambientales afectados.................................220
Índice de Figuras

Figura N° 1. Contenido de humedad del agregado fino y grueso ..45
Figura N° 2. Análisis granulométrico del agregado grueso ..48
Figura N° 3. Análisis granulométrico del agregado fino ..48
Figura N° 4. Peso unitario suelto y compactado de agregado grueso51
Figura N° 5. Peso unitario suelto y compactado de agregado fino51
Figura N° 6. Peso específico y absorción del agregado grueso ..54
Figura N° 7. Peso específico y absorción del agregado grueso ..55
Figura N° 8. Peso específico y absorción del agregado fino ...59
Figura N° 9. Contenido de sales solubles totales ..63
Figura N° 10. Contenido de sales solubles totales ...64
Figura N° 11. Abrasión de los agregados gruesos con máquina de los ángeles66
Figura N° 12. Peso específico del mineral de estudio ..69
Figura N° 13. Peso unitario del concreto fresco ...83
Figura N° 14. Contenido de aire en el concreto fresco ...88
Figura N° 15. Asentamiento del concreto con cono de Abrams ...89
Figura N° 16. Exudación del concreto fresco ...91
Figura N° 17. Determinación de la temperatura del concreto fresco92
Figura N° 18. Resistencia a la compresión de muestras cilíndricas95
Figura N° 19. Equipo de desgaste al concreto ...97
Figura N° 20. Equipo para ensayo de reacción álcali-silice ...100
Figura N° 21. Ubicación del proyecto ..214
Figura N° 22. Área de influencia directa e indirecta ...215
Figura N° 23. Temperatura máxima diaria °C ...215
Figura N° 24. Temperatura mínima nocturna °C ...216
Figura N° 25. Nivel de ruido promedio (Dba) ..216
Figura N° 26. Algarrobal ...218
Figura N° 27. Columbidae ...218
Índice de gráficos

Gráfico N.° 1. Peso unitario para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito ... 106
Gráfico N.° 2. Peso unitario para concretos de 420 kg/cm² con diferentes porcentajes de polvo de granito ... 107
Gráfico N.° 3. Peso unitario para concretos de 500 kg/cm² con diferentes porcentajes de polvo de granito ... 107
Gráfico N.° 4. Peso unitario para concretos de 550 kg/cm² con diferentes porcentajes de polvo de granito ... 108
Gráfico N.° 5. Slump obtenidos para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito ... 109
Gráfico N.° 6. Slump obtenidos para concretos de 420 kg/cm² con diferentes porcentajes de polvo de granito ... 109
Gráfico N.° 7. Slump obtenidos para concretos de 500 kg/cm² con diferentes porcentajes de polvo de granito ... 110
Gráfico N.° 8. Slump obtenidos para concretos de 550 kg/cm² con diferentes porcentajes de polvo de granito ... 110
Gráfico N.° 9. Contenido de aire en concretos de 350 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 111
Gráfico N.° 10. Contenido de aire en concretos de 420 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 111
Gráfico N.° 11. Contenido de aire en concretos de 500 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 112
Gráfico N.° 12. Contenido de aire en concretos de 550 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 112
Gráfico N.° 13. Volumen del agua de exudación en concretos de 350 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 114
Gráfico N.° 14. Volumen del agua de exudación en concretos de 420 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 115
Gráfico N.° 15. Volumen del agua de exudación en concretos de 500 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 115
Gráfico N.° 16. Volumen del agua de exudación en concretos de 550 kg/cm² patrón y con diferentes porcentajes de polvo de granito ... 116
Gráfico N.° 17. Resistencia a la compresión a los 28 días del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 117
Gráfico N.° 18. Resistencia a la compresión a los 28 días del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 117
Gráfico N.° 19. Resistencia a la compresión a los 28 días del concreto 500 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 118
Gráfico N.° 20. Resistencia a la compresión a los 28 días del concreto 550 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 118
Gráfico N.° 21. Resistencia a la compresión por edades del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 119
Gráfico N.° 22. Resistencia a la compresión por edades del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra" ... 120
Gráfico N.° 23. Resistencia a la compresión por edades del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 120
Gráfico N.° 24. Resistencia a la compresión por edades del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra" ... 121
Gráfico N.° 25. Resistencia a la compresión por edades del concreto 500 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 121
Gráfico N.° 26. Resistencia a la compresión por edades del concreto 500 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra" ... 122
Gráfico N.° 27. Resistencia a la compresión por edades del concreto 550 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31 ... 122
Gráfico N.° 28. Resistencia a la compresión por edades del concreto 550 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra" ... 123
Gráfico N.° 29. Resistencia al desgaste del concreto 350 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento ... 124
Gráfico N.° 30. Resistencia al desgaste del concreto 420 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento ... 124
Gráfico N.° 31. Resistencia al desgaste del concreto 500 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento ... 124
Gráfico N.° 32. Resistencia al desgaste del concreto 550 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento ... 125
Gráfico N.° 33. Reactividad potencial álcali-sílice en los agregados, método de la barra de mortero patrón y con el 10 % de polvo en función al peso total del cemento ... 126
Índice de Anexos

Anexo N.° 1 Análisis granulométrico del agregado fino ... 144
Anexo N.° 2 Análisis granulométrico del agregado grueso .. 145
Anexo N.° 3 Peso unitario del agregado fino .. 146
Anexo N.° 4 Peso unitario del agregado grueso .. 147
Anexo N.° 5 Peso específico, absorción del agregado fino y grueso 148
Anexo N.° 6 Contenido de humedad del agregado fino y grueso 150
Anexo N.° 7 Cantidad de materiales pasantes por malla N.° 200 del agregado fino y grueso .. 152
Anexo N.° 8 Contenido de sales del agregado fino y grueso 154
Anexo N.° 9 Resistencia al desgaste del agregado grueso 156
Anexo N.° 10 Diseños de mezcla .. 157
Anexo N.° 11 Resultados de los ensayos a la compresión del concreto 173
Anexo N.° 12 Contenido de aire del concreto recién mezclado por el método de presión según astm c231 ... 189
Anexo N.° 13 Determinación de la exudación del concreto recién mezclado según astm c232 .. 190
Anexo N.° 14 Resistencia al desgaste del concreto según astm c944 191
Anexo N.° 15. Reactividad potencial álcali sílice según astm c1260 195
Anexo N.° 16. Curado de probetas cilíndricas .. 197
Anexo N.° 17. Ficha técnica de aditivo curador de concreto 199
Anexo N.° 18. Ficha técnica de cemento portland tipo I ... 202
Anexo N.° 19. Ficha técnica de concretos de alta resistencia según empresa unicon ... 203
Anexo N° 20. Ensayo de análisis por sedimentación de adición polvo de granito, laboratorio a&m geotecnia y mecánica de suelos s.a.c ... 205
Anexo N° 21. Ensayo de peso específico de polvo de granito NTP 334.005 206
Anexo N° 22. Ficha técnica polvo de granito ... 207
RESUMEN
La continua explotación de los recursos naturales conlleva a que cada vez disminuya la cantidad de materia prima para producir materiales de construcción, y además la generación de fuertes impactos ambientales al momento de su extracción. La presente investigación evalúa un material nuevo en la elaboración de concretos de alta resistencia, el polvo de granito, que es extraído de las partículas residuales del chancado de piedra de la cantera Talambo, Chepén, para ser utilizado como refuerzo del concreto; de esta manera se reutiliza este material para el campo de la construcción. Con el fin de introducir el polvo de granito al concreto, se evalúan las características que este brinda al concreto en estado fresco y endurecido, y así son encontradas las proporciones óptimas para el uso de esta nueva adición.
La proporción recomendada al final del estudio hace variar ligeramente algunas características del concreto, sin embargo sí se presenta un cambio gradual al momento de evaluar su resistencia.

PALABRAS CLAVE
Polvo de granito, piedra chancada, resistencia, concreto.

ABSTRACT
The continued exploitation of natural resources leads to a decrease in the amount of raw material to produce construction materials, and also to the generation of strong environmental impacts at the time of extraction. The present investigation evaluates a new material in the manufacture of high strength concrete, the granite dust, which is extracted from the residual particles of the stone crushing of the quarry Talambo, Chepén, to be used as reinforcement of the concreto; in this way, this material is reused for the field of construction. In order to introduce the granite powder to the concrete, the characteristics that this provides to the concrete in fresh and hardened state are evaluated, and thus the optimum proportions for the use of this new addition are found.
The recommended proportion at the end of the study slightly changes some characteristics of the concrete, however there is a gradual change when evaluating its resistance.

KEYWORDS
Granite powder, crushed stone, strength, concrete.
I. INTRODUCCIÓN

La construcción es una de las actividades económicas más importantes a nivel mundial, y nos lleva a la explotación de los recursos para obtener materiales, como la producción del cemento y acero de construcción. El incremento de la industria de la construcción en nuestro país en los últimos años eleva aún más la demanda de los materiales, lo que relaciona directamente a la extracción de la materia prima con la contaminación ambiental que se produce en el proceso.

La gran variedad de materiales utilizados en la construcción son irremplazables para garantizar un buen servicio y durabilidad. No obstante, existen otros que ofrecen diferentes condiciones en el proceso constructivo, y resultan ser renovables por materiales alternativos obteniendo resultados similares, esto acompañado de criterios técnicos del profesional a cargo resulta comúnmente beneficioso cuando se habla del aspecto económico.

Los proyectos civiles afectan el medio ambiente al momento de su ejecución, por ende hoy en día se está innovando el uso de materiales que brinden resultados deseados. El acceso a la zona, aspecto económico y el impacto ambiental generan un papel importante en todo proyecto, por esto se busca implementar nuevos materiales que disminuyan el costo y a su vez la contaminación ambiental.

El proyecto desarrollado busca dar un nuevo uso a un material que se encuentra constantemente contaminando no solo al medio ambiente de zonas aledañas, sino también a los trabajadores, dentro de la cantera Talambo de Chepén. La arena blanca se obtiene de las partículas residuales del proceso de chancado de piedra, el cual es llevado mediante bandas transportadoras y almacenado al aire libre. La arena blanca se acumula por montones en forma de cerros, se conforma de partículas que quedan de la piedra de granito y un material muy fino (polvo), que al no ser manejado adecuadamente puede resultar perjudicial.

La producción diaria que se da de este material en la cantera Talambo es de 40
m³ aproximadamente, cantidad altamente contaminante. Evidentemente, no se le está dando un uso correcto en la industria de la construcción, a pesar que al provenir de la piedra granito, roca resistente con un alto contenido de sílices, beneficiaría la producción de concretos de alta resistencia. En este sentido, en esta investigación se planteó presentar la introducción del polvo de granito como un material alternativo a los que ya se usan comúnmente en la construcción, como los microsílices.

Por las características que poseen los microsílices, estos son utilizados como refuerzo del concreto, para el incremento de la resistencia en el concreto. (Rivva 2011) menciona que estos se originan por la condensación de vapores de óxido de sílice, siendo reacciones químicas, lo que genera fuertes impactos ambientales. Las agencias que aseguran las condiciones de trabajo seguras y saludables, como la OSHA (Occupational Safety and Health Administration) y la ACGIH (American Conference of Governmental Industrial Hygienists), desarrollaron listas donde clasifican a los sílices y al cuarzo como materiales peligrosos, y riesgosos para la salud de las personas, es así que a los trabajadores expuestos al manejo de este mineral los obligaban a usar equipos de protección adecuados y procedimientos que minimizan la generación del polvo gris e impidan su inhalación.

El comité del ACI (American Concrete Institute) 363 menciona que la mayoría de concretos de alta resistencia poseen una o más adiciones como son los microsílices que, correctamente dosificados, mezclados y colocados, pueden representar una solución a colocar concretos en servicio a edades menores, construir edificios altos reduciendo la secciones de elementos estructurales. superestructuras de puentes de mucha luz y mejora de durabilidad de sus elementos. Generalmente las microsílices se presentan en polvo de color gris.

Las ventajas que brindan los microsílices en el concreto son, en estado fresco: el aumento de la adherencia al acero, disminución de la exudación de la mezcla; y en estado endurecido: el aumento de la resistencia a la compresión y la resistencia a la abrasión durante la vida útil de la estructura.
De la situación explicada, se puede sintetizar la problemática ambiental que es originada por el uso constante de éste aditivo mineral conocido como microsílices, obtenido mediante reacciones químicas. Del mismo modo se reconoce el uso del polvo de granito en la construcción, teniendo como ejemplo los microsílices que brindan mejoras en las propiedades del concreto, no obstante es un hecho que son de alta peligrosidad para la salud y el medio ambiente. Por ende, si consideramos el polvo de granito como adición en el concreto para brindarle a éste mejores características, se evitaría tal problemática expuesta. Así, la formulación del problema para nuestro proyecto de investigación sería: ¿cuál será el diseño de mezcla para concretos de alta resistencia incorporando el polvo de granito extraído de las partículas residuales del chancado de piedra?

Se planteó el uso del polvo de granito en la mezcla de concreto simple para elevar la resistencia de la mezcla patrón. En ese sentido, en el presente estudio se pretendió comprobar la siguiente hipótesis: el polvo de granito extraído de las partículas residuales del chancado de piedra de la cantera Talambo, Chepén servirá de utilidad para la producción de concretos de alta resistencia. Como objetivo general se propuso evaluar el concreto simple utilizando polvo de granito extraído de las partículas residuales del chancado de piedra de la cantera Talambo para la obtención de concretos de alta resistencia, para lo cual se planteó una serie de objetivos específicos: identificar las propiedades del polvo de granito extraído de las partículas residuales del chancado de piedra de la cantera Talambo para ser introducidas al diseño de mezcla; determinar las propiedades que brinda el polvo de granito extraído de las partículas residuales del chancado de piedra al ser añadido al concreto; al mismo tiempo se vio conveniente realizar la evaluación de impacto ambiental que se genera al reciclar las partículas residuales del chancado de piedra para la producción de concreto; finalmente se buscó elaborar el costo de producción del concreto patrón y con uso de polvo de granito extraído de las partículas residuales del chancado de piedra, esto mediante un análisis de costos unitarios.
II. **MARCO TEÓRICO**

2.1 **ANTECEDENTES**

El calentamiento global en los últimos años ha llevado a la búsqueda de materiales amigables con el medio ambiente con la finalidad de disminuir el impacto que se genera desde su producción, transporte hasta su desecho de dichos materiales. La industria de la construcción también se ha visto involucrada en la búsqueda de nuevas tecnologías y nuevos materiales, realizando estudios que nos permitan usar materiales alternativos con menos grado de contaminación y con igual eficiencia, sin dejar de lado también el costo de producción que demandarían estos materiales.

Por estas razones se presenta este trabajo de investigación para la elaboración de concretos de alta resistencia, en nuestro caso con el uso del polvo de granito extraído de las partículas residuales del chancado de piedra, siendo un material alternativo de los microsílices que comúnmente se usan para estos tipos de concreto. A continuación se presentan algunos trabajos de investigación relacionados con el presente tema de tesis.

Xavier Fuentes Bayne, *Modelamiento de la respuesta mecánica del cemento puzolanico mediante la adición de zeolita tipo i y curado al aire* (tesis de licenciatura, Universidad Escuela Superior Politécnica del Litoral, 2008), determinó el porcentaje de variación en la resistencia a la compresión de la pasta de cemento tipo I curado al ambiente cuando se le adiciona 10 % de zeolita. Sus resultados fueron contrastados con los valores de cemento tipo I y tipo IV, donde se obtuvo que la mezcla con un 20 % de zeolita presentó la mayor resistencia a la compresión para los correspondientes días de curado en un 3.88 % respecto al cemento tipo I y en un 80.60 % respecto al cemento tipo IV.

Carlos Morataya Córdova, *Concreto de alta resistencia experimentación en Guatemala*, (tesis de licenciatura, Universidad de San Carlos de Guatemala, 2005), presenta un concreto que, aunque no es muy aplicado en forma tradicional, es de
suma importancia para la evolución estructural de grandes edificaciones como edificios, puentes, y otros. Se presentan las normas y especificaciones que deben de regirse para cada uno de los materiales utilizados. Además se presentan distintas mezclas para 1 m³ de concreto, utilizando aditivos minerales de ceniza volante y microsílices. En la parte práctica se realizaron distintas mezclas de comparación entre cantidades y tipos de cementos, de las cuales se ensayaron cilindros a 7, 28 y 56 días donde se obtuvieron resultados muy favorables.

Patricia A. Vilca Aranda, *Obtención del concreto de alta resistencia* (tesis de licenciatura, Universidad Nacional de Ingeniería, 2013), desarrolló una tecnología apropiada para obtener concretos de altas resistencia, haciendo uso de superplastificantes y adiciones de micro sílice. La metodología planteó optimizar la proporción de los agregados para obtener la menor cantidad de vacíos. Luego, efectuó un diseño patrón con la mejor proporción de agregados, para después diseñar el concreto con aditivo tomando como base el concreto patrón y finalmente diseñar el concreto con aditivo más micro sílice adoptando como referencia los diseños anteriores.

Edher Huincho Salvatierra, *Concreto de alta resistencia utilizando aditivo superplastificante, microsilice y nanosilice con cemento portland tipo I* (tesis de licenciatura, Universidad Nacional de Ingeniería, 2011), aborda los concretos de alta resistencia preparados con micro sílice (SIKA FUME), nano sílice (SIKA STABILIZER 100) y súper plastificante (VISCOCRETE 20HE) y con cemento portland tipo I, relaciones agua-cementante menores a 0.25, usando por primera vez agregado grueso HUSO 89. Se presentan también el diseño de los diferentes tipos de mezcla y la determinación de sus propiedades al estado fresco y endurecido, así como también un análisis de resultados.

Gianfranco Ottazzi Pasino, *Material de apoyo para la enseñanza de los cursos de diseño y comportamiento del concreto armado* (tesis de maestría, Pontificia
Universidad Católica del Perú, 2004), tuvo como objetivo principal contribuir a la mejora de la enseñanza de los cursos de Concreto Armado 1, que se dicta en la Facultad de Ciencias e Ingeniería en la especialidad de Ingeniería Civil, y del curso Comportamiento del Concreto Armado, que ofrece la Escuela de Graduados como electivo en el Programa de Maestría en Ingeniería Civil. Para ello, elaboró un documento, a manera de apuntes, en el que constaban los principales capítulos de los programas analíticos de los cursos mencionados. En el escrito se hizo énfasis en los aspectos fundamentales del comportamiento de secciones y elementos simples de concreto armado, antes de presentar los procedimientos clásicos de análisis y diseño.

2.2 BASES TEÓRICO CIENTÍFICAS

2.2.1 EL CONCRETO

El concreto es un material compuesto constituido por un material cementante, agua y agregado. El cemento, normalmente tipo Portland, una vez hidratado genera la adhesión química entre los componentes. Por lo general, el agregado representa entre el 60 al 75 % del volumen total del concreto estructural, el cemento entre un 7 a 15 % y el aire atrapado entre 1 al 3 %. (Ottazi 2004)

El concreto es conocido por tener una alta resistencia en compresión, pero una resistencia en tracción tan baja, que de hecho en los cálculos se suele despreciar esta propiedad.

El concreto es el material de mayor uso en nuestro país. Si bien la calidad del concreto depende del conocimiento del material y de la calidad del profesional a cargo, el concreto es, en general, desconocido en mucho de sus grandes aspectos: Naturaleza, materiales, propiedades, selección de proporciones, proceso de puesta en obra, control de calidad e inspección, y mantenimiento de los elementos estructurales (Rivva 2011). Se puede definir como elementos constituyentes del concreto la pasta y el gel donde su participación es muy importante e influye en la calidad del concreto.
La pasta se genera de la combinación química del material cementante con el agua. Es conocida como la fase continua del concreto dado que siempre está unida con algo de ella misma a lo largo de su estructura y al agregado se le conoce como la fase discontinua del concreto por que sus partículas se encuentran separadas por espesores de pasta endurecida. La pasta influye directamente en las propiedades del concreto endurecido, separa a las partículas de agregado llenando los vacíos entre ellos y lubrica la masa cuando esta aun no endurece. (Rivva 2011)

El gel se define como la parte sólida de la pasta, resultado de la reacción química del cemento con el agua durante el proceso de hidratación. En el desarrollo de este tema se utiliza el concreto simple un tipo de concreto estructural, por tal motivo es importante definir los tipos de concreto. El Reglamento Nacional de Edificaciones en la Norma E-060 define el siguiente:

- Concreto: mezcla de cemento portland o cualquier otro tipo de cemento hidráulico, agregado fino, agregado grueso y agua, con o sin aditivos.
- Concreto estructural: todo concreto utilizado con propósitos estructurales, incluyendo al concreto simple y al concreto reforzado.
- Concreto armado o reforzado: concreto estructural reforzado con no menos de la cantidad mínima de acero, pre esforzado o no especificados en el capítulo 1 al 21.
- Concreto simple: concreto estructural sin armadura de refuerzo o con menos armadura que el mínimo especificado para concreto reforzado.

El concreto simple se utiliza para construir muchos tipos de estructuras, como autopistas, calles, veredas, losas deportivas, losas de edificaciones, además se presenta en la albañilería en forma de ladrillos o bloques. A continuación se hablará del concreto de la presente investigación, una clase de concreto simple, que ofrece ciertas propiedades que benefician al concreto convencional, 210 kg/cm², el concreto de alta resistencia.
2.2.1.1 Concreto de alta resistencia

(Otazzi 2004) En su forma más simple, el concreto de alta resistencia es un tipo de concreto de alto desempeño, el cual se caracteriza por poseer una resistencia a la compresión igual o superior a 6000 psi o 420 kg/cm². Por la resistencia que tienen se les somete a fuerzas más altas, y por lo tanto un aumento en su calidad generalmente conduce a resultados económicos. El uso de concretos de alta resistencia permite la reducción de las dimensiones de la sección de los elementos estructurales, lográndose ahorros significativos en carga muerta siendo posible que grandes claros resulten técnica y económicamente posibles. (Rivva 2011) define que el ensayo a la compresión de estos concretos de calidad se miden a los 56 o 90 días por lo general, o alguna otra edad especificada dependiendo su aplicación. En la presente tesis, por motivos de investigación, se realizó la prueba de resistencia a la compresión a edades de 7, 14, 28, 56 y 90 días, para verificar los resultados de la resistencia hasta estas edades de ensayo.

El Reglamento Nacional de Edificaciones en el capítulo 21 define las disposiciones especiales para un diseño sísmico, donde en el apartado concreto en elementos resistentes a fuerzas inducidas por sismo define lo siguiente, la resistencia a la compresión del concreto “fc” no debe ser menor que 21Mpa, y a la vez no debe ser mayor que 55 Mpa, lo que significa concretos superiores a 55 Mpa hará que pierda ductilidad la estructura de concreto, por lo tanto se definió este “fc” como límite para la investigación.

Los usos que presenta este concreto estructural son los siguientes:

- Muros de rigidez, columnas y vigas en edificios de oficinas, departamentos, centros comerciales, hoteles y edificios de gran envergadura.
- Elementos estructurales que requieran soportar altas demandas de carga.
- Colocar el concreto en servicio a una edad mucho menor, por ejemplo dar tráfico a pavimentos a 3 días de su colocación.
• Construir superestructuras de puentes de mucha luz, y mejorar la durabilidad de sus elementos.

• Satisfacer necesidades específicas de ciertas aplicaciones especiales, como por ejemplo durabilidad, módulo de elasticidad y resistencia a la flexión. Entre algunas de dichas aplicaciones se cuentan presas, cubiertas de graderías, cimentaciones marinas, parqueaderos, pisos industriales de tráfico pesado.

La empresa peruana UNICON especialista en la producción de concreto de resistencias de hasta 1000kg/cm², define las siguientes ventajas que presentan los concreto de alta resistencia:

• Mayor rendimiento en ejecución de obras. Permite mayor rotación de encofrados y menos tiempo de uso.
• Diseñar menores secciones estructurales, con ahorro en áreas de construcción.
• Disminuir cuantías de refuerzo en diseños.
• Mejor protección contra la corrosión del acero de refuerzo.
• Menor costo versus otras diseñadas en acero.
• Mayor resistencia a la erosión.

Además la empresa UNICON define que para la producción de concreto de alta resistencia requiere un mayor estudio, así como un control de calidad más exigente en comparación con el concreto convencional, como por ejemplo excelentes condiciones de curado para continuar elevando su resistencia, cualquier adición de agua, cemento o aditivo en obra alterará su diseño, y perjudicará su calidad. De la misma manera se debe conocer que los concretos que hayan empezado con el proceso de fraguado no debe vibrarse, ni mezclarse, ni utilizarse en caso de demoras en obra. Se deben cumplir estrictamente todas las normas referentes a manejo de protección y control de concreto para que de esta manera se pueda elaborar un concreto de alta resistencia sin ningún problema de calidad.
2.2.1.2 Componentes del concreto de alta resistencia

Los materiales de calidad y las especificaciones requeridas son necesarios para la producción de un concreto de alta resistencia. A continuación se hablará de cada uno de los materiales empleados para este concreto de calidad.

2.2.1.2.1 Cemento

El cemento es el aglomerante en una mezcla de concreto, y por lo general es el que tiene mayor costo unitario, por ello es importante su selección y uso adecuado para fabricar un concreto con las propiedades deseadas y, a la vez, económico.

La totalidad de los cementos empleados en el Perú son cementos portland que cumplen con los requisitos que especifica la norma ASTM C150; o cementos combinados, que cumplen con lo indicado en la norma ASTM C595.

El cemento portland normal es el resultado de pulverizar piedra caliza y arcilla, la cual se cuece en hornos a una temperatura de 1400 a 1600 °C, así se obtiene un material gris oscuro llamado Clínker, el cual se muele mezclándole cierta cantidad de yeso, que sirve para retardar el fraguado de la mezcla. Se admite la adición de productos que se pulverizan junto con el Clínker siempre que no excedan el 1 % en peso del total y que la norma correspondiente determine que su inclusión no afecta las propiedades del cemento resultante. El cemento portland deberá cumplir con los requisitos indicados en la norma ASTM (American Society of Testing Materials) C150 para los tipos I, II y V, los cuales se fabrican en el Perú. Alternativamente podrán emplearse los requisitos de las NTP (Normas Técnicas Peruanas) para cementos.

El cemento portland Tipo I se recomienda para concretos de uso normal que no se requiera de propiedades especiales especificadas. Debe cumplir con los requisitos de las Normas ASTM C150 o NTP 334.039.

El cemento portland tipo II se recomienda para concretos expuestos a
moderado ataque por sulfatos, o en aquellos casos en que se requiere un moderado calor de hidratación. Este cemento tendrá un contenido de aluminato tricalcico (C3A) menor del 8 %; menores cambios de volumen; menor tendencia a la exudación; mayor resistencia al ataque por sulfatos; y menor generación de calor; así como adecuadas resistencias tanto en las edades iniciales como en las finales. Este cemento debe cumplir con los requisitos de la Norma ASTM C150 o de la Norma NTP334.038.

El cemento portland Tipo V se recomienda cuando se requiere en el concreto alta resistencia a la acción de los sulfatos; alta resistencia en compresión; o baja generación de calor. Este cemento tendrá un contenido de aluminato tricalcico (C3A) menor del 5 % deberá cumplir con las normas ASTM C150 o NTP 334.044.

El cemento tipo III se recomienda cuando se requiere alta resistencia inicial, cuenta con alto calor de hidratación y una resistencia baja a los sulfatos. El cemento portland tipo IV se utiliza cuando se necesita bajo calor de hidratación, desarrolla su resistencia a la compresión lentamente, ambos cementos deben cumplir con los requisitos de las normas ASTM C150.

Los cementos hidráulicos combinados son el producto obtenido de la pulverización del Clínker en conjunto con un material reactivo que posee propiedades puzolánicas, con la adición eventual de sulfato de calcio. Estos cementos pueden igualmente ser preparados por mezcla de los ingredientes finamente molidos. En ambos casos deben cumplir con los requisitos de la Norma ASTM 595.

En el campo de los cementos hidráulicos combinados en el Perú se fabrican los cementos puzolánicos tipos IP, IPM, y IS. El cemento puzolánico tipo IP es un cemento portland con un porcentaje adicional de puzolana entre 15 % y 45 %, y el cemento puzolánico tipo IPM es un cemento Portland con un porcentaje adicional de puzolana menor que el 15 %, y ambos deben cumplir con los requisitos de las Normas ASTM C595 o NTP 334.044.
Elaboración del cemento

El proceso que se realiza para la elaboración de cemento es el siguiente:

La materia prima, material calizo y material arcilloso, se tritura, mezcla y muele hasta ser reducida en polvo fino. Los procedimientos de mezcla y molienda pueden efectuarse en seco o húmedo. La dosificación de los materiales debe ser la adecuada a fin de evitar perjuicio en la calidad. El polvo fino pasa a un horno rotatorio donde es calentado lentamente hasta el punto de Clíinkerización. En la etapa inicial del proceso de calentado el agua y el anhídrido carbónico son expulsados. Al acercarse la mezcla a las regiones mas calientes del horno producen reacciones químicas entre los constituyentes de la mezcla cruda. Durante estas reacciones se forman nuevos compuestos, algunos de los cuales alcanzan el punto de fusión. (Rivva 2011, 28-34)

El producto resultante, Clínker, cae a uno de los diversos tipos de enfriadores, o se deja enfriar al aire. Posteriormente se combina con un porcentaje determinado de yeso y el conjunto se muele hasta convertirlo en un polvo muy fino que se conoce como cemento portland.

La sílice y la cal constituyen, en conjunto, aproximadamente del 70 % al 75 % del total del Clínker, en forma de silicatos cálcicos de distinta basicidad. La alúmina y el óxido férrico reciben el nombre de fundentes porque, conjuntamente con la magnesia y los álcalis, constituyen la fase líquida del Clínker y facilitan por ello las reacciones entre la sílice y la cal, forman con esta última los aluminatos.

La siguiente es una idea de la composición de óxidos del cemento:

Cao........60 % al 67 %
Si O2.......17 % al 25 %
Al2O3.......3 % al 8 %
Fe2O3.......0.5 % al 6 %
Estos cuatro compuestos principales del Clínker suponen del 90 % al 95 % del total. El porcentaje restante corresponde a los llamados compuestos secundarios, los cuales pueden agruparse en:

- Óxido de cal libre
- Óxido de magnesia
- Óxidos de sodio y potasio.

Características para empleo del concreto de alta resistencia

La elección del cemento portland para concretos de alta resistencia es extremadamente importante, es por eso que se le debe brindar la mayor atención antes y durante la construcción de la estructura respectiva, además las diferentes marcas y tipos de cemento tendrán distintas características de desarrollo de resistencia debido a variaciones en su composición y la finezas que son permitidos.

Es recomendable seleccionar un cemento que permita alcanzar una alta resistencia. El cemento portland tipo I o II de conformidad de acuerdo a la norma ASTMC150, y los cementos tipo IP, IPM o IS, los cuales cumplen con las especificaciones ASTM C595 son cementos mezclados con porcentajes fijos de puzolanas o escorias y f’c mayores de 10,000 psi (700 kg/cm²), sin embargo, éstas proporciones fijas de puzolanas podrán o no ser aptos para un rendimiento óptimo de resistencia. Por tanto el cemento utilizado en la presente investigación fue el cemento portland tipo I pacasmayo por tratarse de un concreto normal y tener un rendimiento óptimo de resistencia.

La cantidad de cemento por m³ que se utilizó en la mezcla se determinó mediante cilindros de prueba. En el presente estudio se obtuvo contenidos desde los 550Kg/m³, a contenidos mayores dependiendo de la resistencia escogida.
2.2.1.2.2 Agregados

Los agregados forman parte del concreto, por tener partículas embebidas dentro de la pasta de cemento con agua en la elaboración del concreto. Son materiales pétreos inertes resultantes de la desintegración natural de rocas o que se obtienen de la trituración de las mismas, ocupando aproximadamente del 60 % al 75 % del volumen de la unidad cubica de concreto. Las arenas y las gravas son producto del intemperismo y la acción del viento y el agua. Las arenas manufacturadas, no empleadas en el Perú, y la piedra partida son productos de la trituración de piedras naturales, las cuales deben estar libres de suciedad, ser durables, y no deben tener sustancias que reaccionen químicamente con el cemento.

Los agregados pueden ser obtenidos o producidos a partir de rocas ígneas, sedimentarias o metamórficas. La presencia o ausencia de un tipo geológico determinado no es suficiente para definir a un agregado como adecuado o inadecuado. La aceptación de un agregado para ser empleado en la preparación del concreto para una obra de características determinadas, deberá basarse en la información obtenida a partir de los ensayos de laboratorio, de su registro de servicios bajo condiciones de obra similares, o de ambas fuentes de información.

Estos se clasifican en: agregado grueso (piedra o grava) y agregado fino (arena). De acuerdo a su tamaño, el fino tiene un diámetro menor al tamiz número 4 (4.76 mm), pero se recomienda que sea mayor que 74 μm y el agregado grueso que son las partículas de un tamaño mayor a 4.76 mm

Según la clasificación de estos por su forma, tenemos: el canto rodado, proveniente de cauces de ríos, forma redondeada, producen concretos de buena calidad y de ventajas como trabajabilidad o docilidad. El agregados triturado, proveniente de la desintegración de rocas en cantera, tiene ventajas por su composición mineralógica más uniforme y cantos angulosos.
Características que deben cumplir los agregados para su empleo del concreto de alta resistencia

Tanto el agregado fino como el agregado grueso son usados para este tipo de concreto, con una reunión mínima en los requerimientos de ASTM C33.

Agregado fino

(Rivva 2011) Los agregados con formas de las partículas redondas y la textura lisa se han encontrado para requerir menos agua en el mezclado de concreto, por esta razón es preferible en concretos de alta resistencia. Se acepta habitualmente que el agregado fino causa un efecto mayor en las proporciones de la mezcla que el agregado grueso. Los primeros tienen una mayor superficie específica y como la pasta tiene que recubrir todas las superficies de los agregados, el requerimiento de pasta en la mezcla se verá afectado por la proporción en que se incluyan estos.

La óptima graduación en el agregado fino para este concreto es determinada más por su efecto en requisito de agua que en su embalaje físico.

Las arenas con un módulo de fineza por debajo de 2.5 dan concretos de consistencia espesa que los hace difíciles de compactar, sin embargo arenas con un módulo de fineza cercano a 3.0, dan mejor trabajabilidad y resistencia a la compresión. (Rivva 2011, 24)

La granulometría del agregado fino tiene, entonces, un rol importante, por ejemplo, un exceso en el pasante de los tamices N.º 50 y N.º 100 incrementará la trabajabilidad pero se hará necesario aumentar el contenido de pasta para cubrir la mayor superficie de estas partículas, además de generar el riesgo de tener que incluir más agua a la mezcla y deben evitarse mica y contaminantes de la arcilla.

Agregado grueso

(Rivva 2011) Se demostró que para obtener una óptima resistencia en compresión con un volumen de cemento alto y las proporciones de agua-cemento
bajas, el tamaño del agregado grueso debe ser mantenido en un mínimo, en el orden de \(\frac{1}{2} " \) (12.7 mm) a 3/8" (9.5 mm); el tamaño máximo de \(\frac{3}{4} " \) (19.0 mm) y 1" (25.4 mm) también es usado con éxito.

El incremento en la resistencia a medida que disminuye el tamaño máximo del agregado se debe a una reducción en los esfuerzos de adherencia, debido al aumento de la superficie específica de las partículas. Se ha encontrado que la adherencia a una partícula de 76 mm es apenas un 10 % de la correspondiente a una de 12.5 mm, igualmente excepto para agregados de muy buena o muy mala calidad, la resistencia por adherencia fue del 50% al 60% de la resistencia de la pasta a los 7 días. (Rivva 2011)

(Rivva 2011) También se ha demostrado que la piedra triturada produce altas resistencias, a comparación de la piedra de canto rodado, sin embargo, se debe evitar una angulosidad excesiva debido al aumento en el requerimiento de agua y disminución de la trabajabilidad a que esto conlleva.

2.2.1.2.3 Aditivos

Hoy en día la mayoría de las mezclas de concreto contienen adiciones al cemento que constituyen una porción del material cementante en el concreto. Estos materiales son generalmente subproductos de otros procesos o materiales de origen natural. Ellos pueden o no ser procesados antes de ser utilizados en los concretos. Estos materiales pueden incorporarse antes de o durante la ejecución de la mezcla, con el objeto de modificar alguna o varias de sus propiedades en la forma deseada, aportando un volumen deseable.

Para el empleo de estos aditivos en el concreto deben someterse antes a la aprobación de la supervisión, donde se demuestra que el aditivo utilizado en obra es capaz de mantener esencialmente la misma composición y comportamiento que el producto usado para establecer la dosificación del concreto.

El cloruro de calcio o los aditivos que contengan cloruros que no provengan
de impurezas de los componentes del aditivo, no deben emplearse en concreto preesforzado, en concreto que contenga aluminio embebido o en concreto construido en encofrados permanentes de acero galvanizado.

Existen dos tipos de aditivos: aditivos minerales y aditivos químicos.

La totalidad de los aditivos químicos empleados en el Perú, son: aditivos incorporadores de aire, que deben cumplir con la NTP 334.089; aditivos reductores de agua, retardantes, acelerantes, reductores de agua y retardantes y reductores de agua y acelerantes, que deben cumplir con la NTP 334.088 o con — *Standard specification for chemical admixtures for use in producing flowing concrete* (ASTM C1017M). Los aditivos minerales empleados en el Perú, son, las cenizas volantes u otras puzolanas, que deben cumplir con la NTP 334.104. La escoria molida granulada de alto horno utilizada como un aditivo mineral el cual debe cumplir con —*Standard Specification for Ground Granulated Blast-Furnace Slag for Use in Concrete and Mortars* (ASTM C 989), y la microsílice usada como aditivo mineral que debe cumplir con la NTP 334.087.

Aditivos químicos

Como ya se mencionó los aditivos son ampliamente usados en la producción de concretos de alta resistencia. La selección de tipo de marca, tipo de dosificación de todos los aditivos (mezclas) debe basarse en el funcionamiento con los otros materiales, siendo considerados o seleccionados por uso en el proyecto. Aumentos significantes en resistencias compresivas, control de la velocidad de endurecimiento, ganancia acelerada de resistencia, mejoramiento de trabajabilidad y durabilidad son contribuyentes que pueden esperarse de los aditivos electos. A continuación se observan las características de los aditivos químicos.
Incorporadores de aire

El uso de incorporadores de aire es recomendado para alcanzar durabilidad según norma ASTM-C260 en condiciones de congelamiento y deshielo. Durante el mezclado del concreto se genera un sistema de pequeñas burbujas de 0.025 a 0.1mm espaciadas uniformemente en toda la masa del concreto. El sistema de burbujas provee al concreto de una resistencia especial contra el intemperismo, en particular protege al concreto del deterioro producido por las heladas o los ciclos de congelamiento y deshielo, por esta razón se dice que el aire introducido mejora la durabilidad del concreto. No obstante los incorporadores de aire tienen el efecto de reducir la resistencia particularmente en mezclas de alta resistencia y por esta razón se ha utilizado solo donde hay interés de durabilidad.

Retardadores

Los concretos de alta resistencia incorporan altos factores de cemento, mayores que los usuales para concretos comunes. En éstos casos un retardador es frecuentemente beneficioso en el control de la hidratación temprana, puede controlar la velocidad de endurecimiento en los encofrados a fin de eliminar las juntas frías y proporcionar más flexibilidad en los horarios de colocación. Debido que los retardadores proporcionan frecuentemente un aumento en la resistencia, que es proporcional al tipo de dosificación, las mezclas deben ser diseñadas a diferentes dosificaciones. Sin embargo, generalmente hay un efecto contrario que minimiza las variaciones en las resistencias debido a la temperatura.

Así, conforme la temperatura se incrementa, la resistencia en la edad final deberá declinar, sin embargo, un incremento en la dosificación del retardador para controlar la velocidad del endurecimiento proporcionará alguna mitigación de la reducción de la temperatura inducida. Contrariamente, las dosificaciones deberán disminuir conforme las temperaturas bajen.
Aunque proporciona un retardo inicial, la resistencia a las 24 horas y posteriormente usualmente se incrementa para las dosificaciones normales. La retardación prolongada o las bajas temperaturas pueden afectar en forma adversa la resistencia a las 24 horas.

Reductores de agua

Estos aditivos del fraguado normal convencional agua-reductor proporcionarán aumentos de resistencias sin alterar las velocidades de endurecimiento. Su elección deberá basarse en función de la resistencia. Aumentos en la dosificación por encima de la cantidad normal generalmente incrementarán las resistencias pero puede extender tiempos de fraguado.

Reductores del agua de rango alto

Los aditivos de alta reducción de agua proporciona funciones de alta resistencia, particularmente al principio (24 horas). También conocidos como súper-plastificantes o superfluidificantes.

Las nuevas generaciones de súper-plastificantes no solo pueden reducir el contenido de agua hasta un 40 % sino que además pueden transformar el concreto de alta resistencia en un concreto muy manejable de alto asentamiento; concretos con relación a/c tan bajo como 0.24 con asentamientos de hasta 11 cm.

Para que la pasta de cemento adquiera un estado más plástico, se deben aglutinar las partículas en un sistema disperso, por medio de un fenómeno llamado floculación. Este fenómeno es la tendencia a que las partículas de un sistema se aglutinen debido a las fuerzas de atracción entre ellas, que pueden ser de origen eléctrico. Estas fuerzas dependen de la distancia entre las partículas, ya que se incrementan cuando la distancia entre ellas disminuye. Las partículas de cemento portland tienen una marcada tendencia a flocular cuando se mezclan con agua.
esto se debe a varios tipos de interacciones. Las redes de los huecos pueden atrapan parte del agua, la cual entonces no está disponible para la hidratación superficial de las partículas de cemento y para la fluidificación de la mezcla.

Para lograr una distribución homogénea del agua y un contacto óptimo del agua-cemento, las partículas del cemento deben estar apropiadamente floculadas y mantenerse en un estado de alta dispersión. El superfluidificante es muy efectivo en la floculación y dispersión de las partículas de cemento, son aditivos altamente eficientes cuando se utilizan adecuadamente. por medio de él es posible:

- Aumentar la trabajabilidad del hormigón sin adición de agua.
- Dispersar las partículas del cemento de tal forma que los concretos puedan fabricarse usando menos agua de la necesaria para una completa hidratación de la pasta.
- Se pueden producir pastas de cemento hidratado lo suficientemente estables y densas para unirse fuertemente a los agregados y al acero de refuerzo, para producir un material compuesto muy resistente.

Por ser tema de estudio, un mineral con propiedades similares a la adición mineral, las microsilices, es que nos centramos más en estas tipos de adición.

Aditivos minerales

Las adiciones minerales pueden ser utilizadas individualmente o en combinación en el concreto. Pueden ser añadidos a la mezcla de concreto como un cemento que contenga la adición o como un ingrediente dosificado separadamente, siendo este último la forma utilizada en el presente proyecto de investigación.

A continuación se observan las características de estos materiales.
Microsílices

El Comité 116 American Concrete Institute define al microsílice como una sílice no cristalina muy fina, producida por hornos de arco eléctrico como un subproducto de la fabricación de silicio metálico o ferro silicio. La microsílice es un subproducto de la reducción de cuarzo de alta pureza con carbón mineral, el cual es calentado a 2000 °C en un horno de arco eléctrico durante la fabricación de aleaciones de ferro silicio y silicio metálico, siendo la aleación recogida en el fondo del horno. (Rivva 2011, 16-18)

Los microsílices se caracterizan por ser de alta reactividad y de extrema finura (se trata de partículas esféricas con diámetro medio de aproximadamente 0.15 micras, cuya superficie específica se calcula alrededor de 15.000 a 30.000 m²/kg) lo que permite en el concreto la eliminación y oclusión de la porosidad, mejorando la interfase de la pasta de cemento portland con el agregado derivándose en un producto más resistente y duradero; aumentando la compacidad y disminuyendo la permeabilidad del producto final.

Las propiedades de los microsílices que hacen de éstos una adición al concreto tan especial, son: el pequeño tamaño de las partículas, la elevada superficie específica y el alto contenido de dióxido de silicio; aunque también la forma esférica de sus partículas tiene una significativa influencia en la fluencia de la mezcla.

Según la ficha técnica elaborada por la empresa SIKA PERÚ de los microsílices se mencionan las características y ventajas que ofrecen:

- Disminuye la pérdida de cemento y elementos finos
- Aumenta la resistencia mecánica
- Aumenta la impermeabilidad
- Aumenta la resistencia química
- Aumenta la adherencia al acero
- Permite utilizar mezclas altamente fluidas con alta cohesión
- Aumenta la cohesión y disminuye la exudación de la mezcla fresca
- Aumenta la durabilidad frente a agentes agresivos
- Aumenta la resistencia a abrasión

Tienen una gravedad específica de 2.2g/cm³ y presenta un análisis químico, según la empresa SIKA PERÚ:

$\begin{align*}
\text{SiO}_2 & : 93.00 \% \\
\text{Fe}_2\text{O}_3 & : 0.80 \% \\
\text{Al}_2\text{O}_3 & : 0.40 \% \\
\text{CaO} & : 0.60 \% \\
\text{MgO} & : 0.60 \% \\
\text{Na}_2\text{O} & : 0.20 \% \\
\text{K}_2\text{O} & : 1.20 \% \\
\text{SO}_3 & : 0.40 \% \\
\text{Cl} & : 0.01 \%
\end{align*}$

Puede utilizarse en dosis de aproximadamente 10 % del peso del cemento y se recomienda realizar ensayos previos para definir el consumo exacto. Debido a su extrema finura, es que para esta adición deben garantizarse procedimientos especiales para la manipulación, el vaciado y el curado del concreto.

Cenizas volantes

Las cenizas volantes son un subproducto de los hornos que emplean carbón mineral como combustible para la generación de energía y constituyen en sí las partículas no combustibles removidas de las chimeneas de gases. Las cenizas volantes utilizadas en el concreto deben tener conformidad con la norma técnica peruana 334.104. La cantidad de ceniza volante en el concreto puede utilizarse con un porcentaje máximo de 25 % en peso de los materiales cementantes. Las cenizas de clase F son normalmente producidas de la quema de la antracita o de carbones.
bituminosos y generalmente poseen un contenido bajo de calcio. Las cenizas de clase C son producidas cuando se queman carbones sub-bituminosos y poseen típicamente propiedades puzolánicas. Actualmente las cenizas volantes u otras puzolanas se encuentran presentes en cementos adicionados como tipo IP o IPM según las NTP 334.082 o 334.090.

Escorias molidas de alto horno (GGBFS)

Las escorias molidas son sub-productos no metálicos producidos en un alto horno cuando el mineral de hierro es reducido a hierro dulce. La escoria líquida es enfriada rápidamente para formar gránulos, que son molidos hasta una finura similar a la del cemento Portland. Las escorias molidas de alto horno utilizadas como un material cementante deben tener conformidad con la norma ASTM C989. En esta especificación se definen tres grados de escorias: 80, 100 y 120, donde el grado más contribuye más a la resistencia potencial. Las escorias molidas de alto horno tienen por sí mismas propiedades cementantes pero estas son mejoradas cuando se utilizan con cemento portland. Las escorias se utilizan hasta un porcentaje máximo de 50 % en peso de los materiales cementantes según el reglamento nacional de edificaciones. Actualmente se utilizan las escorias molidas de alto horno para la fabricación de cementos adicionados como tipo IS o ISM según las NTP 334.082 o 334.090.

2.2.1.2.4 Agua

Como requisito de carácter general y sin que ello implique la realización de ensayos que permitan verificar su calidad, se podrá emplear como aguas de meclado aquellas que se consideren potables, o las que por experiencia se conozcan que pueden ser utilizadas en la preparación del concreto. Debe recordarse que no todas las aguas que son adecuadas para beber son convenientes para el mezclado y que, igualmente, no todas las aguas inadecuadas para beber son inconvenientes para preparar concreto. En general, dentro de las limitaciones que en las diferentes secciones se han de dar, el agua de mezclado deberá estar libre sustancias
colorantes, aceites y azucares.

Requisitos del comité ACI 318

La publicación 318-99 del American Concrete Institute *Building Code Requirements for Structural Concrete*, en su capítulo 3, acápite 3.4, fija cuatro requisitos para el agua de mezclado.

- El agua empleada en el mezclado del concreto deberá estar limpia y libre de cantidades peligrosas de aceites, álcalis, ácidos, sales, material orgánica, u otras sustancias peligrosas para el concreto o el refuerzo.

- El agua de mezclado para el concreto premezclado o para concreto que deberá contener elementos de aluminio embebidos, incluida la porción del agua de mezclado que es contribuida en forma de agua libre sobre el agregado, no deberá contener cantidades peligrosas de ion cloruro.

- No deberá emplearse en el concreto agua no potable, salvo que las siguientes condiciones sean satisfechas:

 ✓ La selección de las proporciones del concreto deberán basarse en mezclas de concreto en las que se ha empleado agua de la misma fuente.
 ✓ Los cubos de ensayo de morteros preparados con las aguas de mezclado no potables deberán tener a los 7 y 28 días resistencias iguales a por lo menos el 90 % de la resistencia de especímenes similares preparados con agua potable. Los ensayos de comparación de resistencia deberán ser preparados con morteros, idénticos con excepción del agua de mezclado, preparados y ensayados de acuerdo con la Norma ASTM C109 *Test Method for Compresive Strength of Hydraulic Cement Mortar* (Empleando especímenes cúbicos de 2” o 50mm).
2.2.1.3 Propiedades del concreto de alta resistencia

2.2.1.3.1 Introducción

Las propiedades del concreto tales como relación esfuerzo-deformación, módulo de elasticidad, resistencia en tensión, resistencia al corte y resistencia por adherencia son frecuentemente expresadas en términos de la resistencia en compresión uniaxial de probetas cilíndricas de 6” x 12”. En general, las expresiones se han basado sobre datos experimentales de concretos con resistencia en compresión menor de 410 kg/cm². Diversas propiedades de los concretos de alta resistencia se presentan en este proyecto.

Los concretos de alta resistencia presentan menor microagrietamiento interno que los concretos de resistencias menores para un esfuerzo axial impuesto. Como resultado, el incremento relativo en la deformación lateral es menor para los concretos de alta resistencia. La baja expansión lateral durante el rango inelástico puede hacer que el efecto de los esfuerzos triaxiales sea proporcionalmente diferente para los concretos de alta resistencia. La efectividad del refuerzo espiral es menor para los concretos de alta resistencia. (Rivva 2011)

2.2.1.3.2 Módulo de elasticidad

(Rivva 2011) Define al módulo de elasticidad como la pendiente de la tangente a la curva esfuerzo-deformación en compresión uniaxial al 25 % del esfuerzo máximo para concretos, teniendo resistencias compresivas variando de 690 kg/cm² a 760 kg/cm². Muchos investigadores han reportado valores para el módulo de elasticidad de concretos de alta resistencia en el orden de 310 kg/m2 a 450 kg/cm² dependiendo principalmente del método de determinación del módulo. Se ha encontrado que el método del ACI 318 sobrestima el módulo de elasticidad para concretos con resistencia en compresión sobre los 410 kg/cm².
2.2.1.3.3 Módulo de rotura

(Rivva 2011) Los valores para el módulo de rotura tanto de concreto de bajo peso como los de peso normal están en el rango de raíz cuadrada de $7.3 \ f'c$ a raíz cuadrada de $12 \ f'c$, cuando tanto el módulo de rotura como la resistencia en compresión están expresados por psi.

2.2.1.3.4 Comportamiento esfuerzo-deformación en compresión uniaxial

Los esfuerzos axiales versus las curvas de deformación para concretos con resistencia en compresión hasta de $830 \ kg/cm^2$ han sido estudiados detalladamente por el ACI 318-05. El perfil de la parte ascendente de la curva esfuerzo-deformación es más lineal y parado para los concretos de alta resistencia y la deformación en el esfuerzo máximo es ligeramente más parada para los concretos de alta resistencia. Para obtener la parte descendente de la curva esfuerzo-deformación, es generalmente necesario evitar la interacción de los especímenes de ensayo, ello es más difícil en los concretos de alta resistencia.

2.2.1.3.5 Resistencia a la tensión por deslizamiento

(Rivva 2011) Demuestra que la interrelación entre la resistencia a la tensión indirecta y la resistencia a la compresión de concretos que tienen resistencias a la compresión por encima de $840 \ kg/cm^2$ a los 28 días. Se concluye que en las bajas resistencias, la resistencia a la tensión indirecta puede ser tan alta como un 10 % de la resistencia en compresión, pero que en las altas resistencias ella puede reducirse al 5 %. Se ha observado que la resistencia a la tensión por deslizamiento era del orden del 8 % más alta si se empleaba en el concreto agregado grueso consistente en roca partida en relación a los concretos preparados a base de grava como agregado grueso.

Adicionalmente, que la resistencia por tensión indirecta era un 70 % de la resistencia a la flexión a los 28 días. Se reportó que la resistencia al deslizamiento no varía mucho del rango de los valores usuales, aun cuando la resistencia en compresión...
se incrementa. Los valores de resistencia al deslizamiento caen dentro del límite superior del rango esperado.

2.2.1.3.6 Resistencia a la fatiga

La información existente sobre el comportamiento a la fatiga de concretos de alta resistencia es muy limitada. (Bennett y Muir, 2011) estudiaron la resistencia a la fatiga en compresión axial en concretos de alta resistencia se demostró que después de un millón de ciclos, la resistencia de especímenes de concreto sujetos a cargas repetidas varía entre 66 % y 71 % de la resistencia estática para un nivel de esfuerzos mínimo de 86kg/cm². Los valores menores fueron encontrados para los concretos de más alta resistencia y para concretos preparados con los tamaños menores de agregado grueso, pero la actual magnitud de las diferencias fue pequeña. En la medida de los que en la actualidad se conoce, la resistencia a la fatiga de los concretos de alta resistencia es la misma que para los concretos de bajas resistencias.

2.2.1.3.7 Peso unitario

Los valores medidos del peso unitario de los concretos de alta resistencia son ligeramente mayores que los concretos de resistencias menores preparados con los mismos materiales. (Rivva 2011)

2.2.1.3.8 Propiedades térmicas

(Rivva 2011) Menciona que las propiedades térmicas de los concretos de alta resistencia caen dentro del rango aproximado para concretos de resistencias menores, donde las cantidades que habían sido medidas fueron calor específico, difusividad, conductividad térmica y coeficiente de expansión térmica.

2.2.1.3.9 Evolución del calor debido a la hidratación

La temperatura se eleva en el concreto debido a la hidratación, dependiendo del contenido de cemento, la relación agua/cemento, tamaño del elemento,
temperatura ambiente, entorno del elemento. (Fredman 2011) ha concluido que la evaluación de calor de los concretos de alta resistencia deberá ser de aproximadamente 6 °C a 8 °C por cada 60kg/m³ de cemento. Valores de elevación de temperatura 56 °C en concretos de alta resistencia que contenían 502kg/m³ de cemento han sido medidos en edificios construidos en Chicago.

2.2.1.3.10 Ganancia de la resistencia con la edad

Los concretos de alta resistencia muestran una ganancia de resistencia en edades tempranas si se los compara con concretos de resistencias menores, pero en el largo plazo la diferencia no es significativa. (Rivva 2011, 42) Parrot ha reportado relaciones típicas de 7 a 28 días de 0.8 a 0.9 para concretos de alta resistencia y de 0.7 a 0.72 para concretos de resistencias menores. Carrasquillo ha encontrado relaciones típicas de 7 a 95 días de 0.60 para bajas resistencias, 0.65 para resistencias medias, y 0.73 para concretos de alta resistencia.
III. MATERIALES Y MÉTODOS

3.1 Diseño de la investigación

3.1.1 Tipo de investigación

Este proyecto adoptó un diseño experimental, pues incorporó en la configuración del concreto un material proveniente de partículas residuales del chancado de piedra, que contienen propiedades similares a las de otros materiales tales como las microsílices. Así mismo, el proyecto se orientó a la investigación de materiales con contenido de sílices, en nuestro caso para la elaboración de concretos de alta resistencia aplicado en el campo de la construcción.

3.1.2 Hipótesis y variables

3.1.2.1 Formulación de hipótesis

Con relación al problema planteado se formuló la siguiente hipótesis:

- El polvo de granito extraído de las partículas residuales del chancado de piedra de la cantera Talambo, Chepén servirá de utilidad para la producción de concretos de alta resistencia.

3.1.2.2 Variables - operacionalización

Para este proyecto se plantearon variables independientes y dependientes, donde la operacionalización determina las características de cada una de ellas.

Variables

- Variable independiente
 - Polvo granito de partículas residuales
- Variable dependiente
 - Diseño de mezclas
 - Comportamiento del concreto
 - Evaluacion de Impacto Ambiental
- Variable interviniente
 - Materiales
Tabla N°. 1. Operacionalización de variables

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>DIMENSIONES</th>
<th>INDICADORES</th>
<th>INSTRUMENTOS</th>
<th>INDICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEPENDIENTE</td>
<td>Propiedades físicas</td>
<td>Peso</td>
<td>Balanza, recipiente</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peso específico</td>
<td>Balanza, frasco Le Chatelier, Turbo</td>
<td>g/cm³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agregado Fino</td>
<td>balanza digital de 1g de sensibilidad</td>
<td>kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agregado Grueso</td>
<td>balanza digital de 1g de sensibilidad</td>
<td>kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agua</td>
<td>balanza digital de 1g de sensibilidad</td>
<td>ml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cemento</td>
<td>balanza digital de 1g de sensibilidad</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEPENDIENTE</td>
<td>Cantidad de materiales</td>
<td>Asentamiento</td>
<td>Asentamiento del concreto según ASTM C143</td>
<td>cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peso unitario</td>
<td>Peso unitario del concreto según ASTM C138</td>
<td>kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contenido de aire</td>
<td>Contenido de aire en el concreto por el método de presión según ASTM C231</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exudación</td>
<td>Exudación del concreto según ASTM C232</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperatura</td>
<td>Ensayo para determinar la temperatura de mezclas según ASTM C1064</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistencia a la compresión</td>
<td>Ensayo de resistencia a la compresión según ASTM C39</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>Evaluación de Impacto Ambiental</td>
<td>Contaminación</td>
<td>Agua</td>
<td>Evaluación de Impacto Ambiental - Matriz de Leopold</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aire</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suelo</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERVINIENTE</td>
<td>Características</td>
<td>Tipo de cemento</td>
<td>NTP 334.090</td>
<td>Tipo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Granulometría de los agregados</td>
<td>Análisis granulométrico de los agregados según ASTM C136</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modulo de finezza del agregado fino</td>
<td>Análisis granulométrico de los agregados según ASTM C136</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peso unitario suelo y varillado de los agregados</td>
<td>Peso unitario y vacíos en los agregados según ASTM C29M</td>
<td>kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contenido de humedad</td>
<td>Análisis del contenido de humedad de los agregados según ASTM 566</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capacidad de absorción</td>
<td>Peso específico y absorción de los agregados según ASTM C127, ASTM C128</td>
<td>%</td>
</tr>
</tbody>
</table>
3.1.3 Indicadores de población y muestra

La cantidad de probetas se determinó en una sola fase mediante las variables designadas en las tablas 2 y 3. Se elaboraron probetas concreto patrón y concreto con la adición de estudio en porcentajes de 5, 10 y 15 % para cuatro resistencias, con la finalidad de obtener el porcentaje óptimo de polvo de granito. Los f'c utilizados fueron 350, 420, 500 y 550 kg/cm²; este último f'c se planteó por ser el límite a una edificación dúctil, al diseñar un f'c mayor la edificación pierde ductilidad, según las disposiciones generales para el diseño sísmico en la norma E-060 (concreto armado) del *Reglamento Nacional de Edificaciones*. A continuación se detallan el total de probetas para el concreto patrón y el concreto adicionado.

Tabla N°. 2. Concreto patrón

<table>
<thead>
<tr>
<th></th>
<th>(7 días)</th>
<th>(14 días)</th>
<th>(28 días)</th>
<th>(56 días)</th>
<th>(90 días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Días de ensayo</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Resistencias (f'c)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cilindros</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tipos de curado</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL 88

Tabla N°. 3. Concreto adicionado en porcentajes de 5, 10 y 15 % de polvo granito

<table>
<thead>
<tr>
<th>Concreto adicionado en porcentajes de 5.10 y 15 % de polvo granito</th>
<th>(7 días)</th>
<th>(14 días)</th>
<th>(28 días)</th>
<th>(56 días)</th>
<th>(90 días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Días de ensayo</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Resistencias (f'c)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cilindros</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Diseños</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tipos de curado</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>72</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

TOTAL 264

Resultando un total de 352 muestras cilíndricas de concreto.
3.1.4 Métodos, técnicas e instrumentos de recolección de datos

Las técnicas que se utilizaron fueron:

La investigación: Recolección de datos confiables en bibliografías existentes que permitan el desarrollo correcto de este trabajo de investigación.

Experimentos: Manipular las variables obtenidas, probar con cada una de ellas y describir los resultados obtenidos mediante la experimentación.

Las fuentes utilizadas:
- Bibliografía
- Manual de diseño de mezclas de concreto ACI 211
- Norma E-60
- Normas Técnicas Peruanas (NTP)
- Normas ASTM

3.1.4.1 Ensayos de los materiales

3.1.4.1.1 Contenido de humedad del agregado fino y grueso

Este ensayo tiene la finalidad de determinar la cantidad de agua existente en cada uno de los agregados (gruesos o finos a ser empleados en la muestra de concreto, esta cantidad existente expresada en porcentaje puede efectuar en la elaboración de diseño de mezcla.

Aparatos o equipos:
- balanza,
- horno,
- recipiente.

Procedimiento:
- Se selecciona una porción de la muestra y se lleva al horno con una temperatura de 110 °C por un lapso de tiempo de 24 horas
- Transcurrida las 24 horas se saca del horno y se compara a través de los pesos antes y después para poder determinar su porcentaje de humedad total de los agregados, este método es lo suficientemente exacto para los fines usuales, tales como el ajuste de la masa en una mezcla de concreto.
Normativa

- Contenido de humedad de los agregados por secado de acuerdo a NTP 339.185 o ASTM C 566.

3.1.4.1.2 Análisis granulométrico de agregado fino y grueso

Es la distribución de distintos tamaños de agregados que contiene una muestra determinada, esta es separada por una serie de tamices normados. Es importante saber los diferentes tamaños de partículas de los agregados, ya que de ellos dependerán algunas propiedades de los concreto.

Especificaciones técnicas:

Agregado fino

Los requerimientos granulométricos para el agregado fino indican que deben estar graduados dentro de los siguientes límites.
Tabla N°. 4. Especificaciones de límite pasante de agregado fino en porcentaje

<table>
<thead>
<tr>
<th>Malla</th>
<th>Porcentaje que pasa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3/8)</td>
<td>100</td>
</tr>
<tr>
<td>(N.° 4)</td>
<td>95 a 100</td>
</tr>
<tr>
<td>(N.° 8)</td>
<td>80 a 100</td>
</tr>
<tr>
<td>(N.° 16)</td>
<td>50 a 85</td>
</tr>
<tr>
<td>(N.° 50)</td>
<td>25 a 60</td>
</tr>
<tr>
<td>(N.° 50)</td>
<td>10 a 30</td>
</tr>
<tr>
<td>(N.° 100)</td>
<td>2 a 10</td>
</tr>
</tbody>
</table>

Fuente: ASTM C-33

Aparatos o equipos:
- taras,
- balanza,
- juego de tamices conformado por mallas astm: 3/8”, n.° 4, 8, 16, 30, 50, 100, 200 y fondo,
- un horno capaz de mantener una temperatura constante de ±50°C.

Procedimiento:
- Tomamos una muestra y pesamos 500 gramos en la balanza electrónica.
- La muestra se lavó en la malla N.° 200.
- La muestra se sometió al horno a aproximadamente 110 °C, por 24 horas.
- Luego se tomó la muestra seca y se peso.
- El tamizado se hizo de forma manual, tomando cada tamiz con tapa y base e imprimiéndole movimientos de vaivén.
- Se procedió a tamizar, pasando el 100 % de la muestra, a la malla de 3/8”, obteniendo así el módulo de fineza.
- Después tamizamos en la Malla N.° 4” quedando la primera retención del material.
- Se procedió a realizar esta secuencia con las siguientes mallas: N.° 8, 16, 30, 50 y 100.
- Y se tomó la cantidad que pasó al fondo. Todos los datos fueron anotados en la *hoja de ensayos de materiales.*
Agregado grueso
La granulometría del agregado grueso está especificada en la tabla a continuación normada por la ASTM C33.

Aparatos o equipos

- Taras
- Balanza
- Juego de tamices conformado por mallas: ASTM 2”, 1 1/2”, 1”, ¾”, 1/2”, 3/8”, N.° 4, N.° 8”, N.° 16” y fondo
- Un horno capaz de mantener una temperatura constante de ± 50°C.

Procedimiento:

- Tomamos una muestra y pesamos 5000 gramos en la balanza electrónica.
- El tamizado se hizo de forma manual, tomando cada tamiz con tapa y base e imprimiéndole movimientos de vaivén.
- Se procedió a tamizar, pasando el 100% de la muestra, a la malla de 1”.
- Después tamizamos en la malla 3/4”, quedando la primera retención del material y obteniendo el Tamaño Máximo Nominal.
- Se procedió a realizar esta secuencia con las siguientes mallas: 3/4”, 1/2”, 3/8” N.° 4, N.° 8, N.° 16 y el fondo.
- Y se tomó la cantidad que pasó al fondo. Todos los datos fueron anotados en la hoja de ensayos de materiales.
Tabla N°. 5. Especificaciones de límite pasante de agregado grueso en porcentaje

<table>
<thead>
<tr>
<th>Tamaño Nominal</th>
<th>Porcentajes que pasan por las siguientes mallas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2”</td>
</tr>
<tr>
<td>2”</td>
<td>95-100</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>100</td>
</tr>
<tr>
<td>1”</td>
<td>-</td>
</tr>
<tr>
<td>3/4”</td>
<td>-</td>
</tr>
<tr>
<td>1/2”</td>
<td>-</td>
</tr>
<tr>
<td>3/8”</td>
<td>~</td>
</tr>
</tbody>
</table>

Fuente: ASTM C-33

Figura N° 2. Análisis granulométrico del agregado grueso

Figura N° 5. Análisis granulométrico del agregado fino
Normativa

- Análisis granulométrico del agregado fino, grueso y global de acuerdo a NTP 400.012 o ASTM C 136.

3.1.4.1.3 Peso unitario del agregado fino y grueso

Es el peso del material seco que se necesita para llenar cierto recipiente de volumen unitario. También se le denomina peso volumétrico y se emplea en la conversión de cantidades en peso a cantidades en volumen y viceversa. El peso unitario de los agregados está en función directa al tamaño, forma y distribución de las partículas y el grado de compactación (suelto y compactado).

Especificaciones técnicas

De estudios realizados sobre agregados, se tiene que el peso unitario suelto de los agregados gruesos, varía de entre 1350 kg/m³ y 1680 kg/m³.

Peso unitario suelto

Aparatos o equipos:

- balanza electrónica,
- regla de metal,
- recipiente cilíndrico y de metal de medidas: 15.2 cm de diámetro por 30.4 cm de altura; en volumen 0.00552 cm³,
- cucharón de kilo, brocha.

Nota: Para la determinación del peso unitario, la muestra deberá estar completamente mezclada y seca a temperatura ambiente.

Procedimiento:

- Llenamos el recipiente con una pala hasta hacer rebosar, dejando caer el agregado desde una altura no mayor a 5 cm por encima del borde superior del recipiente.
- Eliminamos el material excedente con una regla.
- Determinamos el peso neto del agregado en la tara.
- Se toman dos muestras para obtener un promedio.

Peso unitario compactado

Aparatos o equipos:
- balanza electrónica;
- barra compactadora de acero liso, de 5/8” de diámetro y 60 cm de largo con un extremo redondeado;
- recipiente cilíndrico y de metal de medidas: 15.2 cm de diámetro por 30.4 cm de altura; en volumen 0.00552 cm³;
- cucharón de kilo, brocha, regla metálica;
- martillo de goma.

Procedimiento:
- Llenamos el recipiente hasta la tercera parte y nivelamos la superficie con una regla de acero.
- Apisonamos la muestra con la barra compactadora mediante 25 golpes distribuidos en forma de espiral de afuera hacia adentro y 15 golpes con la comba de goma sobre la superficie.
- Llenamos nuevamente hasta las 2/3 partes del recipiente y compactamos nuevamente como antes.
- Luego llenamos el recipiente hasta rebozar, golpeándole con la barra compactadora 25 veces, se enraza utilizando la barra como regla.
- Cuando se apisona la primera capa, se procura que la barra no golpee el fondo con fuerza, en las últimas capas solo se emplea una fuerza suficiente para que la barra compactadora penetre en la última capa del agregado colocada en el recipiente.
- Finalmente se determina el peso neto del agregado en la tara para obtener el peso unitario compactado.
Figura N° 4. Peso unitario suelto y compactado de agregado grueso

Comentario
Este procedimiento se realiza por varias repeticiones, se toman los pesos más cercanos posibles y se promedian para obtener el peso unitario más cercano a lo real.

Normativa
- Masa por unidad de volumen (peso unitario) y vacíos en los agregados de acuerdo a NTP 400.017 o ASTM C 29/C 29 M.
3.1.4.1.4 Peso específico y absorción del agregado grueso

El peso específico se define como la relación entre masa de un volumen unitario del material y la masa de igual volumen de agua destilada, libre de gas, a una temperatura específica. De acuerdo a la condición de humedad del agregado el peso específico, se determina en condición seca o saturada con superficie seca.

Especificaciones técnicas
Generalmente no se acostumbra a limitar en especificaciones el peso específico y la absorción de los agregados, puesto que no siempre son un buen índice de su calidad.
El peso específico puede variar, entre los intervalos de 1.2 a 2.2 g/cm³ para concretos ligeros, 2.3 a 2.9 g/cm³ para concretos normales, y 3.00 a 5.00 g/cm³ para concretos pesados.

Aparatos o Equipos
- balanzas, con sensibilidad de 0.5 g y capacidad no menor de 5 kg;
- cesta de malla de alambre, con abertura no mayor de 3 mm o tamiz N.° 4;
- depósito adecuado para sumergir la cesta de alambre en agua;
- dispositivo de suspensión, se utilizará cualquier dispositivo que permita suspender la canastilla de la balanza, una vez sumergida;
- estufa, capaz de mantener una temperatura de 1100 C± 50 C.

Procedimiento:
- Tomamos dos muestras de agregado grueso, obtenido del método de cuarteo.
- Se rechaza todo el material que pase el tamiz N.° 4.
- Se lava la muestra completamente para eliminar el polvo y otras impurezas superficiales.
- Se sumerge en agua por 24 horas aproximadamente.
• Luego sacamos la muestra del agua y dejamos secar a temperatura ambiente, se obtiene la muestra bajo condición de saturación con superficie seca.
• Después de pesar colocamos de inmediato la muestra saturada con superficie seca en la cesta de alambre y determinamos su peso en agua.
• Las muestras van al horno durante 24 horas a una temperatura de 1100 ±50.
• Las muestras salidas del horno se dejan enfriar a temperatura ambiente, se pesan y se anotan los datos para obtener a través de un cálculo el peso específico.

Expresión de resultados

Si designamos como:
A = Peso en el aire, de la muestra seca al horno (g).
B = Peso en el aire de la muestra saturada con superficie seca (g).
C = Peso en el agua, de la muestra saturada (g).

Entonces:

\[p_e = \frac{A}{B - C} \]

\[p_e \] = Peso específico

Peso específico de la masa saturada superficialmente seca
Viene a ser la relación entre la masa en el aire de un volumen unitario del material permeable (la masa incluye el agua en los poros permeables), a la masa en el aire (de igual densidad) de un volumen igual de agua destilada, libre de gas y a una temperatura constante especificada.

Entonces:

\[p.e.s.s.s. = \frac{B}{B - C} \]

\[p.e.s.s.s. \] = peso específico del material saturado con superficie seca
Peso específico aparente

Es la relación de la masa en el aire de un volumen unitario del material, a la masa en el aire (de igual densidad) de un volumen igual de agua destilada libre de gas, a una temperatura especificada. Cuando el material es un sólido, se considera el volumen de la porción impermeable.

Entonces:

\[
p.\ e.\ a. = \frac{A}{A - C}
\]

p. e. a. = peso específico aparente

Absorción

La absorción de los agregados es el incremento en la masa del agregado debido al agua en los poros del material, pero sin incluir el agua a la superficie exterior de las partículas, expresado como un porcentaje de la masa seca. El agregado se considera como seco cuando se ha sometido a una temperatura de 110 °C ± 5 °C por suficiente tiempo para remover toda el agua no combinada.

Entonces:

\[
Ab. = \frac{B - A}{A} \times 100
\]

Figura N° 6. Peso específico y absorción del agregado grueso
En las dos imágenes superiores se muestra la piedra saturada por 24 horas. En la imagen inferior se observa cómo se esparce los dos materiales provenientes de la cantera Talambo y Tres tomas sobre la superficie para poder obtener la muestra saturada superficialmente seca. Después del secado superficial se separan dos pesos diferentes.

Figura N° 7. Peso específico y absorción del agregado grueso

En la imagen superior izquierda se observa la calibración de la balanza con uso del dispositivo de suspensión para el cálculo del peso de la muestra saturada dentro del agua más peso de canastilla. En la imagen inferior se observa el horno utilizado para la colocación de la muestra con una temperatura de 110 °C ±5 y no mayor de 150 °C por un lapso de tiempo de 24 horas. Y en la imagen superior derecha se muestra el material se secó después de haber transcurrido las 24 horas se procede a pesar.

Recomendación
Al momento de realizar el pesaje se deberá verificar que la balanza esté bien calibrada, solo de esta manera se podrá tener lecturas más próximas. No se deberá pesar la muestra caliente, se efectuará el peso de la muestra al momento
que enfríe.

Normativa
- Peso específico y absorción del agregado grueso de acuerdo a NTP 400.021 o ASTM C 127.

3.1.4.1.5 Peso específico y absorción del agregado fino

El peso específico de los agregados es la relación entre la densidad del material y la densidad del agua; es un indicador de calidad, en cuanto que los valores elevados corresponden a materiales de buen comportamiento, mientras que para bajos valores generalmente corresponde a agregados absorbentes y débiles. Este ensayo nos da la información que nos permite hacer una relación entre el peso de los agregados y el volumen que ocupa dentro de la mezcla.

Aparatos o equipos:
- balanza, con sensibilidad de 0.1 g y capacidad no menor de 1 kg,
- frascos volumétricos (fiolas) cuya capacidad sea de 500 cm³,
- pipeta,
- dos recipientes para almacenar el material (taras).

Procedimiento:
- Tomar dos muestras de 500 g de agregado fino, obtenido del método de cuarteo.
- Pesar c/u de las fiolas y anotar los datos.
- Luego llenamos c/u de las fiolas con 500 g de material, llenamos con agua hasta alcanzar la marca de 500 cm³.
- Enseguida hacemos rotar el frasco en una superficie plana o en la palma de la mano hasta eliminar todas las burbujas de aire.
• Se deja reposar aproximadamente una hora y se llena con agua hasta alcanzar la marca de 500 cm³.
• Se determina el peso total del agua introducida en el frasco con 0.1 g de aproximación.
• Luego se extrae el agua con mucho cuidado con una pipeta.
• Se deposita el material en recipientes y se deja reposar por aproximado de 15 minutos, luego se extrae el agua con un chupón.
• Las muestras van al horno durante 24 horas a una temperatura de 1100 ± 50.
• Las muestras salidas del horno se pesan y se anotan los datos para obtener a través de un cálculo el peso específico.

Expresión de resultados

Se denomina como:

\(V = \) Volumen del frasco (cm³)

\(W_0 = \) Peso en el aire de la muestra secada en estufa (g)

\(V_a = \) Peso en g o en volumen (cm³) del agua añadida al frasco.

Entonces:

\[pe = \frac{W_0}{V - V_a} \]

pe = peso específico (g/cm³)

Peso específico de la masa saturada superficialmente seca

Es la relación entre la masa en el aire de un volumen unitario del material permeable (la masa incluye el agua en los poros permeables), a la masa en el aire (de igual densidad) de un volumen igual de agua destilada, libre de gas y a una temperatura constante especificada.

Entonces:

\[p.e.s.s.s. = \frac{W_0}{W_0 - V_a} \]
p. e. s. s. = peso específico del material saturado con superficie seca (g/cm³)

Peso específico aparente

Es la relación de la masa en el aire de un volumen unitario del material, a la masa en el aire (de igual densidad) de un volumen igual de agua destilada libre de gas, a una temperatura especificada. Cuando el material es un sólido, se considera el volumen de la porción impermeable.

Entonces:

\[p. e. a. = \frac{W_o}{(V - V_a) - (V - W_o)} \]

p. e. a. = peso específico aparente (g/cm³)

Absorción

La capacidad de absorción se determina por los procedimientos de la NTP, para los agregados finos consiste en sumergir la muestra durante 24 horas luego se saca y se lleva a la condición de densidad aparente (sss), obtenida esta condición, se pesa e inmediatamente se seca en un horno y la diferencia de los pesos, expresado como un porcentaje de peso de la muestra seca, es la capacidad de absorción. Esta particularidad de los agregados, que depende de la porosidad, es de suma importancia para realizar correcciones en las dosificaciones de mezclas de concreto.

A su vez, la absorción influye en otras propiedades del agregado, como la adherencia con el cemento, la estabilidad química, la resistencia del concreto al congelamiento y deshielo. A menudo se considera que los agregados absorben o ceden el agua en defecto o en exceso para quedar saturados y superficialmente secos (S.S.S.), antes de que el concreto llegue a fraguar. Sin embargo, cuando se trabaja con agregados secos, los poros permeables se pueden obstruir, e impedir que se llegue a la saturación.
Entonces:

\[Ab. = \frac{500 - W_o}{W_o} \times 100 \]

Ab. = porcentaje de absorción (%)

Figura N° 8. Peso específico y absorción del agregado fino

Comentario
El material deberá estar en su estado óptimo para poder ser trabajado y las balanzas deberán estar calibradas.

Normativa
- Peso específico y absorción del agregado fino de acuerdo a NTP 400.022 o ASTM C 128.

3.1.4.1.6 Cantidad de materiales que pasan la malla N.° 200.

Este ensayo se determina por lavado el porcentaje del material más fino que pasa por la malla N.° 200. La muestra seleccionada debe ser representativa de toda la masa de suelo a estudiar. Esta fracción debe ser una cantidad tal que satisfaga los diferentes tamaños de granos presentes, entre más cantidad de
granos grueso granulares hayan dentro de la muestra, mayor debe ser la cantidad en peso que se debe elegir para la realización del ensayo. Este método de ensayo presenta dos procedimientos, uno usando solo agua para la operación de lavado y el otro incluyendo un agente humectante que ayude a separar el material más fino que la malla de 75 µm (N.° 200). La norma propone que cuando no se especifique por qué método ensayar, el procedimiento que deberá ser utilizado es el que usa solamente agua.

Para el ensayo se deberá escoger una muestra de material en función del tamaño máximo nominal de sus partículas según la siguiente tabla:

Tabla N°. 6. Calidad mínima de muestra

<table>
<thead>
<tr>
<th>Máximo tamaños nominal (mm)</th>
<th>Mínimo de masa a utilizar (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75</td>
<td>300</td>
</tr>
<tr>
<td>9.5</td>
<td>1000</td>
</tr>
<tr>
<td>19</td>
<td>2500</td>
</tr>
<tr>
<td>37.5</td>
<td>5000</td>
</tr>
</tbody>
</table>

Fuente: NTP 400.018

En el ensayo se lava una muestra de agregado de una manera prescrita, usando agua o agua conteniendo un agente humectante especificado. El agua de lavado decantada conteniendo material disuelto y suspendido, es pasada a través de la malla N.° 200. La pérdida en masa resultante del tratamiento de lavado se calcula como el porcentaje de masa de la muestra original y se reporta como el porcentaje de material más fino que pasa la malla de 75 µm por lavado.

Aparatos o equipos

- balanza de 4000 g con una precisión de 0.1 g y para grueso de 30 kg.
- tamiz N.° 16, N.° 30 y 200 para finos y para gruesos tamiz N.° 4, N.° 30 y N.° 200.
- brocha y escobilla.
horno capaz de mantener una temperatura de 110 °C +/- 1 y no mayor de 150 °C.

Procedimiento:

- Se procede secar una muestra de arena a una temperatura de 110 °C +/- 5 °C.
- Se pesa la arena una cantidad de acuerdo a la tabla indicada anteriormente con una precisión del 0.1 % de la masa de la muestra de ensayo, en este caso se pesó 500 g.
- Después de secado y determinada la masa, se coloca la muestra de ensayo en el recipiente y se adiciona suficiente agua para cubrirla. Se agita la muestra con suficiente vigor para que resulte en la separación completa de las partículas más finas que la malla N.° 200 de las partículas gruesas, y llevar el material fino en suspensión.
- Colocar el tamiz N.° 16 sobre la malla N.° 30 y esta sobre la malla N.° 200
- Inmediatamente se vacea el agua de lavado conteniendo los sólidos suspendidos y disueltos sobre los tamices montados. Se tiene que tener cuidado para evitar, tanto como sea posible, la decantación de las partículas gruesas de la muestra.
- Se adiciona una segunda carga de agua a la muestra en el recipiente, agite y decante como antes. Se repite esta operación hasta que el agua de lavado sea clara.
- Se regresa todo el material retenido en la serie de mallas echando agua para limpiar la muestra lavada.
- Se pone a secar el agregado lavado a masa constante a temperatura de 110 °C +/- 5 °C.
- Después del secado se vuelve a tamizar.
- Se determina la masa con una precisión de 0.1 % de la masa original de la muestra.

Comentario

La ASTM nos indica que para agregados finos el porcentaje permisible es 5 % y
para agregados gruesos es 1 %.

Normativa

- Materiales más finos que pasan por el tamiz normalizado 75 µm (N.° 200) por lavado en agregados de acuerdo a NTP 400.018 o ASTM C117.

3.1.4.1.7 Contenido de sales en agregado fino y grueso.

La *Norma técnica peruana* nos indica que el contenido de sales de un suelo se determina en un extracto acuoso preparado usando una relación suelo-agua de 1:5 para la mezcla, esta combinación de agua y suelo es filtrada, se evapora a sequedad en una temperatura de 103 °C ±5 °C.

Aparatos o equipos

- balanza analítica con precisión de 0,1 mg.
- mechero o cocina.
- matraces aforadas.
- vasos precipitados (baker).
- pipeta.
- solución de nitrato de plata.
- solución de cloruro de barrio.
- agua destilada,
- estufa,
- tubos de ensayo (probeta).

Procedimiento:

- La muestra a ensayar se secó a una temperatura ambiente en caso de la arena y en el caso de la piedra se trituró una porción mínima de piedra.
- Después de secada la muestra, se tamizó por el tamiz N.° 10 y se pesó 50 g.
- Se le agregó 250 ml de agua destilada, se tapó el frasco y se agitó por un lapso de una hora y se dejó a decantar por otra hora más.
• Después de haber decantado el material, se puso hervir el agua de la solución tomada.
• Después hervida la solución tomada, se procedió a pasar por un papel filtrante de 110 mm de diámetro, con un embudo y se le retuvo en una probeta.
• De esta agua pasada por el papel, se tomó 50 ml de la solución filtrada y se vació en un Becker, conociendo anteriormente el peso del Becker.
• Se llevó al horno por un lapso de tiempo de 24 horas.
• Pasadas las 24 horas, se pesó el Becker para obtener el porcentaje de residuos de sales, quedado en el Becker.

Figura N° 9. Contenido de sales solubles totales
Comentario
Las sales son elementos de la naturaleza que son muy peligrosos en concretos reforzados, donde al transcurrir el tiempo el acero se corroce y la estructura fracasa.
Los agregados por su propia naturaleza tiene poros y estos poros absorbe la humedad del aire y causa desagradables depósitos blancos eflorescentes en la superficie del concreto.

Normativa
- Contenido de sales solubles en suelos y agua subterránea de acuerdo a NTP 339.152.

3.1.4.1.8 Abrasión de los agregados gruesos con máquina de los ángeles

Es el procedimiento que se debe seguir para realizar el ensayo de desgaste de los agregados gruesos hasta de 37.5 mm (1 ½") por medio de la máquina de los ángeles con una carga abrasiva.

Aparatos o equipos:
- balanza electrónica con una precisión de 1 g.
- estufa, que pueda mantener una temperatura de 110+ - 5 °C (230+ - 9 °F).
- tamices.
- máquina de los ángeles.
- carga abrasiva, consistirá en esferas de acero, dependerá de la granulometría de ensayo, según se indica en la tabla.

Tabla N°. 7. Número de esferas por clase de granulometría

<table>
<thead>
<tr>
<th>Granulometría de ensayo</th>
<th>Número de esferas</th>
<th>Peso Total g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12</td>
<td>5000 ± 25</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4584 ± 25</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>3330 ± 20</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>2500 ± 15</td>
</tr>
</tbody>
</table>

Fuente: ASTM C-131

Muestra:

La granulometría elegida será representativa del agregado tal y como va a ser utilizado en obra, el agregado utilizado pose un TMN = 3/4" y se pidió como 1/2" por lo tanto el método B se utilizó. La muestra antes de ser ensayada deberá ser pesada con aproximación de 1g.

Tabla N°. 8. Granulometría de la muestra de agregado para ensayo

<table>
<thead>
<tr>
<th>Pasa tamiz (mm)</th>
<th>Retenido en tamiz (mm)</th>
<th>Pesos y granulometrías de la muestra para ensayo (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>37,5 (1 1/2")</td>
<td>-25,0 (1")</td>
<td>1250 ± 25</td>
</tr>
<tr>
<td>25,0 (1")</td>
<td>-19,0 (3/4")</td>
<td>1250 ± 25</td>
</tr>
<tr>
<td>19,0 (3/4")</td>
<td>-12,5 (1/2")</td>
<td>1250 ± 10</td>
</tr>
<tr>
<td>12,5 (1/2")</td>
<td>-9,5 (3/8")</td>
<td>1250 ± 10</td>
</tr>
<tr>
<td>9,5 (3/8")</td>
<td>-6,3 (1/4")</td>
<td>2500 ± 10</td>
</tr>
<tr>
<td>6,3 (1 1/4")</td>
<td>-4,75 (N° 4)</td>
<td>2500 ± 10</td>
</tr>
<tr>
<td>4,75 (N° 8)</td>
<td>-2,36 (N° 8)</td>
<td>5000 ± 10</td>
</tr>
</tbody>
</table>

TOTALES

5000 ± 10 | 2500 ± 10 | 5000 ± 10 | 5000 ± 10

Fuente: ASTM C-131
Procedimiento:

- La muestra a ensayar y la carga abrasiva correspondiente se colocan en la máquina de los ángeles, y se hace girar el cilindro a una velocidad comprendida entre 30 y 33 rpm; el número total de vueltas deberá ser 500.

- La máquina deberá girar de manera uniforme para mantener una velocidad periférica prácticamente constante.
- Una vez cumplido el número de vueltas, se descarga el material del cilindro, y se tamiza por el tamiz N.° 12, y todo el material que retenga será pesado en la balanza con una precisión de 1g.

Normativa

- Resistencia al desgaste de los agregados gruesos de tamaños menores de 37.5 mm (1 ½”) por medio de la máquina de los ángeles de acuerdo a NTP 400.019 o ASTM C131.
3.1.4.2 Ensayos de muestra de estudio

3.1.4.2.1 Peso específico del cemento

El peso específico relativo es la relación entre el peso de un volumen dado de material a cierta temperatura, y el peso de un volumen igual de agua a esa misma temperatura, esto quiere decir que la temperatura del frasco, del líquido y del cemento se debe mantener constante durante toda la práctica. La principal utilidad que ofrece este ensayo se encuentra relacionada con el diseño y control de mezclas de concreto. A continuación se presentan los equipos o materiales para realizar este ensayo.

Equipo o materiales:
- muestra en polvo (64 g aproximadamente).
- kerosene libre de agua o nafta con gravedad no menor de 62 api.
- frasco le chatelier.
- balanza de 0.01 g de precisión.
- aparato baño maría a temperatura constante.
- termómetro de 0.2 c de precisión.
- espátula.
- embudo.

Procedimiento:
- Lo primero es lavar el frasco le chatelier y secar su interior (asegurándose que se encuentre libre de residuos y de humedad).
- Empezamos a llenar el frasco le chatelier entre las marcas de 0 y 1 ml (lo recomendable hasta la marca de 0 ml), con cualquiera de los dos líquidos especificados mediante el uso de una pipeta.
- Después sumergimos el frasco en baño maría a temperatura ambiente hasta que no existan diferencias mayores de 0.2 C entre la temperatura del líquido dentro del frasco y la temperatura del líquido exterior a este.
Anotando en la hoja de reporte el volumen de líquido dentro del frasco y la temperatura de ensayo (temperatura ambiente).

- A continuación pesamos una cantidad de cemento de 64 ± 0.05 g y depositamos al frasco con uso de un embudo, tratando de evitar salpicaduras y la adherencia del cemeno al interior del frasco.
- Se tapa el frasco y giramos este en una posición inclinada, de tal manera de liberar de aire el cemento hasta que ya no exista ninguna burbuja.
- Volvemos a sumergir el frasco en Baño María y controlamos la temperatura de este tal como se hizo en el tercer paso. Medimos el volumen y lo anotamos.

Cálculos:
Para determinar la densidad del cemento se hace uso de la siguiente ecuación:

\[
\rho_c = \frac{M}{(V_f - V_i)}
\]

Donde:
- \(m\): masa de la muestra de cemento
- \(v_i\): volumen inicial del líquido introducido al frasco le chatelier, en cm\(^3\)
- \(v_f\): volumen final del líquido (vertidos los 64 g de cemento), en cm\(^3\)
- \(\rho_c\): densidad del cemento, en g/cm\(^3\)

El peso específico relativo del cemento se calcula de la siguiente forma:

\[
PERc = \frac{\rho_c}{\rho_{H2O}}
\]

Donde:
- \(\rho_c\): Densidad del cemento en g/cm\(^3\)
- \(\rho_{H2O}\): Densidad del agua = 1 g/cm\(^3\)
- \(PERc\): Peso específico relativo del cemento (adimensional)
Figura N° 12. Peso específico del mineral de estudio

Comentario
Se utilizó esta Norma en el cálculo del peso específico de la muestra de estudio (polvo de granito) debido a su similitud en textura y fineza. En otros equipos resulta inútil su determinación, un claro ejemplo es el equipo compactador del proctor, aquí es donde al compactar la muestra tiende a expandirse por la fineza que presenta este material.

Normativa
- Determinación del peso específico del cemento de acuerdo a ASTM C188-95.

3.1.4.3 Diseño de mezclas
3.1.4.3.1 Método del ACI 211.1
Este método se basa en la resistencia buscada para el concreto que se diseña, en él se fija la relación agua/cemento, tal que se asegure la durabilidad y la resistencia del concreto.
El sistema del American Concrete Institute (ACI 211.1-91) es, sin lugar a dudas, el método de dosificación más utilizado en todo el mundo, siendo adecuado para
cualquier obra realizada con concreto.
Se lo realiza con tablas, las cuales se basan en ensayos realizados en laboratorios, con el fin de dar una guía a los diseñadores de mezclas de concreto, para así encontrar la dosificación más adecuada en función a la resistencia esperada.

A continuación se detalla el método paso a paso:

- **Paso 1: selección del slump**
 Cuando este no se especifica el informe del ACI incluye una tabla en la que se recomiendan diferentes valores de slump de acuerdo con el tipo de construcción que se requiera. Los valores son aplicables cuando se emplea el vibrado para compactar el concreto, en caso contrario dichos valores pueden ser incrementados en dos y medio centímetros.

<table>
<thead>
<tr>
<th>Tipo de construcción</th>
<th>Asentamiento</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máximo</td>
<td>Mínimo</td>
</tr>
<tr>
<td>Zapatas y muros de cimentación Armados</td>
<td>3"</td>
<td>1"</td>
</tr>
<tr>
<td>Cimentaciones simples, cajones, y subestructuras de muros</td>
<td>3"</td>
<td>1"</td>
</tr>
<tr>
<td>Vigas y muros armados</td>
<td>4"</td>
<td>1"</td>
</tr>
<tr>
<td>Columnas de edificios</td>
<td>4"</td>
<td>1"</td>
</tr>
<tr>
<td>Losas y pavimentos</td>
<td>3"</td>
<td>1"</td>
</tr>
<tr>
<td>Concreto Ciclópeo</td>
<td>2"</td>
<td>1"</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.1

Se trabajó para un slump de 3" a 4" por ser aplicable a estructuras de edificaciones.

- **Paso 2: Selección de la resistencia promedio**
 Se determina la resistencia promedio necesaria para el diseño, la cual está en función del f’c. Cuando no se tiene registro de resistencia de probetas correspondientes a obras y proyectos anteriores, se puede emplear:
Tabla N°. 10. Resistencia a la compresión promedio

<table>
<thead>
<tr>
<th>Resistencia a la compresión</th>
<th>(f'c)</th>
<th>(f'c_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 210</td>
<td>(f'c)</td>
<td>(f'c + 70)</td>
</tr>
<tr>
<td>210 a 350</td>
<td>(f'c)</td>
<td>(f'c + 84)</td>
</tr>
<tr>
<td>Sobres 350</td>
<td>(f'c)</td>
<td>(f'c + 98)</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.1

- **Paso 3: Selección del tamaño máximo de agregados.**
 Debe considerar la separación de los costados de la cimbra, el espesor de la losa y el espacio libre entre varillas individuales o paquetes de ellas. Por consideraciones económicas es preferible el mayor tamaño disponible, siempre y cuando se utilice una trabajabilidad adecuada y el procedimiento de compactación permite que el concreto sea colocado sin cavidades o huecos. La cantidad de agua que se requiere para producir un determinado slump depende del tamaño máximo, de la forma y granulometría de los agregados, la temperatura del concreto, la cantidad de aire incluido y el uso de aditivos químicos. En conclusión se requiere estudiar cuidadosamente los requisitos dados en los planos estructurales y en especificaciones de obra.

- **Paso 4: Estimación del agua de mezclado.**
 Se presenta una tabla con los contenidos de agua recomendables en función del slump requerido y el tamaño máximo del agregado, considerando el concreto con o sin aire incluido.

- **Tabla N°. 11. Agua en l/m³, para los tamaños máximos nominales de agregado grueso**

<table>
<thead>
<tr>
<th>Asentamiento</th>
<th>Agua en l/m³, para los tamaños máximos nominales de agregado grueso y consistencia indicada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/8”</td>
</tr>
<tr>
<td>Concreto sin aire incorporado</td>
<td></td>
</tr>
<tr>
<td>1” a 2”</td>
<td>207</td>
</tr>
<tr>
<td>3” a 4”</td>
<td>228</td>
</tr>
<tr>
<td>6” a 7”</td>
<td>245</td>
</tr>
<tr>
<td>% de aire atrapado</td>
<td>3</td>
</tr>
</tbody>
</table>
Paso 5: Estimación del aire contenido

Las operaciones propias del proceso de puesta en obra dan como resultado el aire atrapado, este depende del aporte de los materiales, las condiciones de operación y la del día. La presencia de aire en la mezcla tiende a reducir la resistencia del concreto por incremento en la porosidad del mismo.

La *tabla 11* del ACI da el porcentaje aproximado de aire atrapado, en mezclas sin aire incorporado, para diferentes tamaños máximos nominales de agregado grueso adecuadamente graduado dentro de los requisitos de la norma NTP 400.037. Esta *tabla* también tiene sus limitaciones pudiendo variar entre + - 0.5 %.

Paso 6: Selección de la relación agua/cemento

Como sexto paso, el ACI proporciona una tabla con los valores de la relación agua/cemento de acuerdo con la resistencia a la compresión, a los 28 días que se requiera, por supuesto la resistencia promedio seleccionada debe exceder la resistencia especificada con un margen suficiente para mantener dentro de los límites especificados las pruebas con valores bajos.

Tabla N°. 12. Relación agua/cemento por resistencia
• **Paso 7: Cálculo del contenido de cemento**

El contenido de cemento se calcula con la cantidad de agua, determinada en el paso tres, y la relación agua cemento, obtenida en el paso cuatro; cuando se requiera un contenido mínimo de cemento o los requisitos de durabilidad lo especifiquen, la mezcla se deberá basar en un criterio que conduzca a una cantidad mayor de cemento, esta parte constituye el séptimo paso del método.

• **Paso 8: Cálculo del volumen de agregado grueso**

Para el octavo paso del procedimiento el ACI maneja una tabla con el volumen del agregado grueso por volumen unitario de concreto, los valores dependen del tamaño máximo nominal de la piedra y del módulo de finura de la arena. El volumen de agregado se muestra en metros cúbicos con base en varillado en seco para un metro cúbico de concreto, el volumen se convierte a peso seco del agregado grueso requerido en un metro cúbico de concreto, multiplicándolo por el peso volumétrico de varillado en seco.

<table>
<thead>
<tr>
<th>Tamaño máximo nominal del agregado grueso</th>
<th>Volumen del agregado grueso, seco y compactado, por unidad de volumen del concreto, para diversos módulos de fineza del fino</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>3/8"</td>
<td>0.5</td>
</tr>
<tr>
<td>1/2"</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.1
Paso 9: Cálculo del volumen de agregado fino

Hasta el paso anterior se tienen estimados todos los componentes del concreto, excepto el agregado fino, cuya cantidad se calcula por diferencia. Para este noveno paso, es posible emplear cualquiera de los dos procedimientos siguientes: por peso o por volumen absoluto.

Nota:
Al variar el contenido de cemento los contenidos de agregado grueso y fino se determinarán siguiendo los procedimientos por peso o por volumen absoluto, pero manteniendo la proporción de agregados de la dosificación considerando el 100 % de contenido de cemento.

Paso 10: Ajuste de la mezcla por humedad de agregados

El décimo paso consiste en ajustar las mezclas por humedad de los agregados, el agua que se añade a la mezcla se debe reducir en cantidad igual a la humedad libre contribuida por el agregado, es decir, con humedad total menos absorción.

3.1.4.3.2 Método del ACI 211.4

El Método ACI 211.4 se utiliza para los diseño de mezclas de concreto de alta resistencia, es un método semiempírico y sirvió de base para realizar las mezclas de la investigación. El método propuesto por el comité 211.4 del ACI abarca el rango de resistencia entre 450 kg/cm² y 840 kg/cm², este método es aplicable a concretos de peso normal. Las consideraciones básicas de este método al igual que en el método para concreto convencionales es la determinación de la cantidad de los materiales requeridos para producir un concreto con las propiedades en estado fresco y endurecido deseadas y a un bajo costo. El
procedimiento consiste en una serie de pasos, con los cuales se debe cumplir los requerimientos de resistencia y trabajabilidad deseados, el método recomienda elaborar varias pruebas en laboratorio y en el campo, hasta encontrar la mezcla deseada. A continuación se detalla el procedimiento de ensayo:

- **Paso 1: Selección del slump y la resistencia del concreto requerido**
 Valores recomendados para el slump se muestran en la tabla 14. A pesar que un concreto de alta resistencia es producido exitosamente con la adición de un superplastificante, sin una medida inicial del slump es recomendado un slump de 1 a 2" antes de adicionar el superplastificante. Esto asegurará una adecuada cantidad de agua para la mezcla y permitirá que el superplastificante sea efectivo. Sin el uso del aditivo estos concretos son difíciles de consolidar dado el alto contenido de agregado grueso y materiales cementicios. Para un concreto elaborado sin superplastificante es recomendado un slump entre 2" a 4". En la presente investigación se prefirió este por no utilizar superplastificante. A continuación se presenta una tabla ordenada.

<table>
<thead>
<tr>
<th>Tabla N°. 14. Slump recomendado para concretos de alta resistencia con y sin superplastificante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slump con SP</td>
</tr>
<tr>
<td>1" - 2"</td>
</tr>
<tr>
<td>Fuente: ACI C211.4</td>
</tr>
</tbody>
</table>

- **Paso 2: Seleccionar el tamaño máximo del agregado**
 Basados en los requerimientos de resistencia, el tamaño máximo del agregado grueso es dado en la tabla 15. El ACI 318 establece que el tamaño máximo de un agregado no debe exceder una quinta parte de la dimensión menor entre los lados del elemento, una tercera parte de la profundidad de la losa, o tres cuartas partes del mínimo espaciamiento entre las barras de refuerzo.
• **Paso 3: Seleccionar el contenido óptimo de agregado grueso**

El óptimo contenido de agregado grueso depende de su resistencia característica y tamaño máximo. El contenido óptimo recomendado de agregado grueso, expresado como una fracción del peso unitario compactado, es dado en la tabla 16, como una función del tamaño máximo nominal.

<table>
<thead>
<tr>
<th>Tamaño máximo del agregado</th>
<th>Resistencia requerida del concreto (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" - 1"</td>
<td>< 630</td>
</tr>
<tr>
<td>3/8" - 1/2"</td>
<td>> 630</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.4

El peso seco del agregado grueso por m³ de concreto puede ser calculado usando la siguiente ecuación:

\[
Peso\ seco\ del\ agregado\ grueso = \%Psag \times P.U.C
\]

En un proporcionamiento de una mezcla de concreto normal, el contenido óptimo de agregado grueso es dado como una función del tamaño máximo y del modulo de fineza del agregado fino. Las mezclas de concretos de alta resistencia, sin embargo, tienen un alto contenido de materiales cementicios, y por lo tanto no son dependientes del agregado fino para lograr la lubricación y compactabilidad de la mezcla. Por supuesto, los valores dados en la tabla 16 son recomendados para arenas que tienen un módulo de finura entre 2.5 a 3.2.

• **Paso 4: Estimar el agua de mezcla y el contenido de aire**

La cantidad de agua por unidad de volumen de concreto requerida para producir un slump dado es dependiente del tamaño máximo. Forma de las
partículas, gradación del agregado, cantidad de cemento y tipo de plastificante o superplastificante usados. Si se usa un superplastificante, el contenido de agua en este aditivo es tomado en cuenta para el cálculo de la relación agua/cement. La tabla 15 da una primera estimación del agua de mezclado requerida para concretos elaborados con agregados de tamaño máximo entre 1" y 3/8", esta cantidad de agua es estimada sin la adición del aditivo, en la misma tabla también se da los valores estimado de aire atrapado.

<table>
<thead>
<tr>
<th>Slump</th>
<th>Agua de mezclado en kg/m³ para los tamaños máximos de agregados gruesos indicados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/8"</td>
</tr>
<tr>
<td>1"-2"</td>
<td>183</td>
</tr>
<tr>
<td>2"-3"</td>
<td>189</td>
</tr>
<tr>
<td>3"-4"</td>
<td>195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Aire Atrapado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin superplastificante</td>
<td>3 2.5 2 1.5</td>
</tr>
<tr>
<td>Con superplastificante</td>
<td>2.5 2 1.5 1</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.4

Estas cantidades de agua de mezclado son máximas para un agregado bien gradado, angular y limpio que cumple con los límites de la norma ASTM C 33. Dado que la forma de las partículas y la textura superficial del agregado fino puede influenciar significativamente su contenido de vacíos, el requerimiento de agua de meclado puede ser diferente de los valores dados.

Los valores dados en la tabla 15 son aplicables cuando el agregado fino usado tiene un contenido de vacíos igual a 35 %, el contenido de vacíos del agregado fino puede ser calculado usando la siguiente ecuación:

\[
Contenido\ de\ vacíos, V\% = \left(1 - \frac{P\cdot U\cdot C.}{Peso\ específico}\right) \times 100
\]

Cuando el contenido de vacíos del agregado fino no es 35 %, es necesario un
ajuste a la cantidad de agua de mezclado, este ajuste puede ser calculado usando la siguiente ecuación:

\[
\text{Ajuste del agua de mezclado, } A \text{ kg/m}^3 = 4.72 \times (V - 35)
\]

Usando esta ecuación, obtenemos un ajuste de agua de mezclado por cada porcentual del contenido de vacíos de la arena.

- **Paso 5: Seleccionar la relación agua/materiales cementicios**

En las tablas 18 y 19, los valores máximos recomendados para la relación agua/materiales cementicios son mostrados en función del tamaño máximo del agregado para alcanzar diferentes resistencias a compresión en 28 o 56 días. Los valores dados en la tabla 18 son para concretos elaborados sin superplasticantes y los datos en la tabla 19 para concretos con superplastificante. En el presente proyecto se utilizó la tabla 16 a. por haberse elaborado concretos sin superplastificante.

Tabla N°. 18. Relación agua/materiales cementicios para concretos sin superplastificante

<table>
<thead>
<tr>
<th>Resistencia promedio f'_{cr} kg/cm²</th>
<th>Edad (días)</th>
<th>Relación a/cm para los tamaños máximos de agregados gruesos indicados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>500</td>
<td>0.41</td>
<td>0.4</td>
</tr>
<tr>
<td>550</td>
<td>0.44</td>
<td>0.43</td>
</tr>
<tr>
<td>600</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td>56</td>
<td>0.39</td>
<td>0.38</td>
</tr>
<tr>
<td>600</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>56</td>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>650</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>56</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>700</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>56</td>
<td>0.29</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.4
<table>
<thead>
<tr>
<th>Resistencia promedio f_{cr}^* kg/cm²</th>
<th>Edad (días)</th>
<th>Relación a/cm para los tamaños máximos de agregados gruesos indicados</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/8"</td>
<td>1/2"</td>
</tr>
<tr>
<td>500</td>
<td>28</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.54</td>
</tr>
<tr>
<td>550</td>
<td>28</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.49</td>
</tr>
<tr>
<td>600</td>
<td>28</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.44</td>
</tr>
<tr>
<td>650</td>
<td>28</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.4</td>
</tr>
<tr>
<td>700</td>
<td>28</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.37</td>
</tr>
<tr>
<td>750</td>
<td>28</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.34</td>
</tr>
<tr>
<td>800</td>
<td>28</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.32</td>
</tr>
<tr>
<td>850</td>
<td>28</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Fuente: ACI C211.4

- **Paso 6: Calculo del contenido de material cementicio requerido por m³**
 Calculado por la división de la cantidad de agua de mezclado entre la relación a/c seleccionado.

- **Paso 7: Proporcionamiento de la mezcla de prueba base**
 Se calcula el contenido de cemento, para esta mezcla el peso del cemento será igual al calculado en el paso 6. luego el contenido de arena, después de determinar los pesos por m³ de agregado grueso, cemento, agua y contenido de aire atrapado, el contenido de arena puede ser calculado usando método de
volumenes absolutos.

3.1.4.4 Elaboración del concreto

3.1.4.4.1 Criterio para muestreo de concreto

Para el muestreo de concreto se tomaron los siguientes criterios generales:

- El volumen de concreto fue 1.10 veces el volumen total de las probetas.
- El tiempo de mezclado del concreto fue de 1:30 min como mínimo.
- La muestra fue tomada personalmente y en compañía del técnico de laboratorio con uso del cucharón.
- Se tomó en cuenta las condiciones ambientales y de temperatura para el momento del muestreo.
- La fecha de vaciado, \(f'c \), tipos de curado y otros datos fueron escritos con plumón indeleble al costado de las probetas en un tiempo no menor de 20 horas ni mayor de 48 horas después de su elaboración.

3.1.4.4.2 Elaboración de Probetas de concreto

Para el ensayo a la compresión se determinó dos tipos de probetas, una realizada en laboratorio bajo la norma ASTM C 199 O NTP 339.183 y otra simulando trabajo en obra o campo bajo la Norma ASTM C31 O NTP 339.033.

Equipo empleado

- moldes cilíndricos de 152 mm de diámetro por 304 mm de altura (6” x 12”).
- barra compactadora de acero liso de 5/8” de diámetro y 60 cm de longitud.
- cuchara para el muestreo y plancha de albañilería.
- mazo de goma.
- aceites derivados de petróleo.

Procedimiento

Se detalla ancontinuación los pasos que se siguieron en la elaboración de los testigos de concreto:
• El molde estuvo listo sin restos de concreto utilizado en ensayos anteriores de lo contrario se limpió con una escobilla de cerdas de acero.
• El molde se engrasó tanto interior como exteriormente, para no quedar adherido concreto a los tornillos o mariposas de ajuste durante el proceso.
• Se colocaron los moldes en una superficie nivelada libre de vibraciones
• Se humedeció el cucharón, varilla y plancha para enrasar.
• Se comenzó con el llenado de los moldes en tres capas, con 1/3 de la altura del molde. Por cada capa se compactó 25 golpes con la varilla y 15 golpes a los costados con el mazo de goma.
• La superficie de concreto se enrasó con la plancha logrando una superficie plana, suave y perpendicular a la generatriz del cilindro, desechando el material excedente del molde.
• Finalmente se colocaron en ellos tarjetas, debidamente protegidos, identificándolos con referencias como la fecha de vaciado, f’c, tipos de curado, día de rotura, entre otros.

Nota: En este proyecto se utilizó aditivo curador de concreto Sika Antisol en el proceso de fraguado inicial, aquí se procedió a curar por método de aspersión en la parte superior de la probeta cuando el agua de exudación desaparecía y por último se protegió con bolsas plásticas para evitar la evaporación del agua.

3.1.4.4.3 Protección y desmolde de las muestras
Se tuvo en cuenta lo siguiente:
• Se trató en lo posible no mover de su sitio las probetas, se trasladaron a mano inmediatamente después de consolidadas, colocándolas en espacios seguros libre de vibraciones.
• En todos los casos durante las primeras 24 horas los moldes estuvieron a temperatura ambiente de 16 °C a 27 °C protegidos del viento y asoleamiento, para evitar la evaporación del agua.
• Las probetas se retiraron de los moldes entre las 20 y 24 horas después de moldeadas. Se procedió a soltar los elementos de cierre y, luego de un momento,
se retiró cuidadosamente la probeta de forma vertical

- Se marcaron al costado de las probetas las anotaciones de la tarjeta de identificación del molde, utilizando plumón indeleble de color negro o azul.

3.1.4.4 Curado de las probetas

- Después de desmoldar las probetas de laboratorio se colocaron en la cámara de curado, aquí se hizo uso de una piscina de 4.00m por 2.20m a temperatura de 23 °C ± 2 °C y se procedió a su cierre con un plástico impermeable.
- El agua utilizada fue potable y limpia, no se encontró en movimiento y cubrió por completo todas las caras de la probeta.
- Para el curado de probetas en condiciones de obra, una vez desmoldados se hizo uso del aditivo curador Sika Antisol por el método de aspersión empleando un spray alrededor de toda la probeta, a continuación se protegió con un plástico impermeable, y se trasladó a la cámara de curado, siendo este un salón libre de vibraciones, rayos solares y viento.

Comentario: Las probetas destinadas a evaluar el tiempo requerido para desencofrar o poner en servicio una estructura de concreto, deberán conservarse a pie de obra, en las mismas condiciones de protección y curado que la estructura.

3.1.4.5 Ensayos de la calidad del concreto

3.1.4.5.1 Concreto en estado fresco

3.1.4.5.1.1 Peso unitario

Es la suma de todos los componentes que intervienen en él. Nos proporciona un valor que lo podemos comparar tanto en estado fresco como en estado endurecido. Se pueden comparar concretos con tres características diferentes que son:

- Concretos normales, cuyo peso unitario se encuentra entre 2200 a 2400 kg/m³.
- Concretos livianos, son aquellos que tienen un peso unitario inferior a los 1900 kg/m³.
• Concreto pesado, cuyo peso unitario se encuentra entre 2800 a 6000 kg/m³.

Dentro de las encontradas en nuestro diseño, determinamos que el concreto es un concreto normal, pues su peso unitario está en el rango de 2200 a 2400 kg/m³.

Procedimiento

El ensayo consiste en medir un molde cilíndrico metálico y pesarlo. Una vez obtenido el peso y el volumen, se llena el molde en tres capas con concreto fresco, en cada capa con la ayuda de una varilla lisa se compacta 25 veces, con la ayuda de un martillo de goma se golpea 15 veces al costado del cilindro después de cada capa. Luego de llenar el cilindro metálico se pesará y se restará el peso del molde para que así tengamos el peso unitario del concreto.

Equipo empleado:

- balanza,
- cucharón de kilo,
- martillo de goma,
- varia lisa de 5/8 con punta de bala,
- molde cilíndrico de metal,
- trompo,
- plancha de batir.

Figura N° 13. Peso unitario del concreto fresco
Normativa

- Peso unitario del concreto fresco de acuerdo a NTP 339.046 o ASTM C138.

3.1.4.5.1.2 Contenido de aire del concreto por el método de presión

Esta prueba determina la cantidad de aire que puede contener el concreto recién mezclado, se excluye así cualquier cantidad de aire que puedan contener las partículas de los agregados. Por esta razón este ensayo es aplicable para concretos con agregados relativamente densos y que requieran la determinación del factor de corrección del agregado.

Esta prueba no es aplicable a hormigones de agregados ligeros, escorias de fundición enfriadas por aire o agregados con alta porosidad, a concreto no plástico usado en la fabricación de tubos o bloques de mampostería. En esos casos el ensayo correspondiente sería de acuerdo a ASTM C 231. Este método no es utilizado en concretos no plásticos, los cuales son comúnmente utilizados en unidades de albañilería.

Procedimiento

- Humedecer el interior del tazón y colocarlo en una superficie plana nivelada y firme.
- Llenar el recipiente con tres capas de igual volumen, sobrellenando ligeramente la última capa.
- Compactar cada capa con 25 penetraciones de la punta semihemisférica de la varilla, distribuyendo uniformemente las penetraciones en toda la sección.
- Compactar la capa inferior en todo su espesor, sin impactar en el fondo del recipiente con la varilla.
- Compactar la segunda y tercera capa penetrando 1 pulgada (25 mm) de la capa anterior.
- Golpear firmemente los lados del tazón de 10 a 15 veces con el mazo, después de compactar cada capa. Para evitar que las burbujas de aire queden atrapadas en el interior de la muestra.
• Enrasar el hormigón utilizando la regla enrasadora apoyada sobre el borde superior del molde; y luego limpiar el exceso de muestra del borde del recipiente.
• Limpiar y humedecer el interior de la cubierta antes de acoplarla con las mordazas a la base; las mordazas se sujetan dos a la vez y en cruz.
• Abrir ambas llaves de purga.
• Cerrar la válvula principal de aire entre la cámara y el tazón y abrir ambas llaves de purga a través de la cubierta.
• Inyectar agua a través de una de las llaves de purga hasta que se salga por la otra.
• Continuar inyectando agua por la llave de purga, mientras mueve y golpea el medidor para asegurar que todo el aire es expulsado.
• Cerrar la válvula de escape de aire y bombear aire dentro de la cámara hasta que el manómetro esté en la línea de presión inicial.
• Esperar unos segundos para que el aire comprimido llegue a una temperatura normal y se establece la lectura de presión.
• Ajustar el manómetro en la línea de presión inicial por bombeo o deje escapar aire si es necesario dando ligeros golpes con la mano.
• Cerrar ambas llaves de purga.
• Abrir la válvula principal entre la cámara de aire y el tazón.
• Dar pequeños golpes en los lados del tazón con el mazo.
• Leer el porcentaje de aire, golpeando con la mano ligeramente el manómetro para estabilizar la lectura.
• Cerrar la válvula de aire principal y abrir las llaves de purga para descargar la presión, antes de remover la cubierta.

Equipo empleado

• **Medidores de aire:** Existen dos tipos de aparatos satisfactoriamente diseñados, que emplean el principio de la Ley de Boyle. Para los propósitos de referencia, estos se designan en la presente norma como medidor tipo A y medidor tipo B.
Medidor de aire tipo A: la principal operación de este medidor de aire consiste en introducir agua hasta una determinada altura por encima de la muestra de concreto de volumen conocido y la aplicación de una determinada presión de aire sobre el agua. La determinación consiste en la reducción en el volumen del aire en la muestra de concreto por la observación del nivel de agua más bajo que la presión aplicada.

Medidor de aire tipo B: la operación principal de este medidor consiste en igualar el volumen de aire y la presión conocida en una cámara con el volumen desconocido de aire de la muestra de concreto. Un medidor de aire que consiste en un recipiente de forma cilíndrica y una sección superior que lo cubre. El recipiente debe ser de metal u otro material no reactivo al cemento, debe tener un diámetro de 0.75 a 1.25 veces la altura y una capacidad por lo menos de 0.20 ft³ (5.7 L). La forma en que trabaja este medidor consiste en igualar un volumen conocido de aire a una presión conocida en una cámara de aire hermética con el volumen de aire desconocido de la muestra de hormigón. La aguja en el medidor de presión se calibra en términos de porcentajes de aire de presión en la cual se igualan ambas presiones. Se han usado satisfactoriamente presiones operacionales de 7.5 a 30.0 psi (51 a 207 kPa). El dial de la sección superior para medir el contenido de aire debe estar graduado en un rango de al menos 8 %, legible con una aproximación de 0.1 % bajo las operaciones normales de presión.

Recipiente de medición: debe ser esencialmente de forma cilíndrica, fabricado en acero, metal duro, u otro material duro que no sea fácilmente atacable por la pasta de cemento con diámetro mínimo de 0.75 a 1.25 veces de altura, y una capacidad de por lo menos 5.7 L (0.20 pies³). Debe tener una brida, o de lo contrario, estar construido para mantener una union hermética y firme entre el recipiente, y superficies de las orillas, las pestañas y otras partes componentes de ajuste, deben estar maquinadas con acabado superficial liso.
• **Varilla.**- debe ser redonda, de acero de 5/8” (16 mm) de diámetro y no menor a 16” (400 mm) de longitud, teniendo el extremo redondeado o semihemisférico con diámetro de 5/8” (16 mm)

• **Paleta.**- Una cuchara normal de albañil

• **Placa para remover exceso de hormigón.**- rectangular y plana de metal o al menos ¼” (6 mm) de espesor, de vidrio o acrílico de al menos ½” (12 mm) de espesor con una longitud y ancho de al menos 2” (50 mm).

• **Mazo.**- con cabeza de goma, de peso aproximadamente 1.25 ± 0.50 lb (600 ± 200 g) para usarse con recipientes de 0.5 ft³ (14 L) o menores. Para recipientes más grandes que 0.5 ft³ un mazo que pese aproximadamente 2.25 ± 0.50 lb (1000 ± 200 g).

• **Regla de enrase.**- una barra recta plana de acero u otro metal conveniente, de por lo menos 3 mm (1/8” de pulg.) de espesor, 20 mm (3/4”de pulg.) de ancho y 300 mm (12 pulg.) de longitud.

• **Embudo:** con la boquilla que encaje en el tubo de rociado.

• **Medidor para agua:** con capacidad necesaria para llenar el indicador con agua, desde la parte superior del concreto hasta la marca cero.

• **Vibrador:** descrito en la norma ASTM C192/C192 M.

• **Tamices:** de 37.5 mm (1 ½” de pulg.) con un área de tamizado no menor de 0.19 m² (2 pies³).

• **Cucharón:** de tamaño grande para que cada cantidad de concreto de muestra sea representativa y suficientemente pequeña la boquilla para que no se desparrame durante su colocación en el recipiente de medida.
Figura N° 14. Contenido de aire en el concreto fresco

Normativa
- Contenido de aire en el concreto fresco por el método de presión de acuerdo a ASTM C231.

3.1.4.5.1.3 Asentamiento

El ensayo de asentamiento del concreto o prueba del cono de Abrams es un método de control de calidad cuyo objetivo principal es medir la consistencia del concreto. La manejabilidad del concreto es usualmente juzgada por un examen visual, debido a que hasta el momento no se conoce ningún ensayo que mida la propiedad de manera directa. Sin embargo, se han desarrollado una serie de ensayos con los cuales se puede determinar las propiedades del concreto en estado plástico (fresco) en términos de consistencia, fluidez, cohesión y grado de compactación, uno de ellos es el ensayo de asentamiento.
Equipo empleado:

- cono de Abrams, cuya medidas es de 20 cm x 10 cm con una tolerancia de ± 3 mm con un espesor mínimo de 1.5 mm;
- barra compactadora, barra de acero liso con punta semiesférica de 5/8 de diámetro x 24 pulgadas de longitud;
- instrumento de medida (wincha), que nos servirá para medir el asentamiento obtenido en el ensayo;
- herramientas pequeñas como son un cucharón de kilo y plancha de batir para enrasar la superficie del cono.

Según los resultados obtenidos en este ensayo, el slump obtenido cumple con la aceptación de la ACTM C94. La que nos establece tolerancias para el flujo de concreto y según lo establecido nos indica que el asentamiento máximo para un concreto mayor de 3 pulgadas de slump posee una tolerancia de 0 a 2.5 cm.

Figura N° 15. Asentamiento del concreto con cono de Abrams

Normativa

- Asentamiento del concreto (SLUMP) de acuerdo a NTP 359.035 o ASTM C143.
3.1.4.5.1.4 Determinación de la exudación del concreto

Es una propiedad del concreto donde una parte del agua de mezcla se separa de la masa y sube hacia la superficie del concreto. Es un caso típico de sedimentación en que los sólidos se asientan dentro de la masa plástica. La exudación se produce inevitablemente en el concreto, pues es una propiedad inherente a su estructura. Luego, lo importante es evaluarla y controlarla en cuanto a los efectos negativos que pudiera tener. Según la norma ASTM C 232, se coloca la muestra de concreto en un molde y se comienza a recolectar con una pipeta el agua superficial que se muestra en la superficie, tomándose nota de los tiempos de ocurrencia, el ensayo culmina al término de la exudación. A continuación se presenta el cálculo para la exudación del concreto.

\[C = \frac{w}{W} \times S \text{ Exudación} = \frac{v}{c} \times 100 \]

En donde
C: Masa del agua en la muestra de ensayo, en L
w: Agua efectiva, en L
W: Cantidad total de materiales, en kg
S: Peso del concreto, en kg
V: Volumen final exudado, en L

Procedimiento:
Según la norma ASTM C 232, se coloca la muestra de concreto en un molde y recolectando con una pipeta el agua superficial que va subiendo a la superficie. Se debe tomar nota de los tiempos de ocurrencia hasta que la pasta ya no exude.

Equipos:
- bombilla, que nos ayudará succionar el líquido exudado;
- probeta graduada, que nos ayudará medir el líquido exudado;
- molde cilíndrico;
- varilla lisa de 5/8;
- comba de goma;
- cucharón;
• plancha de batir;
• trompo;
• base, que nos ayudará tener una pendiente de 2 % de inclinación.

Figura N° 16. Exudación del concreto fresco

Normativa
• Exudación del concreto de acuerdo a NTP 339.077 o ASTM C232.

3.1.4.5.1.5 Determinación de la temperatura del concreto
La temperatura del concreto es una medida que se realiza bajo los procedimientos de la NTP 339.184 y es un ensayo que se debe realizar en el control de calidad del concreto. Depende del aporte calorífico de cada uno de sus componentes, ya que la influencia de cada material depende de su calor
específico de su masa y de su temperatura, además del calor liberado por la hidratación del cemento, la energía de mezclado y el medio ambiente. Cuando las especificaciones de obra fijan límites para la misma, podrá emplearse termómetros especialmente diseñados para esta finalidad, o calcularse a partir de la temperatura de los ingredientes de la mezcla.

Procedimiento:
- Introducir el termómetro de manera que quede cubierto al menos 7.5 cm
- Presionar suavemente el concreto alrededor del termómetro para que la temperatura ambiente no altere la lectura.
- Dejar el termómetro por lo menos 2 minutos o hasta que la lectura se estabilice.
- Leer la temperatura y anotarla.
- Se completa la medición dentro de los 5 minutos a la toma de la muestra.

Equipos:
- Contenedor: de material no absorbente y lo suficientemente grande como para proveer al menos 75 m (3 pulgadas) de concreto en todas las direcciones alrededor del sensor del dispositivo de medición de temperatura.
- Dispositivo para medición de temperatura (termómetro): Con una aproximación de 0.5 °C a lo largo de todo el rango de temperatura con un rango de 0 °C a 50 °C.

Figura N° 17. Determinación de la temperatura del concreto fresco
Normativa

- Método de ensayo normalizado para determinar la temperatura de mezclas de acuerdo a NTP 339.184 o ASTM C1064.

3.1.4.5.2 Concreto en estado endurecido

3.1.4.5.2.1 Resistencia a la compresión

El ensayo a la compresión de muestras cilíndricas de concreto se realiza de acuerdo a las normas ASTM C39 o NTP 339.034.

Equipo empleado

- Máquina de ensayo ELE INTERNATIONAL (para cilindros con $f'_c \leq 1000\text{kg/cm}^2$). N.º serie: 1796-8-1944

Procedimiento

- Realizar el ensayo tan pronto como el especimen haya sido extraído de la cámara de curado. Es importante conservar sus condiciones de humedad.
- Todos los especímenes de ensayo, para una edad de ensayo dada, deben romperse dentro de las tolerancias de tiempo como sigue:

<table>
<thead>
<tr>
<th>EDAD</th>
<th>TOLERANCIA DE TIEMPO PERMISIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 horas</td>
<td>± 0.5 horas o 2.1 %</td>
</tr>
<tr>
<td>3 días</td>
<td>± 2 horas o 2.8 %</td>
</tr>
<tr>
<td>7 días</td>
<td>± 6 horas o 3.6 %</td>
</tr>
<tr>
<td>28 días</td>
<td>± 20 horas o 3.0 %</td>
</tr>
<tr>
<td>90 días</td>
<td>± 2 días o 2.2 %</td>
</tr>
</tbody>
</table>

Fuente: NTP 339.034
Los testigos de concreto no deberán ser ensayados, si cualquier diámetro individual de un cilindro difiere en el diámetro del otro en más de 2 %.

Ningún especimen de ensayos debe estar fuera de la perpendiculares da a los ejes en más de 0.5”. Los extremos de los especímenes de ensayos que no sean planos dentro de 0.050 mm deben ser aserrados o esmerilados para cumplir tolerancia.

El diámetro usado para calcular la sección transversal del especimen debe ser determinado al 0.25 mm, promediando dos diámetros medidos en ángulos distintos.

Alinear la muestra al eje del bloque de empuje superior.

Verificar que el indicador de la cara se encuentra en cero.

Aplicar la carga de compresión continua y sin impacto hasta que el indicador muestra la carga aumentando progresivamente. La velocidad de carga corresponde a la sección transversal donde se aplica la carga.

<table>
<thead>
<tr>
<th>Tabla N°. 21. Velocidad de aplicación de carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro (mm)</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: NTP 339.034

Continuar comprimiendo el especimen hasta que el usuario esté seguro de que se ha alcanzado la capacidad última, y anotar la forma de rotura.

Cálculos

\[R = \frac{P}{A} \]

Donde:

R: esfuerzo a la compresión, kg/cm²
P: máxima carga aplicada, kg
A: área de especimen sometida a la carga, cm²
Normativa

- Método de ensayo normalizado para resistencia a la compresión de especímenes cilíndricos de concreto de acuerdo a NTP 539.034 o ASTM C39.

3.1.4.5.2.2 Evaluación de impacto ambiental

La evaluación de impacto ambiental completa se presenta en el anexo del presente proyecto, por ser un estudio complementario al de la investigación.

3.1.4.5.3 Durabilidad del concreto

Un concreto durable es aquel que puede resistir en forma satisfactoria las condiciones de servicio a que estará sujeto, tales como: la meteorización, la acción química y el desgaste. Por tratarse de la elaboración de un concreto de alta calidad, se realizaron dos ensayos de durabilidad: la resistencia al desgaste del concreto, según norma ASTM C944; y la reacción álcali sílice de los agregados, según la norma ASTM 1567.
3.1.4.5.3.1 Durabilidad por desgaste del concreto

Este ensayo da una indicación de la resistencia al desgaste relativo de mortero y concreto basado en pruebas a núcleos o especímenes fabricados. Este ensayo ha sido utilizado con éxito en el control de calidad de carreteras y puentes de concreto sujetos al tráfico. Este método se enfoca en medir la resistencia a la abrasión en los extremos de núcleos de concreto de 150 mm de diámetro, como también en el uso de muestras de mortero. En la presente investigación se elaboraron muestras de concreto de 150 mm de diámetro para cada f’c.

Equipo empleado:
- equipo de desgaste, taladro de desgaste con arandelas dentadas.
- balanza con precisión al 0.1 g.
- cronómetro.

Procedimiento:
- Se realiza moldes de concreto con diámetro aproximado a 6”, con espesor no menor de 50 mm.
- Se realiza el curado adecuado, y una vez que el concreto logre cumplir la edad de diseño (28 días), se procede a ensayar.
- Se determina la masa de la muestra con una precisión de 0.1 g.
- Se procede a bajar el taladro de desgaste hasta entrar en contacto con la superficie de concreto a 200 rpm, 3 ciclos de 2 minutos cada uno.
- En cada ciclo se procede a pesar el molde, y se identifica el desgaste.

Calculo:

\[
\% \text{ Desgaste} = \frac{(P_i - P_f)}{P_i} \times 100
\]

Pi: Peso inicial, antes del ensayo
Pf: Peso final, después de cada ciclo de ensayo
Normativa

- Método de prueba estándar para resistencia a la abrasión de superficies de hormigón o mortero por el método de corte giratorio de acuerdo a norma ASTM C944.

3.1.4.5.3.2 Durabilidad por reacción álcali-sílice

Este ensayo es utilizado para detectar, dentro de un periodo de 16 días, la reactividad potencial álcali-sílice de los agregados en las barras de mortero, para identificar si da por resultado una expansión interna perjudicial. Es especialmente útil para los agregados que reaccionan lentamente o que produzcan una expansión retardada en la reacción. En la presente investigación se realizaron dos clases de barras: una barra patrón y la otra adicionando con el porcentaje óptimo de polvo de granito.

Equipo empleado:

- equipo medidor de expansion,
- moldes de dimensiones (1” x 1” x 6.5”),
- tamices,
- recipiente de almacenaje de las barras.
- cronómetro.
- reactivo (hidróxido de sodio).

Muestra

Se realiza la preparación del agregado, teniendo como requisitos realizar una graduación de los agregados, como se muestra en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Tamaño de tamiz</th>
<th>Pasa</th>
<th>Retenido en</th>
<th>Masa, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75 mm (N.° 4)</td>
<td>2.36 mm (N.° 8)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.36 mm (N.° 8)</td>
<td>1.18 mm (N.° 36)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.18 mm (N.° 16)</td>
<td>600 um (N.° 30)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>600 um (N.° 30)</td>
<td>300 um (N.° 50)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>300 um (N.° 50)</td>
<td>150 um (N.° 100)</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: ASTM C1567

Procedimiento

- Se realiza la preparación del mortero, con dosificación, una parte de cemento a 2.25 partes del agregado graduado por masa, bajo una relación agua-cemento a 0.47 en masa.
- Se coloca cada molde en el gabinete o el cuarto de curado, inmediatamente después de que haya sido llenado, los especímenes deben permanecer en los moldes por 24 + - 2h. Luego se sacan los especímenes de los moldes, y se les identifica, inmediatamente se hace una lectura inicial con el comparador de longitud. Esta lectura inicial y todas las demás lecturas subsecuentes se hacen con una aproximación al 0.002 mm
- Se colocan los especímenes hechos de cada muestra de agregado en un recipiente de almacenaje con suficiente agua potable para que queden sumergidos.
• Se sellan y se colocan los recipientes de almacenaje en un horno de convección o en un baño de agua mantenidos a una temperatura de 80 ± 2.0 °C por un periodo de 24 h.
• Se sacan los recipientes del baño a temperatura constante de uno en uno a la vez. Se sacan los otros recipientes de almacenaje solo hasta que las barras del primer recipiente de almacenaje hayan sido medidas y retornadas al baño a temperatura constante. El tiempo transcurrido entre retirar y retornar los especímenes al baño a temperatura constante no debe exceder de 10 min. Las barras deben sacarse una a la vez del agua y debe secarse su superficie con una toalla poniendo especial atención a los dos tornillos de los extremos.
• Se toma la lectura cero de cada barra, inmediatamente después de que haya sido secada y se hace la lectura tan pronto las barras estén colocadas en el aparato medidor. Se completa el proceso de secado y lectura dentro de los 15 ± 5 s después de haber sido sacado del agua, el especímen.
• Se deja el espécimen en una toalla, hasta que todas las lecturas comparativas hayan sido hechas sobre las restantes barras.
• Luego se colocan todos los especímenes hechos de la muestra de cada agregado, en un recipiente separado de almacenaje con suficiente solución de NaOH, a 80 ± 2 °C (176 ± 3.6 °F) para que los especímenes queden totalmente sumergidos.
• Se sella el recipiente de almacenaje y se regresa al horno de convección o al baño de agua.
• Se deben realizar lecturas subsecuentes comparativas de los especímenes periódicamente, con por lo menos tres lecturas intermedias por el periodo de 14 días después de realizar la lectura cero. y aproximadamente a la misma hora cada día.

Cálculo:
Se calcula la diferencia entre la lectura cero del especimen en el comparador
de longitud y la lectura de cada periodo

\[
\% \text{ de expansión} = \frac{(L_i - L_f)}{L_i} \times 100
\]

Pi: longitud inicial, medida inicial del ensayo
Pf: longitud final, después de haber extraído la barra en la solución

Interpretación de resultados

- Las expansiones menores que 0.10 % a los 16 días después del moldeo de los especímenes son indicativas de un comportamiento inocuo en la mayoría de casos.
- Las expansiones mayores que 0.20 % a los 16 días después del moldeo de los especímenes son indicativas de una expansión potencialmente dañina.
- Las expansiones entre 0.10 % y 0.20 % a los 16 días después del moldeo de los especímenes incluyen ambos agregados tanto inocuos como dañinos en su desempeño de campo. En tal situación, puede ser de utilidad tomar lecturas de comparación hasta los 28 días.

Figura N° 20. Equipo para ensayo de reacción álcali-silice
3.2 METODOLOGÍA

3.2.1 Plan de procesamiento para análisis de datos

Fase I

- **Recolección de información bibliográfica y antecedentes del proyecto**
 Búsqueda de temas relacionados con la incorporación de microsílices en la fabricación de concretos de alta resistencia, así mismo indagación sobre otros materiales con alto contenido de sílices que sirvan para elevar la resistencia.

- **Revisión de la normativa vigente**
 Normativa relacionada con la elaboración de concretos de alta resistencia, calidad de los agregados, calidad en el concreto y las características de todos los componentes que intervienen en las mezclas de concreto del presente proyecto.

- **Extracción de muestras de agregados**
 Se realizó la extracción de los agregados según la NTP 400.010 de las principales canteras comercializadoras en el sector construcción de Chiclayo. Las canteras designadas fueron La Victoria, Talambo y Tres tomas.

- **Determinación de las propiedades de los agregados**
 Las propiedades de los agregados se determinaron en los laboratorios de la Universidad Católica Santo Toribio de Mogrovejo con la finalidad de determinar los agregados con mejor calidad. siguiendo lo establecido en las Normas Técnicas Peruanas para agregados.
• **Transporte de materiales y la muestra de estudio**
 Al tener los agregados seleccionados se transportaron con alquiler de un camión pequeño con capacidad de 5m³. primero la piedra chancada y la muestra de estudio de la cantera Talambo, Chepén y después el agregado fino de la cantera La Victoria, Pátapo.

• **Obtención de polvo de granito**
 Se realizó la extracción de polvo de granito de las partículas residuales del chancado de piedra con un tamizado manual con uso de malla N.º 200.

• **Determinación de las propiedades del polvo de granito**
 Se realizó una evaluación en base a investigaciones sobre el uso de microsílices y se seleccionaron algunos ensayos para encontrar las propiedades de este polvo de granito.

• **Procesamiento de datos**
 Recopilación de las propiedades obtenidas de los agregados y el polvo de granito para ser procesados y utilizados como datos para el diseño de mezcla.

Fase II

• **Estudio de las especificaciones técnicas**
 El estudio de las especificaciones que se realizaron para elaborar los diseños de mezcla de alta resistencia.

• **Diseño de mezcla**
 De las propiedades de los materiales obtenidos se realizó el diseño de mezcla, según el método ACI 211.1 para el concreto 350 kg/cm² y el método ACI 211.4 para los concretos 420, 500 y 550 kg/cm², se especifican las diferentes proporciones y características que se quiere obtener para cada concreto.
• **Pruebas preliminaries de concreto**
 Se realiza la producción del concreto patrón con la finalidad de analizar sus propiedades. se hicieron ajustes de agua y grava hasta obtener la homogeneidad y el asentamiento de diseño. Después se incorpora la adición mineral y se analiza la interacción con la mezcla.

• **Elaboración de testigos**
 Para la elaboración de testigos se tuvo en cuenta el porcentaje de adición a la mezcla, la cantidad de testigos realizados se calcularon en relación a las variables establecidas.

Fase III

• **Curado de testigos**
 Los testigos elaborados fueron curados en una posa de agua de 4 x 2.20 m. del mismo modo se realizó un curado simulando el trabajo en obra; para esto se estableció humedecer las muestras por el método de aspersión con el curador Sika Antisol, inmediatamente después de su desencofrado.

• **Ensayaos de resistencia a la compresión**
 Las probetas a ensayar a los 7 días se trasladaron al laboratorio USAT para las pruebas a compresión, y las probetas a días de ensayo superior se trasladaron al laboratorio SIPÁN para su rotura a la compresión.

• **Pruebas de durabilidad del concreto**
 Se evaluó su durabilidad del concreto a lo largo de su vida útil, mediante el ensayo de resistencia al desgaste del concreto y reactividad potencial álcali-sílice en los agregados comparando la mezcla patrón con el concreto elaborado con 10 % de polvo de granito.
Fase IV

- **Evaluación de impacto ambiental**
 La evaluación de impacto ambiental se realizó de cada uno de los procesos realizados antes mencionados, y en este punto se presentan los resultados obtenidos.

- **Obtención de resultados de los ensayos**
 Se registraron los resultados de los ensayos realizados para ser evaluados.

- **Procesamiento de resultados**
 Se analizan los datos obtenidos determinando si la problemática establecida llega a ser subsanable y de esta manera ratificar la veracidad de la hipótesis.

- **Conclusiones y recomendaciones**
 Se establecen las conclusiones y recomendaciones de los estudios realizados, se presentan los aspectos más relevantes obtenidos a través de la realización de este proyecto.
IV. RESULTADOS

4.1 ENSAYOS DE LOS MATERIALES

Los ensayos se realizaron según la metodología descrita en 3.1.4, allí se puede observar la descripción del procedimiento para cada uno de los ensayos efectuados.

LEM USAT
LABORATORIO DE ENSAYOS DE MATERIALES
Ensayos físicos para diseño de mezcla de concreto.

1.- GRANULOMETRÍA: N.T.P. 400.019

<table>
<thead>
<tr>
<th>Muestra</th>
<th>La victoria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulo de Fineza:</td>
<td>2.999</td>
</tr>
<tr>
<td>Peso Seco:</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Retenido</th>
<th>% Retenido</th>
<th>% Ret. Acum</th>
<th>% Que Pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Nº4</td>
<td>9.0</td>
<td>1.8</td>
<td>1.8</td>
<td>98.2</td>
</tr>
<tr>
<td>Nº8</td>
<td>54.5</td>
<td>10.9</td>
<td>12.7</td>
<td>87.3</td>
</tr>
<tr>
<td>Nº16</td>
<td>103.0</td>
<td>20.6</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Nº30</td>
<td>155.3</td>
<td>31.1</td>
<td>64.3</td>
<td>35.7</td>
</tr>
<tr>
<td>Nº50</td>
<td>106.0</td>
<td>21.2</td>
<td>85.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Nº700</td>
<td>48.5</td>
<td>9.7</td>
<td>95.2</td>
<td>4.8</td>
</tr>
<tr>
<td>FONDO</td>
<td>23.1</td>
<td>4.6</td>
<td>99.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

2.- PESO UNITARIO: N.T.P. 400.017

<table>
<thead>
<tr>
<th>SUELTO</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Peso de la muestra húmeda</td>
<td>7872</td>
<td>7874</td>
</tr>
<tr>
<td>- Volumen del molde</td>
<td>0.00552</td>
<td></td>
</tr>
<tr>
<td>- Peso unitario suelto húmedo</td>
<td>1426</td>
<td></td>
</tr>
<tr>
<td>- PESO UNIT. SUELO SECOSAL</td>
<td>1419</td>
<td></td>
</tr>
</tbody>
</table>

COMPACTADO (((A+B)+2(V)/1000)/1+(C.H./100))

<table>
<thead>
<tr>
<th>SUELTO</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Peso de la muestra húmeda</td>
<td>9102</td>
<td>9094</td>
</tr>
<tr>
<td>- Volumen del molde</td>
<td>0.00552</td>
<td></td>
</tr>
<tr>
<td>- Peso unitario suelto húmedo</td>
<td>1648</td>
<td></td>
</tr>
<tr>
<td>- PESO UNIT. COMPACTADO SECO</td>
<td>1640</td>
<td></td>
</tr>
</tbody>
</table>

3.- PESO ESPECÍFICO Y ABSORCIÓN: N.T.P. 400.081 Arena

<table>
<thead>
<tr>
<th>A. - Datos de la arena</th>
<th>N.T.P. 400.089 Piedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Peso de la Muestra, Sat. Seca.</td>
<td>500.0</td>
</tr>
<tr>
<td>2.- Peso de la Muestra, Sat. Seca + Peso frasco + Peso del agua.</td>
<td>982.5</td>
</tr>
<tr>
<td>3.- Peso de la Muestra, Sat. Seca + Peso del frasco.</td>
<td>677.7</td>
</tr>
<tr>
<td>4.- Peso del Agua</td>
<td>304.9</td>
</tr>
<tr>
<td>5.- Peso del Frasco</td>
<td>177.7</td>
</tr>
<tr>
<td>6.- Peso de la Muestra, secada al horno + Peso del frasco</td>
<td>668.7</td>
</tr>
<tr>
<td>7.- Peso de la Muestra, seca en el horno.</td>
<td>491.0</td>
</tr>
<tr>
<td>8.- Volumen del frasco</td>
<td>500.0</td>
</tr>
</tbody>
</table>

105
4.2 PESO UNITARIO DEL CONCRETO

Los ensayos de peso unitario del concreto se hicieron según lo expuesto en 3.1.4.5.1.1, estas pruebas se realizaron para la adición de polvo de granito en porcentajes de 5, 10 y 15 % en peso del cemento y el comparativo del concreto patrón para cada f’c.

Gráfico N.° 1. Peso unitario para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito

![Gráfico N.° 1. Peso unitario para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito](image)

B.- Resultados

A. PESO ESPECÍFICO DE LA ARENA

<table>
<thead>
<tr>
<th>Malla</th>
<th>(A+B)</th>
<th>g/cm³</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>1151.5</td>
<td>2.625</td>
<td>2.685</td>
</tr>
<tr>
<td>7/8"</td>
<td>1420</td>
<td>2.666</td>
<td>2.700</td>
</tr>
</tbody>
</table>

B. PESO ESPECÍFICO DE LA MASA S.S.S.

<table>
<thead>
<tr>
<th>Malla</th>
<th>(A+B)</th>
<th>g/cm³</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>1151.5</td>
<td>2.625</td>
<td>2.685</td>
</tr>
<tr>
<td>7/8"</td>
<td>1420</td>
<td>2.666</td>
<td>2.700</td>
</tr>
</tbody>
</table>

C. PESO ESPECÍFICO APARENTE

<table>
<thead>
<tr>
<th>Malla</th>
<th>(A+B)</th>
<th>g/cm³</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>1151.5</td>
<td>2.625</td>
<td>2.685</td>
</tr>
<tr>
<td>7/8"</td>
<td>1420</td>
<td>2.666</td>
<td>2.700</td>
</tr>
</tbody>
</table>

D. PORCENTAJE DE ABSORCIÓN

<table>
<thead>
<tr>
<th>Malla</th>
<th>(A+B)</th>
<th>%</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>1151.5</td>
<td>1.83</td>
<td>2.46</td>
</tr>
<tr>
<td>7/8"</td>
<td>1420</td>
<td>2.651</td>
<td>2.14</td>
</tr>
</tbody>
</table>

A.- Datos de la grava

1.- Peso de la muestra seca al horno

<table>
<thead>
<tr>
<th>Muestra</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>1904</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>1690</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>1975</td>
</tr>
</tbody>
</table>

2.- Peso de la muestra saturada superficialmente seca

<table>
<thead>
<tr>
<th>Muestra</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>2110</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>1975</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>1975</td>
</tr>
</tbody>
</table>

3.- peso de la muestra saturada dentro del agua + peso de la canastilla

<table>
<thead>
<tr>
<th>Muestra</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>891</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>891</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>891</td>
</tr>
</tbody>
</table>

4.- Peso de la canastilla

<table>
<thead>
<tr>
<th>Muestra</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>1219</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>1084</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>1084</td>
</tr>
</tbody>
</table>

5.- Peso de la muestra saturada dentro del agua

<table>
<thead>
<tr>
<th>Muestra</th>
<th>((1-7)/7)*100</th>
<th>%</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>1.83</td>
<td>2.46</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>2.651</td>
<td>2.14</td>
</tr>
</tbody>
</table>

6.- PESO ESPECÍFICO Y ABSORCIÓN

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Peso unitario suelto húmedo</th>
<th>g/cm³</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>2.685</td>
<td>2.700</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>2.719</td>
<td>2.725</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>2.780</td>
<td>2.784</td>
</tr>
</tbody>
</table>

7.- Peso de la Muest. seca en el horno.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>(A+B)</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>1904</td>
<td>1690</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>2110</td>
<td>1975</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>891</td>
<td>891</td>
</tr>
</tbody>
</table>

8.- VOLUMEN DEL MOLDE

<table>
<thead>
<tr>
<th>Muestra</th>
<th>g</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº 8</td>
<td>500</td>
<td>1219</td>
</tr>
<tr>
<td>Nº 16</td>
<td>671.7</td>
<td>1084</td>
</tr>
<tr>
<td>Nº 30</td>
<td>2356</td>
<td>1084</td>
</tr>
</tbody>
</table>

9.- PESO UNITARIO DEL CONCRETO

Gráfico N.° 1. Peso unitario para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito
Gráfico N.° 2. Peso unitario para concretos de 420 kg/cm² con diferentes porcentajes de polvo de granito

Gráfico N.° 3. Peso unitario para concretos de 500 kg/cm² con diferentes porcentajes de polvo de granito
En los gráficos presentados se observa la ligera variación del peso unitario en función al porcentaje de polvo adicionado, los resultados obtenidos hicieron ver que el peso unitario del concreto tiene relación directa con el contenido de aire atrapado y el asentamiento del concreto al incorporar esta adición, los resultados se observan en 4.3 y 4.5.

4.3 Asentamiento del concreto

En los gráficos presentados se observa la disminución del asentamiento a medida que se incorpora el porcentaje de adición.
Gráfico N.° 5. Slump obtenidos para concretos de 350 kg/cm² con diferentes porcentajes de polvo de granito

Gráfico N.° 6. Slump obtenidos para concretos de 420 kg/cm² con diferentes porcentajes de polvo de granito
Gráfico N.° 7. Slump obtenidos para concretos de 500 kg/cm² con diferentes porcentajes de polvo de granito

Gráfico N.° 8. Slump obtenidos para concretos de 550 kg/cm² con diferentes porcentajes de polvo de granito

Tabla N°. 23. Pruebas de asentamiento, peso unitario y temperatura del concreto elaborado
<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>T°</th>
<th>P.u</th>
<th>Slump (pulg)</th>
<th>Slump de diseño (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.6</td>
<td>2345</td>
<td>3.85</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>5</td>
<td>25.5</td>
<td>2427</td>
<td>3.70</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>10</td>
<td>25.7</td>
<td>2362</td>
<td>3.40</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>15</td>
<td>25.1</td>
<td>2356</td>
<td>3.15</td>
<td>3.00 - 4.00</td>
</tr>
</tbody>
</table>

f'c= 350

<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>T°</th>
<th>P.u</th>
<th>Slump (pulg)</th>
<th>Slump de diseño (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25.9</td>
<td>2330</td>
<td>3.60</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>5</td>
<td>25.6</td>
<td>2345</td>
<td>3.55</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>10</td>
<td>26.1</td>
<td>2356</td>
<td>3.30</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>15</td>
<td>25.7</td>
<td>2424</td>
<td>3.05</td>
<td>3.00 - 4.00</td>
</tr>
</tbody>
</table>

f'c= 420

<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>T°</th>
<th>P.u</th>
<th>Slump (pulg)</th>
<th>Slump de diseño (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.1</td>
<td>2380</td>
<td>3.55</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>5</td>
<td>26.1</td>
<td>2384</td>
<td>3.15</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>10</td>
<td>26.3</td>
<td>2424</td>
<td>3.05</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>15</td>
<td>26.2</td>
<td>2424</td>
<td>2.85</td>
<td>3.00 - 4.00</td>
</tr>
</tbody>
</table>

f'c= 500

<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>T°</th>
<th>P.u</th>
<th>Slump (pulg)</th>
<th>Slump de diseño (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>26.2</td>
<td>2410</td>
<td>3.35</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>5</td>
<td>26.4</td>
<td>2413</td>
<td>3.10</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>10</td>
<td>26.5</td>
<td>2424</td>
<td>3.00</td>
<td>3.00 - 4.00</td>
</tr>
<tr>
<td>15</td>
<td>26.2</td>
<td>2438</td>
<td>2.75</td>
<td>3.00 - 4.00</td>
</tr>
</tbody>
</table>

f'c= 550

4.4 Curado del concreto

Fue necesario comprobar el uso del polvo de granito en condiciones reales previstas en obra, para esto se simuló un curado en un ambiente real de trabajo que consistió, por el método de aspersión, en humedecer las muestras cilíndricas de concreto con uso de aditivo Sika Antisol; pasadas las 24 horas de vaciado y envueltas en una cobertura plástica, estos resultados se compararon con el curado realizado en laboratorio. Tales resultados se muestran en conjunto con las pruebas de resistencia a la compresión.

4.5 Determinación del contenido de aire del concreto

Se realizó lo descrito en 3.1.4.5.1.2. Para hallar el contenido de aire se utilizó el medidor tipo B el cual se disponía en el laboratorio USAT. Se realizó el ensayo para el concreto patrón y el concreto con adición de polvo, en porcentajes de 5, 10 y 15 % en peso del contenido total del cemento.
Gráfico N.º 9. Contenido de aire en concretos de 350 kg/cm² patrón y con diferentes porcentajes de polvo de granito

Gráfico N.º 10. Contenido de aire en concretos de 420 kg/cm² patrón y con diferentes porcentajes de polvo de granito
4.6 Determinación de la exudación del concreto

La exudación del concreto se determinó según 3.1.4.5.1.4, de la misma forma que con
el contenido de aire se determinó la exudación para el concreto patrón y el concreto con adición de polvo en porcentajes de 5, 10 y 15 % en peso del contenido total del cemento.

Gráfico N.º 13. Volumen del agua de exudación en concretos de 350 kg/cm² patrón y con diferentes porcentajes de polvo de granito
Gráfico N.° 14. Volumen del agua de exudación en concreto de 420 kg/cm² patrón y con diferentes porcentajes de polvo de granito

Gráfico N.° 15. Volumen del agua de exudación en concreto de 500 kg/cm² patrón y con diferentes porcentajes de polvo de granito
4.7 Resistencia a la compresión del concreto

Los ensayos de resistencia a la compresión para encontrar el porcentaje óptimo de polvo de granito se realizaron para los porcentajes de 5, 10 y 15 % de adición de polvo en función al peso total de cemento. Para realizar estas pruebas no se utilizó aditivo plastificante. El curado realizado fue según 3.1.4.4.4.
Gráfico N.º 17. Resistencia a la compresión a los 28 días del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31

Resistencia a la compresión

$F'C = 350$

Gráfico N.º 18. Resistencia a la compresión a los 28 días del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31

Resistencia a la compresión

$F'C = 420$
Se observa en los gráficos presentados un incremento representativo en todas las muestras con adición, y la que sobresale es el 10 % de adición de polvo de granito. Durante el desarrollo de la investigación se propuso realizar un análisis comparativo entre las resistencias a la compresión que se obtienen de las muestras curadas en...
condiciones reales de obra y aquellas curadas en laboratorio, para esto se estableció humedecer las muestras por el método de aspersión con el curador Sika Antisol inmediatamente después de su desencofrado y culminando con su protección haciendo uso de coberturas plásticas.

Se elaboraron concretos sin adición del polvo de granito y adicionados con 5, 10 y 15 % de polvo en función del peso total de cemento, a continuación se muestran los resultados. Estos se discuten con más detalles en la sección V, donde se interpretan en conjunto todos los datos obtenidos mediante los ensayos realizados.

Gráfico N.º 21: Resistencia a la compresión por edades del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31

![Gráfico de resistencia a la compresión](image)
Gráfico N.° 22. Resistencia a la compresión por edades del concreto 350 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra"

Gráfico N.° 23. Resistencia a la compresión por edades del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31
Gráfico N.° 24. Resistencia a la compresión por edades del concreto 420 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado “en obra”

Gráfico N.° 25. Resistencia a la compresión por edades del concreto 500 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31
Gráfico N.º 26. Resistencia a la compresión por edades del concreto 500 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado denominado "en obra"

Resistencia a la compresión
\[f_c = 500, \text{ simulación de obra}\]

Gráfico N.º 27. Resistencia a la compresión por edades del concreto 550 kg/cm² patrón y con diversos porcentajes de polvo granito, con curado según ASTM C31

Resistencia a la compresión
\[f_c = 550, \text{ curado en laboratorio}\]
4.8 Pruebas de durabilidad del concreto

Para las pruebas que determinan si este nuevo concreto posee durabilidad a lo largo de su vida útil se realizaron dos ensayos que determinen estas características con el porcentaje óptimo de polvo de granito, el 10% de adición de polvo en función al peso total de cemento.

4.8.1 Resistencia al desgaste del concreto

Se realizó este ensayo según lo descrito en 3.1.4.5.3.1 para esta prueba fue necesario equipar al taladro de desgaste con una broca de arandelas dentadas, fabricada por cuenta propia, según norma ASTM C944.
Gráfico N.º 29. Resistencia al desgaste del concreto 350 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento.

Gráfico N.º 30. Resistencia al desgaste del concreto 420 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento

Gráfico N.º 31. Resistencia al desgaste del concreto 500 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento.
Gráfico N° 32. Resistencia al desgaste del concreto 550 kg/cm² patrón y con el 10 % de polvo en función al peso total del cemento

Resistencia al desgaste del concreto

\(f_c = 550 \)

Tabla N°. 24. Prueba de resistencia al desgaste de los concretos 350, 420, 500 y 550, elaborados con cemento Portland Tipo I

<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>Masa inicial</th>
<th>1er ciclo</th>
<th>2do ciclo</th>
<th>3er ciclo</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_c = 350)</td>
<td>0</td>
<td>2715.5</td>
<td>2707.8</td>
<td>2700.5</td>
<td>2695.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2758.1</td>
<td>2732.2</td>
<td>2727.2</td>
<td>2721.3</td>
</tr>
<tr>
<td>(f_c = 420)</td>
<td>0</td>
<td>2200.4</td>
<td>2196.4</td>
<td>2192.2</td>
<td>2188.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2270.6</td>
<td>2266.8</td>
<td>2262.3</td>
<td>2259.9</td>
</tr>
<tr>
<td>(f_c = 500)</td>
<td>0</td>
<td>1969.6</td>
<td>1968.2</td>
<td>1965.5</td>
<td>1961.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2090.4</td>
<td>2087.3</td>
<td>2085.3</td>
<td>2081.4</td>
</tr>
<tr>
<td>(f_c = 550)</td>
<td>0</td>
<td>1840.5</td>
<td>1838.0</td>
<td>1836.0</td>
<td>1833.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1983.8</td>
<td>1981.2</td>
<td>1979.4</td>
<td>1975.9</td>
</tr>
</tbody>
</table>

4.8.2 Reactividad potencial álcali sílice

Se realizó este ensayo, según lo descrito en 3.1.4.5.3.2.
Gráfico N.° 33. Reactividad potencial álcali-sílice en los agregados, método de la barra de mortero patrón y con el 10 % de polvo en función al peso total del cemento

<table>
<thead>
<tr>
<th>Expansión (%)</th>
<th>Ensayo 01</th>
<th>Ensayo 02</th>
<th>Ensayo 03</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.017</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>10</td>
<td>0.052</td>
<td>0.034</td>
<td>0.041</td>
</tr>
</tbody>
</table>

Tabla N°. 25. Ensayos de reactividad potencial álcali-sílice en los agregados elaborados con cemento Portland Tipo I

4.9 **Análisis de costo unitario del concreto**

El análisis de costo unitario se realizó basándonos en la experiencia obtenida de la extracción del polvo de granito de las partículas residuales del chancado de piedra de forma manual con el uso de la malla N.° 200. Durante dicha extracción se pudo calcular un rendimiento promedio de extracción de 5 kg/día, esto se pudo lograr con una cuadrilla conformada por una persona. La unidad de medida fue por m³ de concreto teniendo en cuenta el costo de insumos sin IGV.
Tabla N°. 26. Análisis de costos unitarios para extracción de polvo de granito por vía húmeda

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Extracción de polvo de granito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones</td>
<td>Extracción de polvo con tamizado manual de malla N° 200</td>
</tr>
<tr>
<td>Cuadrilla</td>
<td>30.00 personal</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>579.00 kg/día Unidad: kg N° horas: 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cuadrilla</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m³</td>
<td>0.225</td>
<td>5</td>
<td></td>
<td>1.125</td>
<td>1.72</td>
</tr>
<tr>
<td>Materia prima (arena blanca)</td>
<td>m³</td>
<td>0.01</td>
<td>57.63</td>
<td></td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal (30)</td>
<td>hh</td>
<td>30.00</td>
<td>0.41</td>
<td>15.33</td>
<td>6.35</td>
<td>6.35</td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
</tr>
<tr>
<td>Horno centrífugo T=1100°C (Cap=1Ton)</td>
<td>hm</td>
<td>0.01</td>
<td>12.5</td>
<td></td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Herramientas (10% M.O)</td>
<td>%MO</td>
<td>10.00</td>
<td>6.35</td>
<td></td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 8.88

Tabla N°. 27. Costo de metro cúbico de concreto f’c= 350 kg/cm² sin adición

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Concreto f’c= 350 kg/cm2 (Mezcla Patrón) Preparación con mezcladora tipo trompo de 9p3, incluye gasolina y aceite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones</td>
<td></td>
</tr>
<tr>
<td>Cuadrilla</td>
<td>1 op + 1 of + 8 peones Unidad: m³</td>
</tr>
<tr>
<td>Rendimiento</td>
<td>25.00 m³/día N° horas: 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>12.9</td>
<td>20.25</td>
<td>260.47</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m³</td>
<td>0.376</td>
<td>29.66</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2"</td>
<td>m³</td>
<td>0.626</td>
<td>101.69</td>
<td>63.68</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m³</td>
<td>0.216</td>
<td>5.00</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.52</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.52</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (5% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.52</td>
<td>12.00</td>
<td>5.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 391.44
Tabla N°. 28. Costo de metro cúbico de concreto f'c=350 kg/cm² con un porcentaje de 10 % de polvo de granito

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>12.9</td>
<td>20.25</td>
<td>260.47</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m3</td>
<td>0.376</td>
<td>29.66</td>
<td>11.15</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2"</td>
<td>m3</td>
<td>0.626</td>
<td>101.69</td>
<td>63.68</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>0.216</td>
<td>5.00</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>Adición (10%)</td>
<td>kg</td>
<td>54.64</td>
<td>8.88</td>
<td>485.46</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 876.89

Tabla N°. 29. Costo de metro cúbico de concreto f'c=420 kg/cm² sin adición

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>14.3</td>
<td>20.25</td>
<td>288.89</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m3</td>
<td>0.354</td>
<td>29.66</td>
<td>10.49</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2"</td>
<td>m3</td>
<td>0.649</td>
<td>101.69</td>
<td>65.98</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>0.222</td>
<td>5.00</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 421.53
Tabla N°. 30. Costo de metro cúbico de concreto f’c=420 kg/cm² con un porcentaje de 10 % de polvo de granito

ANÁLISIS DE COSTO UNITARIO

<table>
<thead>
<tr>
<th>Actividad:</th>
<th>Concreto f’c= 420 kg/cm² con 10% de polvo de granito Preparación con mezcladora tipo trompo de 9p3, incluye gasolina y aceite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones:</td>
<td></td>
</tr>
<tr>
<td>Cuadrilla:</td>
<td>1 op + 1 of + 8 peones</td>
</tr>
<tr>
<td>Rendimiento:</td>
<td>25.00 m³/día</td>
</tr>
<tr>
<td>N° horas:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>14.3</td>
<td>20.25</td>
<td>288.89</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m³</td>
<td>0.354</td>
<td>29.66</td>
<td>10.49</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2”</td>
<td>m³</td>
<td>0.649</td>
<td>101.69</td>
<td>65.98</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m³</td>
<td>0.292</td>
<td>5.00</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Adicion (10%)</td>
<td>kg</td>
<td>60.62</td>
<td>8.88</td>
<td>538.59</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.73</td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.33</td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 960.12

Tabla N°. 31. Costo de metro cúbico de concreto f’c=500 kg/cm² sin adición

ANÁLISIS DE COSTO UNITARIO

<table>
<thead>
<tr>
<th>Actividad:</th>
<th>Concreto f’c= 500 kg/cm² (Mezcla Patrón) Preparación con mezcladora tipo trompo de 9p3, incluye gasolina y aceite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones:</td>
<td></td>
</tr>
<tr>
<td>Cuadrilla:</td>
<td>1 op + 1 of + 8 peones</td>
</tr>
<tr>
<td>Rendimiento:</td>
<td>25.00 m³/día</td>
</tr>
<tr>
<td>N° horas:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>16.6</td>
<td>20.25</td>
<td>335.79</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m³</td>
<td>0.338</td>
<td>29.66</td>
<td>10.02</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2”</td>
<td>m³</td>
<td>0.606</td>
<td>101.69</td>
<td>61.59</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m³</td>
<td>0.227</td>
<td>5.00</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.73</td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.33</td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) 463.59
Tabla N°. 32. Costo de metro cúbico de concreto $f'_c=500 \text{ kg/cm}^2$ con un porcentaje de 10 % de polvo de granito

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>U. P</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>16.6</td>
<td>20.25</td>
<td>335.79</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m3</td>
<td>0.338</td>
<td>29.66</td>
<td>10.02</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2"</td>
<td>m3</td>
<td>0.606</td>
<td>101.69</td>
<td>61.59</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>0.927</td>
<td>5.00</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Adicion (10%)</td>
<td>kg</td>
<td>70.46</td>
<td>8.88</td>
<td>626.02</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) | 1054.55 |

Tabla N°. 33. Costo de metro cúbico de concreto $f'_c=550 \text{ kg/cm}^2$ sin adición

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>U. P</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>17.2</td>
<td>20.25</td>
<td>348.56</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m3</td>
<td>0.342</td>
<td>29.66</td>
<td>10.16</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2"</td>
<td>m3</td>
<td>0.598</td>
<td>101.69</td>
<td>60.85</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>0.213</td>
<td>5.00</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peón (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) | 475.70 |
Tabla N°. 34. Costo de metro cúbico de concreto f’c=550 kg/cm² con un porcentaje de 10 % de polvo de granito

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
<th>P. U</th>
<th>Parcial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemento Portland Tipo I</td>
<td>bls</td>
<td>17.2</td>
<td>20.25</td>
<td>348.56</td>
<td></td>
</tr>
<tr>
<td>Arena gruesa</td>
<td>m3</td>
<td>0.342</td>
<td>29.66</td>
<td>10.16</td>
<td></td>
</tr>
<tr>
<td>Piedra chancada 1/2”</td>
<td>m3</td>
<td>0.598</td>
<td>101.69</td>
<td>60.85</td>
<td></td>
</tr>
<tr>
<td>Agua</td>
<td>m3</td>
<td>0.213</td>
<td>5.00</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Adicion (10%)</td>
<td>kg</td>
<td>73.14</td>
<td>8.88</td>
<td>649.83</td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operario (1)</td>
<td>hh</td>
<td>0.32</td>
<td>20.10</td>
<td>6.43</td>
<td></td>
</tr>
<tr>
<td>Oficial (1)</td>
<td>hh</td>
<td>0.32</td>
<td>16.51</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>Peon (8)</td>
<td>hh</td>
<td>2.56</td>
<td>14.85</td>
<td>38.02</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (3% M.O)</td>
<td>%MO</td>
<td>3</td>
<td>1.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mezcladora tipo trompo 9p3</td>
<td>hm</td>
<td>0.32</td>
<td>12.00</td>
<td>3.84</td>
<td></td>
</tr>
</tbody>
</table>

Costo unitario total (s/.) | 1125.53
V. DISCUSIÓN

5.1 Pruebas preliminares

Con el fin de elaborar una buena mezcla de concreto de alta resistencia, se determinó las propiedades de los agregados para escoger aquellos que presentaron una mejor calidad, para esto se realizó un estudio a las principales canteras comercializadoras como la cantera Talambo del distrito de Chepén, la cantera Tres Tomas de Ferreñafe, y la cantera La Victoria del distrito de Pátapo.

Tabla N°. 35. Comparación de ensayos de agregados finos

<table>
<thead>
<tr>
<th>Ensayos normalizados</th>
<th>CANTERAS</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TALAMBO</td>
<td>TRES TOMAS</td>
</tr>
<tr>
<td>Módulo de Finaza</td>
<td>2.199</td>
<td>2.875</td>
</tr>
<tr>
<td>Peso Específico</td>
<td>2.682</td>
<td>2.588</td>
</tr>
<tr>
<td>Absorción</td>
<td>1.8</td>
<td>2.19</td>
</tr>
<tr>
<td>Porosidad</td>
<td>4.83</td>
<td>6.63</td>
</tr>
<tr>
<td>Sales totales</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Humedad natural</td>
<td>0.68</td>
<td>1.10</td>
</tr>
<tr>
<td>Peso unit. Compactado</td>
<td>1907</td>
<td>1705</td>
</tr>
<tr>
<td>Peso unit. Suelto</td>
<td>1684</td>
<td>1577</td>
</tr>
<tr>
<td>Material pasante malla n° 200</td>
<td>9.9</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Tabla N°. 36. Comparación de ensayos de agregados gruesos

<table>
<thead>
<tr>
<th>Ensayos normalizados</th>
<th>CANTERAS</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TALAMBO</td>
<td>TRES TOMAS</td>
</tr>
<tr>
<td>Módulo de Finaza</td>
<td>6.02</td>
<td>7.71</td>
</tr>
<tr>
<td>Peso Específico</td>
<td>2.692</td>
<td>2.71</td>
</tr>
<tr>
<td>Absorción</td>
<td>1.22</td>
<td>1.05</td>
</tr>
<tr>
<td>Porosidad</td>
<td>3.3</td>
<td>2.84</td>
</tr>
<tr>
<td>Sales totales</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Humedad natural</td>
<td>0.13</td>
<td>0.19</td>
</tr>
<tr>
<td>Peso unit. Compactado</td>
<td>1929</td>
<td>1521</td>
</tr>
<tr>
<td>Peso unit. Suelto</td>
<td>1482</td>
<td>1400</td>
</tr>
<tr>
<td>Material pasante malla n° 200</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Abrasión Los Ángeles</td>
<td>17.8</td>
<td>18.8</td>
</tr>
</tbody>
</table>

Finalmente los agregados seleccionados fueron: para agregados finos, la arena gruesa de la Victoria presentó una mejor calidad en el modulo de finura, la cantidad de finos que no pasaba el límite permisible del 5 %; y en el caso del agregado grueso, la granulometría de la cantera Talambo resultó más óptima en concordancia a los husos granulométricos, y su módulo de fineza dentro del rango permitido con un menor
desgaste a la abrasión, por lo tanto estos dos agregados fueron los escogidos por la calidad que muestran.

Una vez elegidos y estudiados los materiales, se realizó la producción del concreto patrón con la finalidad de analizar sus propiedades. Se hicieron ajustes de agua y grava hasta obtener la homogeneidad y el asentamiento deseado. Se procedió a realizar los ensayos respectivos para obtener las propiedades del concreto fresco, para la mezcla patrón y la adicionada. El cemento para la elaboración de la mezcla fue el cemento Pacasmayo Tipo I.

Una vez obtenidas las propiedades del concreto fresco, se pudo apreciar que arrojaron valores similares, lo que significa que esta adición no genera un cambio radical en las propiedades del concreto fresco. Posteriormente, se elaboraron los testigos de concreto para las resistencias 350, 420, 500 y 550 kg/cm², no sin antes determinar el tamaño de la adición mineral, el cual se obtuvo al tamizar con la malla N.° 200, este se escogió lo más cercano a las microsílices por el parecido en su consistencia y composición química, y su tamaño en micras, con la finalidad de obtener el ensayo de resistencia a la compresión. Se prepararon probetas de concreto, las que se denominó “concreto patrón” mediante una mezcla de cemento, arena, piedra y agua. Por último, se fabricaron probetas de concreto para distintos porcentajes de adición de polvo de granito, las cuales fueron sometidas al proceso de curado para 7, 14, 28, 56 y 90 días, y se ensayaron a las fechas indicadas en los cuadros.

5.2 Porcentaje de polvo de granito

Una vez ensayadas las muestras cilíndicas de concreto, se procedió a determinar el porcentaje óptimo de polvo de granito, para esto se adicionaron a la mezcla el polvo de granito en los porcentajes de 5 %, 10 % y 15 % en función al peso del cemento, en concretos con resistencia de 350, 420, 500 y 550 kg/cm² y con asentamientos especificados de 3” a 4” para estos diseños.

Se observó que las muestras que contenían en su interior un 10 % de la adición mineral elevaban mucho más su resistencia a la compresión en comparación a todas las
demás muestras, es así que se definió como el porcentaje óptimo de adición de polvo de granito el 10 % del peso total de cemento.

Los porcentajes de adición de polvo de granito fueron seleccionados a partir de investigaciones anteriores, que corresponde a la dosificación de microsilices en porcentajes de 5 %, 10 % y 15 % de materiales cementantes en peso, sin embargo el RNE en la norma E060 (concreto armado), especifica como el porcentaje máximo que se debe usar el 10% para los microsilices. Con fines de investigación se tomaron los 3 porcentajes y se evaluó su comportamiento.

5.3 Propiedades del concreto con polvo de granito

El incremento del peso unitario del concreto, es directamente proporcional a la adición de polvo de granito, en comparación al concreto patrón al incorporar el 10 % de la adición en cada diseño de concreto el peso unitario incrementa ligeramente llegando a un valor promedio del 1 % (0.85 %) de incremento en peso. El peso unitario del concreto varía, dependiendo de la cantidad y de la densidad relativa del agregado, de la cantidad del aire atrapado o intencionalmente incluido, y de los contenidos de agua y de cemento, mismos que a su vez se ven influenciados por el tamaño máximo del agregado.

Los resultados del ensayo de contenido de aire responden al incremento del peso unitario del concreto, al adicionar polvo de granito a la mezcla de concreto estas disminuyen ligeramente el porcentaje de vacíos. No obstante, el peso unitario del concreto adicionado con polvo de granito se mantiene dentro de los rangos de un concreto de alta resistencia, lo mismo ocurre con el contenido de aire, muestra leve disminución; sin embargo se mantiene dentro de los rangos recomendados por el método de diseño.

La adición del polvo de granito representa la disminución de la trabajabilidad a medida que se va incorporando el porcentaje de adición. Por este motivo se evaluó su comportamiento y se escogió el porcentaje de adición que mejoraba sus propiedades y a la vez continuaba con la trabajabilidad necesaria para moldearse.
La exudación excesiva es perjudicial para la durabilidad del concreto por el ascenso exagerado del agua que incrementa la relación agua cemento en la superficie, reduciendo la resistencia en cara superior de los elementos. El ensayo de exudación realizado al concreto muestra una reducción de la exudación en los concretos adicionados con polvo de granito en referencia a un concreto patrón. La exudación que se presenta es mínima por tratarse de concretos de alta resistencia donde el fraguado de la mezcla es mucho más rápido y no deja salir una cantidad de agua significativa a la superficie del concreto.

Los resultados de los ensayos de resistencia a la compresión varían para cada resistencia de concreto. Para el concreto 350 kg/cm² se incrementa en 18.1 % su resistencia respecto al concreto patrón; para el concreto 420 kg/cm² se incrementa en 18.7% su resistencia respecto al concreto patrón; para el 500kg/cm², se incrementa en 17.7% su resistencia; respecto al concreto patrón y para el concreto 550kg/cm² se incrementa en 17.5% su resistencia respecto al concreto patrón.

Los materiales, equipo o herramientas y mano de obra para elaborar las mezclas de concreto se detallan en los análisis de costos.

5.4 **Influencia del curado en la resistencia del concreto**

Los resultados obtenidos en las gráficos 21, 23, 24, 25, 26, 27 y 28 ponen en manifiesto la importancia del curado del concreto para la resistencia a la compresión, es considerable el incremento obtenido en la resistencia entre un concreto curado en condiciones reales y otro curado según ASTM C31.

Al realizar la comparación entre los concretos curados en condiciones reales y concretos curados en laboratorio se pudo apreciar, que todos los concretos curados en laboratorio sobrepasan las resistencias de los concretos curados en condiciones reales. Para el concreto 350 kg/cm² con adición, el curado en laboratorio sobrepasó al curado en condiciones reales en 9.4 % de la resistencia; en el concreto 420 kg/cm² con adición, sobrepasó al curado en condiciones reales en 11.0 % de la resistencia; en el concreto 500 kg/cm² con adición, sobrepasó al curado en condiciones reales en 9.2
5.5 Pruebas de durabilidad del concreto

Como se conoce, el porcentaje óptimo de adición se obtuvo en los ensayos de durabilidad entre el concreto patrón y el concreto adicionado, y en los ensayos de durabilidad por desgaste y por reactividad potencial álcali sílice.

El método propuesto por la ASTM C944 permite determinar el ensayo de resistencia al desgaste del concreto. Se determinó que el concreto adicionado tiende a mejorar su resistencia al desgaste que el concreto patrón para f'_c de 350 kg/cm2 y 420 kg/cm2, para estos concretos adicionados con 10 % de polvo de granito en función al peso total del cemento se mejora ligeramente la resistencia al desgaste del concreto, sin embargo, al momento de elevar el f'_c, hasta resistencias como 500 kg/cm2 y 550 kg/cm2, ya no resulta favorable el uso de esta adición mineral para obtener mayor resistencia al desgaste del concreto, por el contrario sufre una pérdida de resistencia a la abrasión, por lo tanto este material no resulta técnicamente apto para el uso de concretos con resistencias superiores a 420 kg/cm2.

El método propuesto por la ASTM C1567 determina la reactividad potencial álcali sílice de los agregados por método de la barra de mortero, se determinó que el concreto adicionado no provoca expansiones perjudiciales a largo plazo, es decir, no existe la probabilidad de sufrir la reacción álcali sílice.

5.6 Costo unitario del concreto con polvo de granito

Para el cálculo del costo unitario del concreto elaborado con polvo de granito es necesario primero calcular el costo de extracción de polvo de granito, mediante el tamizado por vía húmeda con la malla N.° 200. Durante el desarrollo de esta investigación se compró 1 m3 de arena blanca (partículas residuales del chancado de piedra con esencia de polvo de granito) a s/18.00, y el costo del flete para un m3 de material resultó s/50.00, ambos precios con IGV. La cantidad de adición extraída
resultó 96.5 kg para 1 m³ de arena blanca. Como se mencionó líneas atrás, el precio total de la arena blanca fue s/57.63 sin IGV, esto nos permite calcular el costo de la materia prima puesta en obra por m³, y la cantidad en unidad de volumen resultó 0.01 m³ de polvo de granito por kg, de esta manera el costo tuvo un valor de s/.0.60. También el costo del agua por m³ se propuso de s/.5.00 el precio por m³ y como se utilizó un aproximado de 225 lt de agua para lavar la muestra y obtener 1 kg, se obtuvo finalmente el costo del agua a s/.1.125 por kg de adición.

Al momento de extraer el polvo de granito por vía húmeda, se obtiene un rendimiento de 579 kg al día, considerando una cuadrilla de treinta personas. En lo que respecta a costos, este rendimiento es abastecedor en comparación al acarreo de material excedente en una obra (6 m³) según indica CAPECO. El costo de la mano de obra por kilogramo de materia prima es de s/6.35 sin IGV, y considerando un porcentaje de herramientas del 10 % de la M.O. (incluye malla Nº 200 y equipos de protección especial: respiratorio, dérmico y ocular), se obtiene el costo unitario total de s/8.88 por kilogramo de adición obtenida tal como indica la tabla 26. Este resultado es más elevado que la adición mineral microsilice por ser s/.5.04 el costo por kg.

Se plantea a manera de recomendación, utilizar un mecanismo que permita extraer el polvo de granito de la arena blanca con un mayor rendimiento para que el uso de dicho polvo se convierta en una alternativa económica, además de ser técnicamente efectiva para elevar la resistencia. Al emplear el método de extracción por vía húmeda como se realizó en el desarrollo de la presente investigación se define como no rentable el uso del polvo de granito.
VI. CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

Obtención de polvo de granito

Se obtuvo un diámetro promedio del polvo de granito según el análisis granulométrico por sedimentación de 6.1 µm.

En esta investigación la extracción de polvo de granito se realizó con el tamiz N° 200 por vía húmeda con un mínimo de una persona. Se plantea que la extracción de polvo de granito proveniente de residuo de la molienda sea procesada antes del ensayo mediante un proceso de pretamizado con malla N° 10, lo que permitirá reducir los costos y aumentar la productividad, lo cual permitirá tener un material mejorado para el proceso de obtención del polvo de granito.

El rendimiento mínimo será de 579 kg/día procesado por 30 personas, siendo que el producto sea experimentalmente viable.

Tabla N°. 37. Análisis de costo unitario para extracción de polvo de granito por vía húmeda

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>ESPECIFICACIONES</th>
<th>CUADRILLA</th>
<th>RENDIMIENTO</th>
<th>COSTO TOTAL (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracción de polvo de granito</td>
<td>Extracción de polvo con tamizado manual de malla N° 200</td>
<td>30.00 personal</td>
<td>579.00 kg/día</td>
<td>1.79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIALS</th>
<th>UNIDAD</th>
<th>CUADRILLA</th>
<th>CANTIDAD</th>
<th>P. U</th>
<th>PARCIAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>m³</td>
<td>0.225</td>
<td>5</td>
<td>1.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia prima (arena blanca)</td>
<td>m³</td>
<td>0.01</td>
<td>57.63</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANO DE OBRA</td>
<td></td>
<td></td>
<td></td>
<td>6.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal (30)</td>
<td>hh</td>
<td>30.00</td>
<td>0.41</td>
<td>15.33</td>
<td>6.35</td>
<td></td>
</tr>
<tr>
<td>EQUIPOS Y/O HERRAMIENTAS</td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horno centrífugo T=1100°C (Cap=1Ton)</td>
<td>hm</td>
<td>0.01</td>
<td>12.5</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herramientas (10% M.O) *</td>
<td>%MO</td>
<td>10.00</td>
<td>6.35</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo unitario total (S/.)</td>
<td></td>
<td></td>
<td></td>
<td>8.88</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Se considera el 10% de Mano de obra en las herramientas por los equipos de protección personal especiales para los trabajadores como son protectores: respiratorio, dérmico y ocular.

Para fines de esta investigación se extrajeron un total de 103.5 kg de polvo de granito.
Dosificación de polvo de granito

El porcentaje óptimo para el uso de polvo de granito se halló en función al peso del cemento, siendo este el 10 %. Porcentajes mayores reducen significativamente la resistencia del concreto.

El porcentaje óptimo de polvo de granito encontrado favorece la resistencia a la compresión del concreto.

Propiedades del concreto con polvo de granito

La adición de polvo de granito disminuye ligeramente la cantidad de aire atrapado en la mezcla respecto al contenido de aire atrapado de un concreto patrón, así se permanece dentro del rango establecido en el diseño de mezcla.

El concreto adicionado con polvo de granito reduce muy ligeramente la exudación por tratarse de concretos de alta resistencia donde el fraguado es más rápido.

El peso unitario del concreto se incrementa al incorporar el porcentaje de polvo de granito, teniendo en cuenta que el incremento del peso unitario del concreto con polvo de granito radica en la reducción de vacíos por adición de polvo de granito. Es importante considerar que un concreto con alto porcentaje de vacíos es poco resistente a la abrasión y de muy poca durabilidad en ambientes agresivos, no obstante los pesos unitarios de los concretos con adición de 10 % fueron 2362, 2336, 2424 y 2424 kg/m³ para los concretos de 350, 420, 500 y 550kg/cm² respectivamente, valores dentro de los rangos recomendados para un concreto de alta resistencia.

El concreto adicionado con polvo de granito reduce la trabajabilidad del concreto a un promedio de 0.4 pulgadas de asentamiento, no obstante sigue teniendo la trabajabilidad necesaria para moldearse.

La inclusión de polvo de granito adicionado en 10 % del peso del cemento incrementó la resistencia del concreto para cada f’c en más del 15 % de la resistencia de diseño.
La adición de polvo de granito mejoró ligeramente la resistencia al desgaste del concreto patrón, y para concretos superiores a 420 kg/cm² disminuyó su durabilidad por desgaste.

La adición del 10% de polvo de granito a 6.1 um no provoca expansiones perjudiciales a largo plazo, es decir no existe la probabilidad de sufrir la reacción álcali-silice.

Límites de la investigación del polvo de granito

La presente investigación se limita al polvo de granito proveniente de la Cantera Talambo ubicado en el distrito de Chepén, la cual abastece el mercado de la construcción que tiene un potencial actual de uso.

La presente investigación esta limitada al polvo de granito de Talambo obtenido durante el año 2017.

La presente investigación solo se limita a valores de resistencia a la compresión de concretos simples de hasta 420 kg/cm².

La cantera de Talambo presenta una producción de 40 m³ diarios de residuos de piedra de granito proveniente de la molienda de la planta chancadora, del cual el 9% aproximadamente es polvo de granito lo que limita su potencial de uso.

El proceso de obtención del polvo de granito en la presente investigación tuvo costo de s/8.88 por kg siendo un precio no rentable en comparación al costo de la adición microsílices, elevando el costo de m³ de concreto a más del doble del precio del concreto patrón, por lo que lo hace inviable para producir concretos en grandes volúmenes.

La elaboración de los concretos simples de esta investigación fueron diseñados sin utilizar aditivo plastificante, por ello su elevado costo al estar directamente relacionado el porcentaje de la adición con el peso del cemento.
RECOMENDACIONES

Para realizar la extracción, el almacenamiento y manipulación de polvo de granito se deben seguir las instrucciones indicadas en la ficha técnica de la adición, esto ayudará a proteger la salud de las personas en contacto con el polvo de granito, facilitar su uso y mantener sus propiedades.

Se recomienda dosificar el polvo de granito en función del peso del cemento, ya que de esta manera se podrá optimizar el uso de esta adición evitando desperdicios.

Se puede considerar el polvo de granito como un componente más del concreto con fines de mejorar sus propiedades mecánicas, no obstante para resistencias mayores a 420 kg/cm² no es recomendable el uso de esta adición, porque disminuye la durabilidad por desgaste.

Se puede adicionar el polvo de granito a estructuras especiales que requieran mejorar la durabilidad de sus elementos con resistencias no superiores a 420 kg/cm².

Cuando se pretenda utilizar grandes cantidades de polvo de granito para la elaboración de concreto, es necesario realizar un análisis de costo unitario para la extracción de polvo de granito, según los requerimientos del proyecto, ya que el costo variará en función de la técnica para extraer dicho polvo.
VII. REFERENCIAS BIBLIOGRÁFICAS

ANEXOS
Anexo N.° 1 ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO

UBICACIÓN

En sayo: Análisis granulométrico por tamizado del agregado fino

Referencia: Norma ASTM C-136 ó N.T.P. 400.012

Cantera: CANtera LA VICTORIA, PÁTAPO.
Muestra: Arena Gruesa

<table>
<thead>
<tr>
<th>Malla</th>
<th>Peso Hum.</th>
<th>P. Inicial S.</th>
<th>% De Humedad</th>
<th>(%)</th>
<th>(%) Acum. Que Pasa</th>
<th>(%) Acum. Que Pasa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mm)</td>
<td>Ret.</td>
<td>Ret.</td>
<td>(%)</td>
<td>(%) Acum. Que Pasa</td>
<td>(%) Acum. Que Pasa</td>
</tr>
<tr>
<td>1/2"</td>
<td>12.700</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3/8"</td>
<td>9.500</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>N°04</td>
<td>4.750</td>
<td>1.8</td>
<td>1.8</td>
<td>98.2</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>N°08</td>
<td>2.360</td>
<td>10.9</td>
<td>12.7</td>
<td>87.3</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>N°16</td>
<td>1.180</td>
<td>20.6</td>
<td>33.3</td>
<td>66.7</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>N°30</td>
<td>0.600</td>
<td>31.1</td>
<td>64.3</td>
<td>35.7</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>N°50</td>
<td>0.300</td>
<td>21.2</td>
<td>85.5</td>
<td>14.5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>N°100</td>
<td>0.150</td>
<td>9.7</td>
<td>95.2</td>
<td>4.8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Fondo</td>
<td>4.6</td>
<td>99.9</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Módulo de Fineza: 2.929

CURVA GRANULOMÉTRICA

OBSERVACIONES:
- El presente documento no deberá ser reproducido sin la autorización escrita del laboratorio, salvo que su reproducción sea en su totalidad (GUÍA PERUANA INDECOPI G004 : 1995)
Anexo N.º 2 ANÁLISIS GRANULOMÉTRICO DEL AGREGADO GRUESO

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chépén
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
Ensayo: Análisis granulométrico por tamizado del agregado grueso
Referencia: Norma ASTM C-136 ó N. T. P. 400.012
Cantera: Cantera Talambo, Chépén
Muestra: Piedra Chancada 1/2"

<table>
<thead>
<tr>
<th>Malla</th>
<th>Abertura (mm)</th>
<th>Peso Hum.</th>
<th>Peso Seco</th>
<th>% = 0.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>2"</td>
<td>50.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1 1/2"</td>
<td>38.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1"</td>
<td>25.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>19.00</td>
<td>300.0</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>1/2"</td>
<td>12.70</td>
<td>2186.0</td>
<td>39.0</td>
<td>44.4</td>
</tr>
<tr>
<td>3/8"</td>
<td>9.52</td>
<td>1156.0</td>
<td>20.3</td>
<td>64.6</td>
</tr>
<tr>
<td>Nº 04</td>
<td>4.75</td>
<td>1594.0</td>
<td>24.9</td>
<td>89.5</td>
</tr>
<tr>
<td>Nº 08</td>
<td>2.56</td>
<td>340.0</td>
<td>6.1</td>
<td>95.6</td>
</tr>
<tr>
<td>Nº 16</td>
<td>1.19</td>
<td>106.0</td>
<td>1.9</td>
<td>97.5</td>
</tr>
<tr>
<td>Fondo</td>
<td>136.0</td>
<td>2.4</td>
<td>99.9</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Tamano Máximo: 1"
Tamano Máximo Nominal: 3/4"

CURVA GRANULOMETRICA

OBSERVACIONES:
- El presente documento no deberá ser reproducido sin la autorización escrita del laboratorio, salvo que su reproducción sea en su totalidad (GUÍA PERUANA INDECOPI G004 : 1993)
Anexo N.° 3 PESO UNITARIO DEL AGREGADO FINO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San Josemaría Escrivá N°855. Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA Chávarry Boy Guido
TESIS Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén
UBICACIÓN Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

ENSAYO: AGREGADO. Método de ensayo para determinar el peso unitario del agregado

REFERENCIA: Norma ASTM C-29 ó N.T.P. 400.017

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Cantera</th>
<th>Peso unitario suelto húmedo Kg/m³</th>
<th>Peso unitario compactado húmedo Kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td>La Victoria, Pátapo.</td>
<td>1426</td>
<td>1648</td>
</tr>
<tr>
<td>M 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES:
- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI: GP 004:1993)
Anexo N.° 4 PESO UNITARIO DEL AGREGADO GRUESO

ENSAYO: AGREGADO. Método de ensayo para determinar el peso unitario del agregado

REFERENCIA: Norma ASTM C-29 ó N.T.P. 400.017

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Piedra Chancada de 1/2”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Talambo, Chepén</td>
</tr>
</tbody>
</table>

- Peso unitario suelto húmedo Kg/m³ 1422
- Peso unitario compactado húmedo Kg/m³ 1531

OBSERVACIONES:
- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI: GP 004:1993)
Anexo N° 5 PESO ESPECÍFICO, ABSORCIÓN DEL AGREGADO FINO Y GRUESO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San Josémaría Escrivá N°855. Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén.
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

ENSAYO: AGREGADOS. Método de ensayo normalizado para peso específico y absorción del agregado fino.
REFERENCIA: NTP 400.022

<table>
<thead>
<tr>
<th>Cantera</th>
<th>La Victoria, Pátapo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Arena Gruesa M-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A. - PESO ESPECIFICO DE LA ARENA.</th>
<th>g/cm³</th>
<th>2.509</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. - PESO ESPECIFICO DE LA MASA S.S.S.</td>
<td>g/cm³</td>
<td>2.563</td>
</tr>
<tr>
<td>C. - PESO ESPECIFICO APARENTE</td>
<td>g/cm³</td>
<td>2.651</td>
</tr>
<tr>
<td>D. - PORCENTAJE DE ABSORCIÓN</td>
<td>%</td>
<td>2.14</td>
</tr>
</tbody>
</table>

OBSERVACIONES:
1) Muestreo e identificación realizado por el LEM
- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI: GP 004:1993)
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén.
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

ENSAYO: AGREGADOS. Método de ensayo normalizado para peso específico y absorción del agregado grueso.

REFERENCIA: NTP 400.022

<table>
<thead>
<tr>
<th>Cantera</th>
<th>Talambo, Chepén</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Piedra Chancada 1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>g/cm³</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.- PESO ESPECIFICO DE LA PIEDRA</td>
<td>2.692</td>
<td></td>
</tr>
<tr>
<td>B.- PESO ESPECIFICO DE LA MASA S.S.S.</td>
<td>2.725</td>
<td></td>
</tr>
<tr>
<td>C.- PESO ESPECIFICO APARENTE</td>
<td>2.784</td>
<td></td>
</tr>
<tr>
<td>D.- PORCENTAJE DE ABSORCIÓN.</td>
<td>1.22</td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES:

- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI : GP 004:1993)
Anexo N.° 6 CONTENIDO DE HUMEDAD DEL AGREGADO FINO Y GRUESO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San Josemaría Escrivá N°855, Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén.
UBICACION: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO: AGREGADOS. Método de ensayo normalizado para determinar el contenido de humedad total por secado de los agregados
REFERENCIA: Norma ASTM C-535 o N.T.P. 339.185

Muestra: Arena gruesa
Cantera: CANTERA LA VICTORIA

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.- Peso de muestra húmeda (gr.)</td>
<td>500</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.- Peso de muestra seca (gr.)</td>
<td>497.5</td>
<td>497.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.- Peso de recipiente (gr.)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.- Contenido de humedad (%)</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.- Contenido de humedad (promedio) (%)</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones:
- Muestra provista e identificada por el solicitante.
- El presente documento no deberá reproducirse sin la autorización escrita del laboratorio salvo que su reproducción sea en su totalidad (GUÍA PERIÁNICA INDECOPI : GP 004:1993)
Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén.

Muestra: Piedra chancada de 1/2”

Cantera: CANTERA TALAMBO

1. Datos

<table>
<thead>
<tr>
<th></th>
<th>A. Peso de muestra húmeda (gr.)</th>
<th>B. Peso de muestra seca (gr.)</th>
<th>C. Peso de recipiente (gr.)</th>
<th>D. Contenido de humedad (%)</th>
<th>E. Contenido de humedad (promedio) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000</td>
<td>998.7</td>
<td>0.0</td>
<td>0.13</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Observaciones:
- Muestra provista e identificada por el solicitante.
- El presente documento no deberá reproducirse sin la autorización escrita del laboratorio salvo que su reproducción sea en su totalidad (GUIA PERUANA INDECOPI : GP 004:1993)
Anexo N.° 7 CANTIDAD DE MATERIALES PASANTES POR MALLA N.° 200 DEL AGREGADO FINO Y GRUESO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San José María Escrivá N° 855, Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chívarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén.
UBICACION: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO: AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 µm (Nº 200) por lavado en agregados
REFERENCIA: NORMA NTP 400.018 / ASTM C-117

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Arena gruesa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cantera La Victoria, Pátapo</td>
</tr>
<tr>
<td>Muestra</td>
<td>M 3</td>
</tr>
</tbody>
</table>

Material más fino que la malla (N° 200) por vía húmeda % 3.4

OBSERVACIONES:
- Muestra provista e identificada por el solicitante.
- El presente documento no deberá reproducirse sin la autorización escrita del laboratorio salvo que su reproducción sea en su totalidad (GUÍA PERUANA INDECOPI : GP 004:1993)
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talamba, Chépén.
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO: AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 µm (Nº 200) por lavado en agregados.
REFERENCIA: NORMA NTP 400.018 / ASTM C-117

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Cantera</th>
<th>Material más fino que la malla (Nº 200) por vía húmeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piedra chancada 1/2"</td>
<td>Cantera Talamba, Chépén</td>
<td>0.1%</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES:
- Muestra provista e identificada por el solicitante.
- El presente documento no deberá reproducirse sin la autorización escrita del laboratorio
- salvo que su reproducción sea en su totalidad (GUÍA PERUANA INDECOPI : GP 004:1993)
Anexo N.° 8 CONTENIDO DE SALES DEL AGREGADO FINO Y GRUESO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San Josémaría Escrivá N°855. Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA Chávarry Boy Guido
TESIS Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén.

UBICACIÓN Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

ENSAYO: SUELOS. Método de ensayo normalizado para la determinación del contenido de sales solubles en suelos y aguas subterráneas.

REFERENCIA: NTP 339.152 / USBR E - 8

<table>
<thead>
<tr>
<th>Cantera</th>
<th>La victoria, Pátapo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Arena Gruesa M-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituyentes de sales solubles totales</th>
<th>ppm</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituyentes de sales solubles totales</td>
<td>%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

OBSERVACIONES:
1) Muestreo e identificación realizado por el Solicitante
 - El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI: GP 004:1993)
Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén.

ENSAVO: SUELOS. Método de ensayo normalizado para la determinación del contenido de sales solubles en suelos y aguas subterráneas.

REFERENCIA: NTP 359.152 / USBR E - 8

<table>
<thead>
<tr>
<th>Cantera</th>
<th>Talambo, Chepén.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Piedra de 1/2"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constituyentes de sales solubles totales</th>
<th>ppm</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constituyentes de sales solubles totales</td>
<td>%</td>
<td>0.01</td>
</tr>
</tbody>
</table>

OBSERVACIONES:
1) Muestreo e identificación realizado por el Solicitante
- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI : GP 004:1993)
Anexo N.° 9 RESISTENCIA AL DESGASTE DEL AGREGADO GRUESO

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE CONCRETO, SUELOS Y PAVIMENTOS USAT

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén.
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

Ensayo

RESISTENCIA AL DESGASTE DE LOS AGREGADOS GRUESOS DE TAMAÑOS MENORES DE 37.5 mm (1 1/2") POR MEDIO DE LA MAQUINA DE LOS ÁNGELES

Referencia

Norma MTC E 207 / ASTM C-131

Cantera: Piedra Chancada 1/2" - Talambo

I.- Granulometría global

<table>
<thead>
<tr>
<th>Mallas Pasa</th>
<th>Retiene</th>
<th>Peso retenido</th>
<th>% retenido</th>
<th>Método B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2"</td>
<td>1"</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1"</td>
<td>3/4"</td>
<td>506.0</td>
<td>12.8</td>
<td>0.0</td>
</tr>
<tr>
<td>3/4"</td>
<td>1/2"</td>
<td>2334.0</td>
<td>59.0</td>
<td>2500.0</td>
</tr>
<tr>
<td>1/2"</td>
<td>3/8"</td>
<td>1118.0</td>
<td>28.2</td>
<td>2500.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3958.0</td>
<td>100.0</td>
<td>5000.0</td>
</tr>
</tbody>
</table>

II.- Ensayo de Abrasión

- Peso inicial antes del ensayo: 5000.0
- Peso final después de las 200 revoluciones: 4668.0
- Peso final después de las 500 revoluciones: 4108.0

III.- Cálculos

- % de desgaste por abración: 17.8
- % de uniformidad: 0.4

OBSERVACIONES:

NOTA:
- Método de ensayo a usar: Gradación "B", N° de esferas: 11, Revoluciones: total 500
Anexo N.° 10 DISEÑOS DE MEZCLA

DISEÑO DE MEZCLA FINAL

\[F'_c = 350 \text{ kg/cm}^2 \]

CEMENTO:
1. Tipo de cemento: Tipo I Pacasmayo
2. Peso específico: 3080 Kg/m3

AGREGADOS:

Agregado fino:
- Cantera: Cantera LA VICTORIA (ARENA)

1. Peso específico de masa: 2.509 gr/cm3
2. Peso específico de masa S.S.S.: 2.56259 gr/cm3
3. Peso unitario suelto: 1419 Kg/m3
4. Peso unitario compactado: 1640 Kg/m3
5. % de absorción: 2.1%
6. % de absorción: 2.1%
7. Módulo de finaleza: 2.929

Agregado grueso:
- Cantera: Cantera TALAMBO (PIEDRA)

1. Peso específico de masa: 2.692 gr/cm3
2. Peso específico de masa S.S.S.: 2.725 gr/cm3
3. Peso unitario suelto: 1420 Kg/m3
4. Peso unitario compactado: 1529 Kg/m3
5. % de absorción: 1.2%
6. % de absorción: 1.2%
7. Tamaño máximo: 1" Pulg.

Resultados del diseño de mezcla:

- Factor cemento por M^3 de concreto: 12.9 bolsas/m3
- Relación agua cemento de diseño: 0.396

Cantidad de materiales por metro cúbico:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>546 Kg/m3</td>
</tr>
<tr>
<td>Agua</td>
<td>216 L</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>616 Kg/m3</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>958 Kg/m3</td>
</tr>
</tbody>
</table>

Proporción en peso:
- 1.00 1.13 1.75 16.8 0.00 Lts/pie3

Proporción en volumen:
- 1.00 1.19 1.85 16.8 0.00 Lts/pie3
DISEÑO DE MEZCLA FINAL

F'c = 350 kg/cm² (+5% adición)

CEMENTO:
1. Tipo de cemento: Tipo I Pacasmayo
2. Peso específico: 3080 Kg/m³

AGREGADOS:
- Agregado fino:
 - Cantera: Cantera LA VICTORIA (ARENA)
 - Peso específico de masa: 2.509 gr/cm³
 - Peso específico de masa S.S.S.: 2.509 gr/cm³
 - Peso unitario suelto: 1419 Kg/m³
 - Módulo de finezas: 2.929
 - Contenido de humedad: 0.5 %
- Agregado grueso:
 - Cantera: Cantera TALAMBO (PIEDRA)
 - Peso específico de masa: 2.692 gr/cm³
 - Peso específico de masa S.S.S.: 2.725 gr/cm³
 - Peso unitario suelto: 1529 Kg/m³
 - % de absorción: 1.2 %
 - Contenido de humedad: 0.1 %
 - Tamaño máximo: 1" Pulg
 - Tamaño máximo nominal: 3/4" Pulg

Resultados del diseño de mezcla:
- Factor cemento por M³ de concreto: 12.9 bolsas/m³
- Relación agua cemento de diseño: 0.396

Cantidad de materiales por metro cúbico:
- Cemento: 546 Kg/m³ (Tipo I Pacasmayo)
- Agua: 216 L (Potable)
- Agregado fino: 616 Kg/m³ (Cantera LA VICTORIA (ARENA))
- Agregado grueso: 958 Kg/m³ (Cantera TALAMBO (PIEDRA))

Proporción en peso:
- 100:113:175:16.8:27.32 Lts/pie³

Proporción en volumen:
- 100:119:185:16.8:27.32 Lts/pie³
DISEÑO DE MEZCLA FINAL

F'c = 350 kg/cm² (+10% adición)

CEMENTO:
1. Tipo de cemento : Tipo I Pacasmayo
2. Peso específico : 3080 Kg/m³

AGREGADOS :

<table>
<thead>
<tr>
<th>Agregado fino</th>
<th>Agregado grueso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera LA VICTORIA (ARENA)</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
<tr>
<td>1. Peso específico de masa</td>
<td>1. Peso específico de masa</td>
</tr>
<tr>
<td>2.509 gr/cm³</td>
<td>2.692 gr/cm³</td>
</tr>
<tr>
<td>2. Peso específico de masa S.S.S.</td>
<td>2. Peso específico de masa S.S.S.</td>
</tr>
<tr>
<td>2.56259 gr/cm³</td>
<td>2.725 gr/cm³</td>
</tr>
<tr>
<td>3. Peso unitario suelto</td>
<td>3. Peso unitario suelto</td>
</tr>
<tr>
<td>1419 Kg/m³</td>
<td>1420 Kg/m³</td>
</tr>
<tr>
<td>4. Peso unitario compactado</td>
<td>4. Peso unitario compactado</td>
</tr>
<tr>
<td>1640 Kg/m³</td>
<td>1529 Kg/m³</td>
</tr>
<tr>
<td>5. % de absorción</td>
<td>5. % de absorción</td>
</tr>
<tr>
<td>2.1%</td>
<td>1.2%</td>
</tr>
<tr>
<td>6. Contenido de humedad</td>
<td>6. Contenido de humedad</td>
</tr>
<tr>
<td>0.5%</td>
<td>0.1%</td>
</tr>
<tr>
<td>7. Módulo de finezza</td>
<td>7. Tamaño máximo</td>
</tr>
<tr>
<td>2.929</td>
<td>1" Pulg.</td>
</tr>
<tr>
<td>8. Tamaño máximo nominal</td>
<td>8. Tamaño máximo nominal</td>
</tr>
<tr>
<td></td>
<td>3/4" Pulg.</td>
</tr>
</tbody>
</table>

Resultados del diseño de mezcla :

| Factor cemento por M³ de concreto : | 12.9 bolsas/m³ |
| Relación agua cemento de diseño : | 0.396 |

Cantidad de materiales por metro cúbico :

Cemento	546 Kg/m³	Tipo I Pacasmayo
Agua	216 L	Potable
Agregado fino	616 Kg/m³	Cantera LA VICTORIA (ARENA)
Agregado grueso	958 Kg/m³	Cantera TALAMBO (PIEDRA)

| Proporción en peso : | 1.00 | 1.13 | 1.75 | 16.8 | 54.64 | Lts/pie³ |
| Proporción en volumen : | 1.00 | 1.19 | 1.85 | 16.8 | 54.64 | Lts/pie³ |
DISEÑO DE MEZCLA FINAL

F’c = 350 kg/cm² (+15% adición)

CEMENTO:
1. Tipo de cemento: Tipo I Pacasmayo
2. Peso específico: 3080 Kg/m³

AGREGADOS:
Agregado fino:
Cantera: Cantera LA VICTORIA (ARENA)
1. Peso específico de masa: 2.509 g/cm³
2. Peso específico de masa S.S.S.: 2.56259 g/cm³
3. Peso unitario suelto: 1419 Kg/m³
4. % de absorción: 2.1 %
5. Contenido de humedad: 0.5 %
6. Módulo de finezza: 2.929

Agregado grueso:
Cantera: Cantera TALAMBO (PIEDRA)
1. Peso específico de masa: 2.692 g/cm³
2. Peso específico de masa S.S.S.: 2.725 g/cm³
3. Peso unitario suelto: 1420 Kg/m³
4. Peso unitario compactado: 1529 Kg/m³
5. % de absorción: 1.2 %
6. Contenido de humedad: 0.1 %
7. Tamaño máximo: 1" Pulg.

Resultados del diseño de mezcla:
Factor cemento por M³ de concreto: 12.9 bolsas/m³
Relación agua cemento de diseño: 0.596

Cantidad de materiales por metro cúbico:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Tipo/Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>546 Kg/m³</td>
<td>Tipo I Pacasmayo</td>
</tr>
<tr>
<td>Agua</td>
<td>216 L</td>
<td>Potable</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>616 Kg/m³</td>
<td>Cantera LA VICTORIA (ARENA)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>958 Kg/m³</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
</tbody>
</table>

Proporción en peso:
<table>
<thead>
<tr>
<th>Material</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>1.00</td>
<td>1.13</td>
<td>1.75</td>
<td>16.8</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>1.00</td>
<td>1.19</td>
<td>1.85</td>
<td>16.8</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>1.00</td>
<td>1.19</td>
<td>1.85</td>
<td>16.8</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

F'c = 420 kg/cm²

CEMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS:
Agregado fino :
Cantera : Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa 2.509 gr/cm³
2.- Peso específico de masa S.S.S. 2.563 gr/cm³
3.- Peso unitario suelto 1419 Kg/m³
4.- Peso unitario compactado 1640 Kg/m³
5.- % de absorción 2.1 %
6.- Contenido de humedad 0.5 %
7.- Módulo de finezas 2.929
Agregado grueso :
Cantera : Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa 2.692 gr/cm³
2.- Peso específico de masa S.S.S. 2.725 gr/cm³
3.- Peso unitario suelto 1420 Kg/m³
4.- Peso unitario compactado 1529 Kg/m³
5.- % de absorción 1.2 %
6.- Contenido de humedad 0.1 %
7.- Tamaño máximo 1" Pulg.
8.- Tamaño máximo nominal 3/4" Pulg.

Resultados del diseño de mezcla :
Factor cemento por M³ de concreto : 14.3 bolsas/m³
Relación agua cemento de diseño : 0.366

Cantidad de materiales por metro cúbico :
Cemento 606 Kg/m³ : Tipo I Pacasmayo
Agua 222 L : Potaable
Agregado fino 580 Kg/m³ : Cantera LA VICTORIA (ARENA)
Agregado grueso 992 Kg/m³ : Cantera TALAMBO (PIEDRA)

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción en peso : 1.00</td>
<td>0.96</td>
<td>1.64</td>
<td>15.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Proporción en volumen : 1.00</td>
<td>1.01</td>
<td>1.73</td>
<td>15.5</td>
<td>0.00</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

CIMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS:

Agregado fino :
Cantera : Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa : 2.509 gr/cm³
2.- Peso específico de masa S.S.S. : 2.563 gr/cm³
3.- Peso unitario suelto : 1419 Kg/m³
4.- Peso unitario compactado : 1640 Kg/m³
5.- % de absorción : 2.1 %
6.- Módulo de finezza : 2.929

Agregado grueso :
Cantera : Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa : 2.692 gr/cm³
2.- Peso específico de masa S.S.S. : 2.725 gr/cm³
3.- Peso unitario suelto : 1420 Kg/m³
4.- Peso unitario compactado : 1529 Kg/m³
5.- % de absorción : 1.2 %
6.- Contenido de humedad : 0.1 %
7.- Tamaño máximo : 1" Pulg.
8.- Tamaño máximo nominal : 3/4" Pulg.

Resultados del diseño de mezcla :
Factor cemento por M³ de concreto : 14.3 bolsas/m³
Relación agua cemento de diseño : 0.366

Cantidad de materiales por metro cúbico :

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>606 Kg/m³</td>
</tr>
<tr>
<td>Agua</td>
<td>222 L</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>580 Kg/m³</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>992 Kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proporción en peso:</th>
<th>1.00</th>
<th>0.96</th>
<th>1.64</th>
<th>15.5</th>
<th>30.31</th>
<th>Lts/pie³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción en volumen:</td>
<td>1.00</td>
<td>1.01</td>
<td>1.73</td>
<td>15.5</td>
<td>30.31</td>
<td>Lts/pie³</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

F'c = 420 kg/cm² (+10% adición)

CEMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS:

Agregado fino:
- Cantera : Cantera LA VICTORIA (ARENA)
 1.- Peso específico de masa 2.509 gr/cm³
 2.- Peso específico de masa S.S.S. 2.565 gr/cm³
 3.- Peso unitario suelto 1419 Kg/m³
 4.- Peso unitario compactado 1640 Kg/m³
 5.- % de absorción 2.1 %
 6.- Módulo de fineza 2.929

Agregado grueso:
- Cantera : Cantera TALAMBO (PIEDRA)
 1.- Peso específico de masa 2.692 gr/cm³
 2.- Peso específico de masa S.S.S. 2.725 gr/cm³
 3.- Peso unitario suelto 1420 Kg/m³
 4.- Peso unitario compactado 1529 Kg/m³
 5.- % de absorción 1.2 %
 6.- Contenido de humedad 0.1 %
 7.- Tamaño máximo 1" Pulg.
 8.- Tamaño máximo nominal 3/4" Pulg.

Resultados del diseño de mezcla:
Factor cemento por M³ de concreto : 14.3 bolsas/m³
Relación agua cemento de diseño : 0.366

Cantidad de materiales por metro cúbico:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>606 Kg/m³</td>
<td>Tipo I Pacasmayo</td>
</tr>
<tr>
<td>Agua</td>
<td>222 L</td>
<td>Potable</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>580 Kg/m³</td>
<td>Cantera LA VICTORIA (ARENA)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>992 Kg/m³</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
</tbody>
</table>

Proporción en peso:
- 1.00 0.96 1.64 15.5 60.62 Lts/pie³

Proporción en volumen:
- 1.00 1.01 1.73 15.5 60.62 Lts/pie³
DISEÑO DE MEZCLA FINAL

CEMENETO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS :

Agregado fino :
- Cantera LA VICTORIA (ARENA)
 1.- Peso específico de masa 2.509 gr/cm³
 2.- Peso específico de masa S.S.S. 2.563 gr/cm³
 3.- Peso unitario suelto 1419 Kg/m³
 4.- Peso unitario compactado 1640 Kg/m³
 5.- % de absorción 2.1 %
 6.- Contenido de humedad 0.5 %
 7.- Módulo de fineza 2.929

Agregado grueso :
- Cantera TALAMBO (PIEDRA)
 1.- Peso específico de masa 2.692 gr/cm³
 2.- Peso específico de masa S.S.S. 2.725 gr/cm³
 3.- Peso unitario suelto 1420 Kg/m³
 4.- Peso unitario compactado 1529 Kg/m³
 5.- % de absorción 1.2 %
 6.- Contenido de humedad 0.1 %
 7.- Tamaño máximo 1" Pulg.
 8.- Tamaño máximo nominal 3/4" Pulg.

Resultados del diseño de mezcla :
Factor cemento por M³ de concreto : 14.3 bolsas/m³
Relación agua cemento de diseño : 0.366

Cantidad de materiales por metro cúbico :

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>606 Kg/m³</td>
<td>Tipo I Pacasmayo</td>
</tr>
<tr>
<td>Agua</td>
<td>222 L</td>
<td>Potable</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>580 Kg/m³</td>
<td>Cantera LA VICTORIA (ARENA)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>992 Kg/m³</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proporción en peso</th>
<th>1.00</th>
<th>0.96</th>
<th>1.64</th>
<th>15.5</th>
<th>90.93</th>
<th>Lts/pie³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción en volumen</td>
<td>1.00</td>
<td>1.01</td>
<td>1.73</td>
<td>15.5</td>
<td>90.93</td>
<td>Lts/pie³</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

\[f'c = 500 \text{ kg/cm}^2 \]

CEMENTO:
1. Tipo de cemento : Tipo I Pacasmayo
2. Peso específico : 3080 Kg/m³

AGREGADOS:

<table>
<thead>
<tr>
<th>Agregado fino</th>
<th>Agregado grueso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera : Cantera LA VICTORIA (ARENA)</td>
<td>Cantera : Cantera TALAMBO (PIEDRA)</td>
</tr>
<tr>
<td>1. Peso específico de masa</td>
<td>2.509 gr/cm³</td>
</tr>
<tr>
<td>2. Peso específico de masa S.S.S.</td>
<td>2.563 gr/cm³</td>
</tr>
<tr>
<td>3. Peso unitario suelto</td>
<td>1419 Kg/m³</td>
</tr>
<tr>
<td>4. Peso unitario compactado</td>
<td>1640 Kg/m³</td>
</tr>
<tr>
<td>5. % de absorción</td>
<td>2.1 %</td>
</tr>
<tr>
<td>6. Contenido de humedad</td>
<td>0.5 %</td>
</tr>
<tr>
<td>7. Módulo de finezza</td>
<td>2.929</td>
</tr>
</tbody>
</table>

Resultados del diseño de mezcla:

Factor cemento por M³ de concreto : 16.6 bolsas/m³
Relación agua cemento de diseño : 0.322

Cantidad de materiales por metro cúbico:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>705 Kg/m³</td>
<td>Tipo I Pacasmayo</td>
</tr>
<tr>
<td>Agua</td>
<td>227 L</td>
<td>Potable</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>554 Kg/m³</td>
<td>Cantera LA VICTORIA (ARENA)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>926 Kg/m³</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proporción en peso :</th>
<th>1.00</th>
<th>0.79</th>
<th>1.31</th>
<th>15.7</th>
<th>0.00</th>
<th>Lts/pie³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción en volumen:</td>
<td>1.00</td>
<td>0.83</td>
<td>1.39</td>
<td>15.7</td>
<td>0.00</td>
<td>Lts/pie³</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

F'c = 500 kg/cm² (+5% adición)

CEMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS:

Agregado fino :
Cantera : Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa 2.509 gr/cm³
2.- Peso específico de masa S.S.S. 2.563 gr/cm³
3.- Peso unitario suelto 1419 Kg/m³
4.- Peso unitario compactado 1640 Kg/m³
5.- % de absorción 2.1 %
6.- Contenido de humedad 0.5 %
7.- Módulo de finezza 2.929

Agregado grueso :
Cantera : Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa 2.692 gr/cm³
2.- Peso específico de masa S.S.S. 2.725 gr/cm³
3.- Peso unitario suelto 1420 Kg/m³
4.- Peso unitario compactado 1529 Kg/m³
5.- % de absorción 1.2 %
6.- Contenido de humedad 0.1 %
7.- Tamaño máximo 1" Pulg.
8.- Tamaño mínimo nominal 3/4" Pulg.

Resultados del diseño de mezcla :
Factor cemento por M³ de concreto : 16.6 bolsas/m³
Relación agua cemento de diseño : 0.322

Cantidad de materiales por metro cúbico :

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>705 Kg/m³</td>
</tr>
<tr>
<td>Agua</td>
<td>227 L</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>554 Kg/m³</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>926 Kg/m³</td>
</tr>
</tbody>
</table>

| Proporción en peso | 1.00 | 0.79 | 1.31 | 13.7 | 35.25 | Lts/pie³ |
| Proporción en volumen | 1.00 | 0.85 | 1.39 | 13.7 | 35.25 | Lts/pie³ |
Elaboración de concreto de alta resistencia incorporando partículas residuales del charco de piedra de la cantera talambo, chepén.

DISEÑO DE MEZCLA FINAL

\[F'_c = 500 \text{ kg/cm}^2 \]
(+10% adición)

CEMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS:

Agregado fino:
Cantera : Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa 2.509 gr/cm³
2.- Peso específico de masa S.S.S. 2.563 gr/cm³
3.- Peso unitario suelto 1419 Kg/m³
4.- Peso unitario compactado 1640 Kg/m³
5.- % de absorción 2.1 %
6.- Contenido de humedad 0.5 %
7.- Módulo de finaleza 2.929

Agregado grueso:
Cantera : Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa 2.692 gr/cm³
2.- Peso específico de masa S.S.S. 2.725 gr/cm³
3.- Peso unitario suelto 1420 Kg/m³
4.- Peso unitario compactado 1529 Kg/m³
5.- % de absorción 1.2 %
6.- Contenido de humedad 0.1 %
7.- Tamaño máximo 1" Pulg.
8.- Tamaño máximo nominal 3/4" Pulg.

Resultados del diseño de mezcla:
Factor cemento por M³ de concreto : 16.6 bolsas/m³
Relación agua cemento de diseño : 0.322

Cantidad de materiales por metro cúbico:
- Cemento : 705 Kg/m³ : Tipo I Pacasmayo
- Agua : 227 L : Potable
- Agregado fino : 554 Kg/m³ : Cantera LA VICTORIA (ARENA)
- Agregado grueso : 926 Kg/m³ : Cantera TALAMBO (PIEDRA)

<table>
<thead>
<tr>
<th>Material</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>1.00</td>
<td>0.79</td>
<td>1.31</td>
<td>13.7</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>1.00</td>
<td>0.85</td>
<td>1.39</td>
<td>13.7</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

F'c = 500 kg/cm² (+15% adición)

CEMENTO:
1.- Tipo de cemento : Tipo I Pacasmayo
2.- Peso específico : 3080 Kg/m³

AGREGADOS :

Agregado fino :
Cantera : Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa 2.509 gr/cm³
2.- Peso específico de masa S.S.S. 2.565 gr/cm³
3.- Peso unitario suelto 1419 Kg/m³
4.- Peso unitario compactado 1640 Kg/m³
5.- % de absorción 2.1 %
6.- Módulo de fineza 2.929
7.- Tamaño máximo 1" Pulg.

Agregado grueso :
Cantera : Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa 2.692 gr/cm³
2.- Peso específico de masa S.S.S. 2.725 gr/cm³
3.- Peso unitario suelto 1420 Kg/m³
4.- Peso unitario compactado 1529 Kg/m³
5.- % de absorción 1.2 %
6.- Contenido de humedad 0.1 %
7.- Tamaño máximo nominal 3/4" Pulg.

Resultados del diseño de mezcla :
Factor cemento por M³ de concreto : 16.6 bolsas/m³
Relación agua cemento de diseño : 0.322

Cantidad de materiales por metro cúbico :

Cemento 705 Kg/m³ : Tipo I Pacasmayo
Agua 227 L : Potable
Agregado fino 554 Kg/m³ : Cantera LA VICTORIA (ARENA)
Agregado grueso 926 Kg/m³ : Cantera TALAMBO (PIEDRA)

Proporción en peso :
Cemento 1.00 Arena 0.79 Piedra 1.31
Agua 13.7 Adición 105.69
Lts/pie³

Proporción en volumen :
Cemento 1.00 Arena 0.83 Piedra 1.39
Agua 13.7 Adición 105.69
Lts/pie³
DISEÑO DE MEZCLA FINAL \(F'_c = 550 \, \text{kg/cm}^2 \)

CEMENTO:
1. Tipo de cemento: Tipo I Pacasmayo
2. Peso específico: 3080 \(\text{Kg/m}^3 \)

AGREGADOS:

<table>
<thead>
<tr>
<th>Agregado fino</th>
<th>Agregado grueso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera: Cantera LA VICTORIA (ARENA)</td>
<td>Cantera: Cantera TALAMBO (PIEDRA)</td>
</tr>
<tr>
<td>1.- Peso específico de masa</td>
<td>2.692 gr/cm(^3)</td>
</tr>
<tr>
<td>2.- Peso específico de masa S.S.S.</td>
<td>2.725 gr/cm(^3)</td>
</tr>
<tr>
<td>3.- Peso unitario suelto</td>
<td>1420 Kg/m(^3)</td>
</tr>
<tr>
<td>4.- Peso unitario compactado</td>
<td>1592 Kg/m(^3)</td>
</tr>
<tr>
<td>5.- % de absorción</td>
<td>1.2 %</td>
</tr>
<tr>
<td>6.- Contenido de humedad</td>
<td>0.1 %</td>
</tr>
<tr>
<td>7.- Módulo de finura</td>
<td>2.929</td>
</tr>
</tbody>
</table>

Resultados del diseño de mezcla:
- Factor cemento por \(M^3 \) de concreto: 17.2 bolsas/m\(^3\)
- Relación agua cemento de diseño: 0.291

Cantidad de materiales por metro cúbico:
- Cemento: 731 Kg/m\(^3\)
- Agua: 213 L
- Agregado fino: 562 Kg/m\(^3\)
- Agregado grueso: 915 Kg/m\(^3\)

<table>
<thead>
<tr>
<th></th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proporción en peso:</td>
<td>1.00</td>
<td>0.77</td>
<td>1.25</td>
<td>12.4</td>
</tr>
<tr>
<td>Proporción en volumen:</td>
<td>1.00</td>
<td>0.81</td>
<td>1.32</td>
<td>12.4</td>
</tr>
</tbody>
</table>
DISEÑO DE MEZCLA FINAL

F'c = 550 kg/cm² (+5% adición)

CEMENTO:
1.- Tipo de cemento: Tipo I Pacasmayo
2.- Peso específico: 3080 Kg/m³

AGREGADOS:

Agregado fino:
Cantera: Cantera LA VICTORIA (ARENA)
1.- Peso específico de masa: 2.509 gr/cm³
2.- Peso específico de masa S.S.S.: 2.563 gr/cm³
3.- Peso unitario suelto: 1419 Kg/m³
4.- Peso unitario compactado: 1640 Kg/m³
5.- % de absorción: 2.1 %
6.- Contenido de humedad: 0.5 %
7.- Módulo de finezza: 2.929

Agregado grueso:
Cantera: Cantera TALAMBO (PIEDRA)
1.- Peso específico de masa: 2.692 gr/cm³
2.- Peso específico de masa S.S.S.: 2.725 gr/cm³
3.- Peso unitario suelto: 1420 Kg/m³
4.- Peso unitario compactado: 1529 Kg/m³
5.- % de absorción: 1.2 %
6.- Contenido de humedad: 0.1 %
7.- Tamaño máximo: 1" Pulg.
8.- Tamaño máximo nominal: 3/4" Pulg.

RESULTADOS DEL DISEÑO DE MEZCLA:

Factor cemento por M³ de concreto: 17.2 bolsas/m³
Relación agua cemento de diseño: 0.291

CANTIDAD DE MATERIALES POR METRO CÚBICO:

Cemento 731 Kg/m³: Tipo I Pacasmayo
Agua 213 L: Potable
Agregado fino 562 Kg/m³: Cantera LA VICTORIA (ARENA)
Agregado grueso 915 Kg/m³: Cantera TALAMBO (PIEDRA)

Proporción en peso:
Cemento: 1.00
Agregado fino: 0.77
Agregado grueso: 1.25
Agua: 12.4
Adición: 56.57 Lts/pie³

Proporción en volumen:
Cemento: 1.00
Agregado fino: 0.81
Agregado grueso: 1.32
Agua: 12.4
Adición: 56.57 Lts/pie³
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residual de la cantera de piedra de la cantera talambo, chepén.

UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque

DISEÑO DE MEZCLA FINAL

F'c = 550 kg/cm² (+10% adición)

CEMENTO:
1. Tipo de cemento: Tipo I Pacasmayo
2. Peso específico: 3080 Kg/m³

AGREGADOS:

<table>
<thead>
<tr>
<th>Agregado fino</th>
<th>Agregado grueso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantera</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
<tr>
<td>1.- Peso específico de masa</td>
<td>2.509 gr/cm³</td>
</tr>
<tr>
<td>2.- Peso específico de masa S.S.S.</td>
<td>2.565 gr/cm³</td>
</tr>
<tr>
<td>3.- Peso unitario suelto</td>
<td>1419 Kg/m³</td>
</tr>
<tr>
<td>4.- Peso unitario compactado</td>
<td>1640 Kg/m³</td>
</tr>
<tr>
<td>5.- % de absorción</td>
<td>2.1 %</td>
</tr>
<tr>
<td>6.- Contenido de humedad</td>
<td>0.5 %</td>
</tr>
<tr>
<td>7.- Módulo de fineza</td>
<td>2.929</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cantera LA VICTORIA (ARENA)</th>
<th>Cantera TALAMBO (PIEDRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Peso específico de masa</td>
<td>2.692 gr/cm³</td>
</tr>
<tr>
<td>2.- Peso específico de masa S.S.S.</td>
<td>2.725 gr/cm³</td>
</tr>
<tr>
<td>3.- Peso unitario suelto</td>
<td>1420 Kg/m³</td>
</tr>
<tr>
<td>4.- Peso unitario compactado</td>
<td>1529 Kg/m³</td>
</tr>
<tr>
<td>5.- % de absorción</td>
<td>1.2 %</td>
</tr>
<tr>
<td>6.- Contenido de humedad</td>
<td>0.1 %</td>
</tr>
<tr>
<td>7.- Tamaño máximo</td>
<td>1" Pulg.</td>
</tr>
<tr>
<td>8.- Tamaño máximo nominal</td>
<td>3/4" Pulg.</td>
</tr>
</tbody>
</table>

Resultados del diseño de mezcla:

- Factor cemento por M³ de concreto: 17.2 bolsas/m³
- Relación agua-cemento de diseño: 0.291

Cantidad de materiales por metro cúbico:

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Cantidad</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cemento</td>
<td>731 Kg/m³</td>
<td>Tipo I Pacasmayo</td>
</tr>
<tr>
<td>Agua</td>
<td>213 L</td>
<td>Potable</td>
</tr>
<tr>
<td>Agregado fino</td>
<td>562 Kg/m³</td>
<td>Cantera LA VICTORIA (ARENA)</td>
</tr>
<tr>
<td>Agregado grueso</td>
<td>915 Kg/m³</td>
<td>Cantera TALAMBO (PIEDRA)</td>
</tr>
</tbody>
</table>

Proporción en peso:

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.77</td>
<td>1.25</td>
<td>73.14</td>
<td>Lts/pie³</td>
</tr>
</tbody>
</table>

Proporción en volumen:

<table>
<thead>
<tr>
<th>Cemento</th>
<th>Arena</th>
<th>Piedra</th>
<th>Agua</th>
<th>Adición</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.81</td>
<td>1.32</td>
<td>73.14</td>
<td>Lts/pie³</td>
</tr>
</tbody>
</table>
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, chepén.
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque

DISEÑO DE MEZCLA FINAL

CEMENTO:
1. - Tipo de cemento: Tipo I Pacasmayo
2. - Peso específico: 3080 Kg/m³

AGREGADOS:
Aggregado fino: Cantera LA VICTORIA (ARENA)
1. - Peso específico de masa: 2.509 gr/cm³
2. - Peso específico de masa S.S.S.: 2.565 gr/cm³
3. - Peso unitario suelto: 1419 Kg/m³
4. - Peso unitario compactado: 1640 Kg/m³
5. - % de absorción: 2.1 %
6. - Contenido de humedad: 0.5 %
7. - Módulo de finezas: 2.929

Aggregado grueso: Cantera TALAMBO (PIEDRA)
1. - Peso específico de masa: 2.692 gr/cm³
2. - Peso específico de masa S.S.S.: 2.725 gr/cm³
3. - Peso unitario suelto: 1480 Kg/m³
4. - Peso unitario compactado: 1529 Kg/m³
5. - % de absorción: 1.2 %
6. - Contenido de humedad: 0.1 %
7. - Tamaño máximo: 1" Pulg.

Resultados del diseño de mezcla:
Factor cemento por M³ de concreto: 17.2 bolsas/m³
Relación agua cemento de diseño: 0.291

Cantidad de materiales por metro cúbico:

Cemento: 751 Kg/m³
Agua: 213 L
Agregado fino: 562 Kg/m³
Agregado grueso: 915 Kg/m³

Proporción en peso:
1.00 0.77 1.25 12.4 109.71 Lts/pie³
Proporción en volumen:
1.00 0.81 1.32 12.4 109.71 Lts/pie³
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>78237</td>
<td>431</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>74913</td>
<td>413</td>
<td>118</td>
</tr>
<tr>
<td>LAB.</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>71587</td>
<td>595</td>
<td>115</td>
</tr>
<tr>
<td>OBRA</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>73115</td>
<td>403</td>
<td>115</td>
</tr>
<tr>
<td>LAB.</td>
<td>25/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>79257</td>
<td>415</td>
<td>118</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>74913</td>
<td>413</td>
<td>118</td>
</tr>
<tr>
<td>LAB.</td>
<td>25/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>71355</td>
<td>595</td>
<td>112</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>72015</td>
<td>366</td>
<td>110</td>
</tr>
<tr>
<td>LAB.</td>
<td>25/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>69416</td>
<td>383</td>
<td>109</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>63589</td>
<td>350</td>
<td>100</td>
</tr>
<tr>
<td>LAB.</td>
<td>30/03/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>54585</td>
<td>501</td>
<td>86</td>
</tr>
<tr>
<td>OBRA</td>
<td>30/03/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>51756</td>
<td>585</td>
<td>81</td>
</tr>
<tr>
<td>LAB.</td>
<td>30/03/17</td>
<td>13</td>
<td>15.2</td>
<td>181</td>
<td>46729</td>
<td>258</td>
<td>74</td>
</tr>
<tr>
<td>OBRA</td>
<td>30/03/17</td>
<td>13</td>
<td>15.2</td>
<td>181</td>
<td>48650</td>
<td>298</td>
<td>77</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>45619</td>
<td>251</td>
<td>72</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>45420</td>
<td>250</td>
<td>71</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>45586</td>
<td>251</td>
<td>72</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>39565</td>
<td>217</td>
<td>69</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>36866</td>
<td>205</td>
<td>58</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>38647</td>
<td>213</td>
<td>61</td>
</tr>
</tbody>
</table>
Concreto adicionado

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>07/12/17-07/03/18</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>81279</td>
<td>448</td>
<td>128</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/17-07/03/18</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>80552</td>
<td>444</td>
<td>127</td>
</tr>
<tr>
<td>LAB.</td>
<td>09/03/17-04/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>79279</td>
<td>437</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/03/17-04/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>78552</td>
<td>433</td>
<td>124</td>
</tr>
<tr>
<td>LAB.</td>
<td>25/03/17-22/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>72920</td>
<td>402</td>
<td>115</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17-22/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>72454</td>
<td>414</td>
<td>118</td>
</tr>
<tr>
<td>LAB.</td>
<td>03/04/17-17/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>54835</td>
<td>502</td>
<td>86</td>
</tr>
<tr>
<td>OBRA</td>
<td>03/04/17-17/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>57217</td>
<td>515</td>
<td>90</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/04/17-17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>47676</td>
<td>563</td>
<td>75</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/04/17-17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>48816</td>
<td>569</td>
<td>77</td>
</tr>
</tbody>
</table>

\[F'c = 350 \text{ kg/cm}^2 + (5\%) \]
\[f'c = 350 \text{ kg/cm}^2 + (10\%) \]

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>07/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>82562</td>
<td>455</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>07/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>81536</td>
<td>449</td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>07/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>78521</td>
<td>435</td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>07/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>77526</td>
<td>427</td>
</tr>
<tr>
<td>OBRA</td>
<td>19/03/17</td>
<td>07/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>79158</td>
<td>436</td>
</tr>
<tr>
<td>OBRA</td>
<td>19/03/17</td>
<td>07/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>80523</td>
<td>444</td>
</tr>
<tr>
<td>OBRA</td>
<td>19/03/17</td>
<td>07/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>80523</td>
<td>444</td>
</tr>
<tr>
<td>LAB.</td>
<td>12/03/17</td>
<td>07/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>76568</td>
<td>422</td>
</tr>
<tr>
<td>LAB.</td>
<td>12/03/17</td>
<td>07/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>75526</td>
<td>416</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17</td>
<td>07/12/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>75141</td>
<td>414</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17</td>
<td>07/12/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>74866</td>
<td>413</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17</td>
<td>07/12/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>68625</td>
<td>378</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/03/17</td>
<td>07/12/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>69420</td>
<td>385</td>
</tr>
<tr>
<td>LAB.</td>
<td>04/04/17</td>
<td>07/12/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>57978</td>
<td>320</td>
</tr>
<tr>
<td>LAB.</td>
<td>04/04/17</td>
<td>07/12/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>56656</td>
<td>312</td>
</tr>
<tr>
<td>OBRA</td>
<td>04/04/17</td>
<td>07/12/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>50062</td>
<td>276</td>
</tr>
<tr>
<td>OBRA</td>
<td>04/04/17</td>
<td>07/12/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>50062</td>
<td>276</td>
</tr>
<tr>
<td>LAB.</td>
<td>11/04/17</td>
<td>07/12/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>47472</td>
<td>268</td>
</tr>
<tr>
<td>LAB.</td>
<td>11/04/17</td>
<td>07/12/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>48570</td>
<td>268</td>
</tr>
<tr>
<td>LAB.</td>
<td>11/04/17</td>
<td>07/12/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>52671</td>
<td>279</td>
</tr>
<tr>
<td>OBRA</td>
<td>11/04/17</td>
<td>07/12/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>44742</td>
<td>247</td>
</tr>
<tr>
<td>OBRA</td>
<td>11/04/17</td>
<td>07/12/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>46725</td>
<td>258</td>
</tr>
</tbody>
</table>
$f'_c = 350 \text{ kg/cm}^2 + (15\%)$

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha 1</th>
<th>Fecha 2</th>
<th>Edad</th>
<th>Dm. (Ø)</th>
<th>Área (cm²)</th>
<th>Cargas (kg)</th>
<th>Porcentaje (%)</th>
<th>Promedio kg/cm² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>13/12/16</td>
<td>13/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>78168</td>
<td>431</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/12/16</td>
<td>13/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>73812</td>
<td>407</td>
<td>116</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>76952</td>
<td>424</td>
<td>121</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/05/17</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>75852</td>
<td>418</td>
<td>119</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>71883</td>
<td>396</td>
<td>115</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/03/17</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>71152</td>
<td>392</td>
<td>112</td>
</tr>
<tr>
<td>LAB.</td>
<td>28/03/17</td>
<td>25/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>70272</td>
<td>387</td>
<td>111</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/04/17</td>
<td>25/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>66669</td>
<td>368</td>
<td>105</td>
</tr>
<tr>
<td>LAB.</td>
<td>04/04/17</td>
<td>18/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>53873</td>
<td>302</td>
<td>86</td>
</tr>
<tr>
<td>OBRA</td>
<td>18/04/17</td>
<td>18/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>48287</td>
<td>296</td>
<td>76</td>
</tr>
<tr>
<td>LAB.</td>
<td>11/04/17</td>
<td>18/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>45903</td>
<td>270</td>
<td>77</td>
</tr>
<tr>
<td>OBRA</td>
<td>18/04/17</td>
<td>18/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>39025</td>
<td>216</td>
<td>62</td>
</tr>
<tr>
<td>OBRA</td>
<td>11/04/17</td>
<td>18/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>39099</td>
<td>215</td>
<td>61</td>
</tr>
<tr>
<td>Descripción</td>
<td>Fecha</td>
<td>Edad</td>
<td>Dmt. (Ø)</td>
<td>Área (cm²)</td>
<td>Cargas kg</td>
<td>Cargas kg/cm² (%)</td>
<td>Promedio kg/cm² (%)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>92869</td>
<td>512</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>91536</td>
<td>504</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>84568</td>
<td>466</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>85216</td>
<td>470</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>23/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>89512</td>
<td>495</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>89256</td>
<td>486</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>23/02/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>81512</td>
<td>449</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>82569</td>
<td>455</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>25/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>82105</td>
<td>452</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>83865</td>
<td>462</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>23/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>74835</td>
<td>412</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>72531</td>
<td>400</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>01/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>65503</td>
<td>361</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>64922</td>
<td>358</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>01/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>57341</td>
<td>316</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>55216</td>
<td>304</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>12/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>55965</td>
<td>305</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>54481</td>
<td>300</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>52482</td>
<td>299</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>12/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>47212</td>
<td>260</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>45127</td>
<td>249</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>44488</td>
<td>245</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Descripción</td>
<td>Fecha</td>
<td>Edad</td>
<td>Dmt.</td>
<td>Área</td>
<td>Cargas</td>
<td>Porcentaje</td>
<td>Promedio</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>95682</td>
<td>527</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>96852</td>
<td>534</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>89963</td>
<td>406</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>91587</td>
<td>505</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>92516</td>
<td>510</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>95486</td>
<td>526</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>86925</td>
<td>479</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>88596</td>
<td>488</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>88512</td>
<td>488</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>89721</td>
<td>494</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>89256</td>
<td>455</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>82596</td>
<td>455</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>67251</td>
<td>371</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>68515</td>
<td>378</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>59842</td>
<td>330</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>58421</td>
<td>322</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>58512</td>
<td>322</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>56592</td>
<td>312</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>57863</td>
<td>319</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>52926</td>
<td>289</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>52247</td>
<td>288</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>52248</td>
<td>277</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>
\(F'c = 420 \text{ kg/cm}^2 \times (10\%) \)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>96256</td>
<td>530</td>
<td>537</td>
</tr>
<tr>
<td></td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>98512</td>
<td>545</td>
<td>540</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>95621</td>
<td>515</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>96521</td>
<td>532</td>
<td>536</td>
</tr>
<tr>
<td>OBRA</td>
<td>12/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>94526</td>
<td>521</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>12/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>96521</td>
<td>552</td>
<td>555</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>90125</td>
<td>497</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>07/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>92553</td>
<td>497</td>
<td>498</td>
</tr>
<tr>
<td>OBRA</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>88452</td>
<td>487</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>92516</td>
<td>510</td>
<td>515</td>
</tr>
<tr>
<td>OBRA</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>82621</td>
<td>444</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>85632</td>
<td>461</td>
<td>465</td>
</tr>
<tr>
<td>OBRA</td>
<td>05/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>69535</td>
<td>382</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>05/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>67592</td>
<td>372</td>
<td>380</td>
</tr>
<tr>
<td>OBRA</td>
<td>05/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>62432</td>
<td>344</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>05/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>61152</td>
<td>337</td>
<td>340</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>59295</td>
<td>327</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>61732</td>
<td>340</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>60424</td>
<td>333</td>
<td>337</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>53456</td>
<td>295</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>52425</td>
<td>289</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>13/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>53048</td>
<td>292</td>
<td>296</td>
</tr>
</tbody>
</table>
$f'c = 420 \text{ kg/cm}^2 + (15\%)$

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto adicionado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>13/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>93563</td>
<td>516</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>93563</td>
<td>516</td>
<td>125</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>902521</td>
<td>499</td>
<td>119</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>91564</td>
<td>505</td>
<td>120</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>85525</td>
<td>471</td>
<td>112</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>85525</td>
<td>471</td>
<td>112</td>
</tr>
<tr>
<td>LAB.</td>
<td>09/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>84526</td>
<td>466</td>
<td>111</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>85126</td>
<td>469</td>
<td>112</td>
</tr>
<tr>
<td>LAB.</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>69233</td>
<td>374</td>
<td>89</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>60298</td>
<td>334</td>
<td>79</td>
</tr>
<tr>
<td>LAB.</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>58137</td>
<td>320</td>
<td>76</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>55182</td>
<td>304</td>
<td>72</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>55765</td>
<td>307</td>
<td>73</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>52876</td>
<td>291</td>
<td>69</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>45482</td>
<td>251</td>
<td>60</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>46387</td>
<td>261</td>
<td>62</td>
</tr>
<tr>
<td>OBRA</td>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>46866</td>
<td>258</td>
<td>61</td>
</tr>
<tr>
<td>Descripción</td>
<td>Fecha</td>
<td>Edad</td>
<td>Dmt.</td>
<td>Área</td>
<td>Cargas</td>
<td>Porcentaje</td>
<td>Promedio</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>LAB.</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>111559</td>
<td>615</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>30/11/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>102785</td>
<td>566</td>
<td>113</td>
</tr>
<tr>
<td>LAB.</td>
<td>25/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>103524</td>
<td>571</td>
<td>114</td>
</tr>
<tr>
<td>OBRA</td>
<td>25/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>100251</td>
<td>586</td>
<td>117</td>
</tr>
<tr>
<td>LAB.</td>
<td>24/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>99785</td>
<td>550</td>
<td>110</td>
</tr>
<tr>
<td>OBRA</td>
<td>24/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>100251</td>
<td>552</td>
<td>110</td>
</tr>
<tr>
<td>LAB.</td>
<td>01/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>99189</td>
<td>547</td>
<td>109</td>
</tr>
<tr>
<td>OBRA</td>
<td>01/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>101203</td>
<td>558</td>
<td>112</td>
</tr>
<tr>
<td>LAB.</td>
<td>01/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>77018</td>
<td>424</td>
<td>85</td>
</tr>
<tr>
<td>OBRA</td>
<td>01/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>75276</td>
<td>415</td>
<td>83</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>69892</td>
<td>374</td>
<td>75</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>65659</td>
<td>562</td>
<td>72</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>63518</td>
<td>350</td>
<td>70</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>64459</td>
<td>355</td>
<td>71</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>67460</td>
<td>372</td>
<td>74</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>53925</td>
<td>297</td>
<td>59</td>
</tr>
<tr>
<td>LAB.</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>53395</td>
<td>294</td>
<td>59</td>
</tr>
<tr>
<td>OBRA</td>
<td>13/04/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>56896</td>
<td>314</td>
<td>63</td>
</tr>
</tbody>
</table>

$f'c = 500 \text{ kg/cm}^2$
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>115963</td>
<td>635</td>
<td>127</td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>115021</td>
<td>634</td>
<td>127</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>128369</td>
<td>597</td>
<td>119</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>129215</td>
<td>602</td>
<td>120</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>113015</td>
<td>617</td>
<td>125</td>
</tr>
<tr>
<td>LAB.</td>
<td>10/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>113527</td>
<td>626</td>
<td>125</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>126933</td>
<td>586</td>
<td>117</td>
</tr>
<tr>
<td>OBRA</td>
<td>10/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>125926</td>
<td>584</td>
<td>117</td>
</tr>
<tr>
<td>LAB.</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>107512</td>
<td>593</td>
<td>119</td>
</tr>
<tr>
<td>LAB.</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>105467</td>
<td>581</td>
<td>116</td>
</tr>
<tr>
<td>OBRA</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>95116</td>
<td>594</td>
<td>105</td>
</tr>
<tr>
<td>OBRA</td>
<td>29/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>933702</td>
<td>517</td>
<td>103</td>
</tr>
<tr>
<td>LAB.</td>
<td>06/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>78214</td>
<td>431</td>
<td>86</td>
</tr>
<tr>
<td>LAB.</td>
<td>06/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>80117</td>
<td>442</td>
<td>88</td>
</tr>
<tr>
<td>OBRA</td>
<td>06/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>71285</td>
<td>505</td>
<td>79</td>
</tr>
<tr>
<td>OBRA</td>
<td>06/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>70553</td>
<td>508</td>
<td>78</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>67755</td>
<td>373</td>
<td>75</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>66625</td>
<td>367</td>
<td>73</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>71526</td>
<td>394</td>
<td>79</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>62462</td>
<td>344</td>
<td>69</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>62104</td>
<td>342</td>
<td>68</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>64105</td>
<td>355</td>
<td>71</td>
</tr>
<tr>
<td>Descripción</td>
<td>Fecha</td>
<td>Edad</td>
<td>Dmt.</td>
<td>Área</td>
<td>Porcentaje</td>
<td>Promedio</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>116621</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>116956</td>
<td>645</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>111526</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>110256</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>112561</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>113264</td>
<td>624</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>126625</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>13/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>126523</td>
<td>587</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>30/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>107393</td>
<td>592</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>30/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>106145</td>
<td>585</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>30/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>97154</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>30/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>99727</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>82846</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>82289</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>07/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>75675</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>07/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>71866</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>69125</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>71792</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>67795</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>65105</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>64480</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>65481</td>
<td>361</td>
<td></td>
</tr>
</tbody>
</table>

$f'c = 500 \text{ kg/cm}^2 + (10\%)$
$f'c = 500 \text{ kg/cm}^2 + (15\%)$

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto adicionado</td>
<td>LAB.</td>
<td>15/12/16</td>
<td>15/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>111231</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/12/16</td>
<td>15/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>111712</td>
<td>616</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/12/16</td>
<td>15/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>104931</td>
<td>578</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/12/16</td>
<td>15/03/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>109232</td>
<td>580</td>
</tr>
<tr>
<td>LAB.</td>
<td>27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>107231</td>
<td>591</td>
</tr>
<tr>
<td>OBRA</td>
<td>27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>108234</td>
<td>596</td>
</tr>
<tr>
<td>LAB.</td>
<td>27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>101712</td>
<td>561</td>
</tr>
<tr>
<td>OBRA</td>
<td>27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>101143</td>
<td>557</td>
</tr>
<tr>
<td>LAB.</td>
<td>31/03/17</td>
<td>29/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>99211</td>
<td>547</td>
</tr>
<tr>
<td>OBRA</td>
<td>31/03/17</td>
<td>29/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>102709</td>
<td>566</td>
</tr>
<tr>
<td>LAB.</td>
<td>31/03/17</td>
<td>29/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>90176</td>
<td>497</td>
</tr>
<tr>
<td>OBRA</td>
<td>31/03/17</td>
<td>29/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>92599</td>
<td>510</td>
</tr>
<tr>
<td>LAB.</td>
<td>07/04/17</td>
<td>21/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>78582</td>
<td>435</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/04/17</td>
<td>21/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>77285</td>
<td>426</td>
</tr>
<tr>
<td>LAB.</td>
<td>07/04/17</td>
<td>21/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>68885</td>
<td>560</td>
</tr>
<tr>
<td>OBRA</td>
<td>07/04/17</td>
<td>21/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>69835</td>
<td>585</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>65511</td>
<td>361</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>63125</td>
<td>348</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>67234</td>
<td>371</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>54577</td>
<td>321</td>
</tr>
<tr>
<td>LAB.</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>53563</td>
<td>295</td>
</tr>
<tr>
<td>OBRA</td>
<td>15/04/17</td>
<td>22/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>57932</td>
<td>319</td>
</tr>
<tr>
<td>Descripción</td>
<td>Fecha</td>
<td>Edad</td>
<td>Dmt.</td>
<td>Área</td>
<td>Cargas</td>
<td>Porcentaje</td>
<td>Promedio</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Vaciado Rotura (días)</td>
<td>(Ø) (cm²)</td>
<td></td>
<td></td>
<td>kg.</td>
<td>kg/cm² (%)</td>
<td>kg/cm² (%)</td>
</tr>
<tr>
<td>LAB. 30/11/16</td>
<td>29/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>119486</td>
<td>658</td>
<td>120</td>
</tr>
<tr>
<td>OBRA 30/11/16</td>
<td>28/02/17</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>119945</td>
<td>661</td>
<td>130</td>
</tr>
<tr>
<td>LAB. 27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>115216</td>
<td>635</td>
<td>115</td>
</tr>
<tr>
<td>OBRA 27/02/17</td>
<td>24/04/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>115954</td>
<td>639</td>
<td>116</td>
</tr>
<tr>
<td>LAB. 24/03/17</td>
<td>21/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>107933</td>
<td>595</td>
<td>108</td>
</tr>
<tr>
<td>OBRA 24/03/17</td>
<td>21/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>106978</td>
<td>590</td>
<td>107</td>
</tr>
<tr>
<td>LAB. 03/04/17</td>
<td>17/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>84250</td>
<td>464</td>
<td>84</td>
</tr>
<tr>
<td>OBRA 03/04/17</td>
<td>17/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>87013</td>
<td>480</td>
<td>87</td>
</tr>
<tr>
<td>LAB. 17/04/17</td>
<td>24/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>70255</td>
<td>587</td>
<td>70</td>
</tr>
<tr>
<td>OBRA 17/04/17</td>
<td>24/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>71496</td>
<td>594</td>
<td>72</td>
</tr>
<tr>
<td>LAB. 17/04/17</td>
<td>24/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>70827</td>
<td>390</td>
<td>71</td>
</tr>
<tr>
<td>OBRA 17/04/17</td>
<td>24/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>69235</td>
<td>355</td>
<td>62</td>
</tr>
</tbody>
</table>

F'c = 550 kg/cm²
<table>
<thead>
<tr>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>125598</td>
<td>692</td>
<td>126</td>
</tr>
<tr>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>126025</td>
<td>695</td>
<td>126</td>
</tr>
<tr>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>118925</td>
<td>654</td>
<td>119</td>
</tr>
<tr>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>119012</td>
<td>656</td>
<td>119</td>
</tr>
<tr>
<td>08/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>121456</td>
<td>669</td>
<td>122</td>
</tr>
<tr>
<td>09/05/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>122968</td>
<td>676</td>
<td>125</td>
</tr>
<tr>
<td>08/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>115963</td>
<td>628</td>
<td>114</td>
</tr>
<tr>
<td>08/03/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>114256</td>
<td>630</td>
<td>114</td>
</tr>
<tr>
<td>08/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>115200</td>
<td>635</td>
<td>115</td>
</tr>
<tr>
<td>09/05/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>115647</td>
<td>637</td>
<td>116</td>
</tr>
<tr>
<td>08/03/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>103473</td>
<td>570</td>
<td>104</td>
</tr>
<tr>
<td>09/04/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>102041</td>
<td>567</td>
<td>103</td>
</tr>
<tr>
<td>08/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>86541</td>
<td>477</td>
<td>87</td>
</tr>
<tr>
<td>08/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>88503</td>
<td>487</td>
<td>88</td>
</tr>
<tr>
<td>08/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>77926</td>
<td>429</td>
<td>78</td>
</tr>
<tr>
<td>09/04/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>75541</td>
<td>415</td>
<td>75</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>72541</td>
<td>400</td>
<td>73</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>75142</td>
<td>414</td>
<td>75</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>73915</td>
<td>429</td>
<td>78</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>68452</td>
<td>377</td>
<td>69</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>66912</td>
<td>369</td>
<td>67</td>
</tr>
<tr>
<td>17/04/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>66752</td>
<td>368</td>
<td>67</td>
</tr>
</tbody>
</table>

F'c = 550 kg/cm² + (5%)
<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas kg.</th>
<th>Cargas kg/cm²</th>
<th>Porcentaje (%)</th>
<th>Promedio kg/cm² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>128125</td>
<td>706</td>
<td>128</td>
<td>706</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>127956</td>
<td>703</td>
<td>128</td>
<td>706</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>123525</td>
<td>664</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>121092</td>
<td>667</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>129365</td>
<td>683</td>
<td>124</td>
<td>684</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>129365</td>
<td>683</td>
<td>124</td>
<td>684</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>117952</td>
<td>650</td>
<td>118</td>
<td>649</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>117695</td>
<td>649</td>
<td>118</td>
<td>649</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>116165</td>
<td>640</td>
<td>116</td>
<td>646</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>118349</td>
<td>652</td>
<td>119</td>
<td>646</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>120525</td>
<td>664</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>121092</td>
<td>667</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>120525</td>
<td>664</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>121092</td>
<td>667</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>123525</td>
<td>664</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>121092</td>
<td>667</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>LAB.</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>120525</td>
<td>664</td>
<td>121</td>
<td>666</td>
</tr>
<tr>
<td>OBRA</td>
<td>08/12/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>121092</td>
<td>667</td>
<td>121</td>
<td>666</td>
</tr>
</tbody>
</table>

Concreto adicionado

\(f'c = 550 \text{ kg/cm}^2 + (10\%) \)
Concreto adicionado

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
<th>Edad</th>
<th>Dmt.</th>
<th>Área</th>
<th>Cargas</th>
<th>Porcentaje</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAB. 08/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>1292</td>
<td>673</td>
<td>123</td>
<td>674</td>
</tr>
<tr>
<td>OBRA 08/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>1295</td>
<td>675</td>
<td>125</td>
<td>653</td>
</tr>
<tr>
<td>LAB. 08/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>1158</td>
<td>638</td>
<td>116</td>
<td>636</td>
</tr>
<tr>
<td>OBRA 08/16</td>
<td>90</td>
<td>15.2</td>
<td>181</td>
<td>1151</td>
<td>634</td>
<td>115</td>
<td>653</td>
</tr>
<tr>
<td>LAB. 14/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>1169</td>
<td>654</td>
<td>119</td>
<td>608</td>
</tr>
<tr>
<td>OBRA 14/17</td>
<td>56</td>
<td>15.2</td>
<td>181</td>
<td>1184</td>
<td>655</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>LAB. 01/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>1290</td>
<td>606</td>
<td>110</td>
<td>607</td>
</tr>
<tr>
<td>OBRA 01/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>1107</td>
<td>610</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>LAB. 01/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>996</td>
<td>547</td>
<td>99</td>
<td>547</td>
</tr>
<tr>
<td>OBRA 01/17</td>
<td>28</td>
<td>15.2</td>
<td>181</td>
<td>991</td>
<td>547</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>LAB. 08/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>862</td>
<td>475</td>
<td>86</td>
<td>476</td>
</tr>
<tr>
<td>OBRA 08/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>866</td>
<td>477</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>LAB. 08/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>748</td>
<td>412</td>
<td>75</td>
<td>418</td>
</tr>
<tr>
<td>OBRA 08/17</td>
<td>14</td>
<td>15.2</td>
<td>181</td>
<td>703</td>
<td>405</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>LAB. 08/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>730</td>
<td>351</td>
<td>64</td>
<td>338</td>
</tr>
<tr>
<td>OBRA 08/17</td>
<td>7</td>
<td>15.2</td>
<td>181</td>
<td>692</td>
<td>332</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

\(f'c = 550 \text{ kg/cm}^2 + (15\%) \)
Anexo N.° 12 CONTENIDO DE AIRE DEL CONCRETO RECIÉN MEZCLADO POR EL MÉTODO DE PRESIÓN SEGÚN ASTM C231

<table>
<thead>
<tr>
<th>f'c = 350</th>
<th>Polvo (%)</th>
<th>Contenido de Aire insitu (%)</th>
<th>Contenido de Aire Teórico (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1.85</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1.75</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>1.80</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>1.70</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'c = 420</th>
<th>Polvo (%)</th>
<th>Contenido de Aire insitu (%)</th>
<th>Contenido de Aire Teórico (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1.60</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>1.45</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'c = 500</th>
<th>Polvo (%)</th>
<th>Contenido de Aire insitu (%)</th>
<th>Contenido de Aire Teórico (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1.40</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>1.55</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>1.60</td>
<td>1.50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'c = 550</th>
<th>Polvo (%)</th>
<th>Contenido de Aire insitu (%)</th>
<th>Contenido de Aire Teórico (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1.60</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>1.45</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td>1.50</td>
<td>1.50</td>
<td></td>
</tr>
</tbody>
</table>
Anexo N.° 13 DETERMINACIÓN DE LA EXUDACIÓN DEL CONCRETO RECIÉN MEZCLADO SEGÚN ASTM C232

<table>
<thead>
<tr>
<th>Polvo (%)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'c = 350$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.20</td>
<td>11.90</td>
<td>11.90</td>
<td>3679.52</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.00</td>
<td>11.40</td>
<td>11.40</td>
<td>3679.52</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.50</td>
<td>10.80</td>
<td>10.80</td>
<td>3679.52</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>10.50</td>
<td>10.50</td>
<td>3679.52</td>
</tr>
<tr>
<td>$f'c = 420$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.80</td>
<td>11.10</td>
<td>11.10</td>
<td>3752.15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>10.80</td>
<td>10.80</td>
<td>3752.15</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>10.70</td>
<td>10.70</td>
<td>3752.15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.00</td>
<td>10.50</td>
<td>10.50</td>
<td>3752.15</td>
</tr>
<tr>
<td>$f'c = 500$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>10.50</td>
<td>10.50</td>
<td>3612.26</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.90</td>
<td>10.20</td>
<td>10.20</td>
<td>3612.26</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.70</td>
<td>10.00</td>
<td>10.00</td>
<td>3612.26</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>9.90</td>
<td>9.90</td>
<td>3612.26</td>
</tr>
<tr>
<td>$f'c = 550$</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>10.00</td>
<td>10.00</td>
<td>3595.36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.80</td>
<td>9.90</td>
<td>9.90</td>
<td>3595.36</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.60</td>
<td>9.80</td>
<td>9.80</td>
<td>3595.36</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.50</td>
<td>9.50</td>
<td>9.50</td>
<td>3595.36</td>
</tr>
</tbody>
</table>
Anexo N.° 14 RESISTENCIA AL DESGASTE DEL CONCRETO SEGÚN ASTM C944

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA Chávarry Boy Guido
TESIS Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambó, Chepén.
UBICACION Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO : DURABILIDAD - Resistencia al desgaste del concreto
REFERENCIA : Norma ASTM C-944

<table>
<thead>
<tr>
<th>Peso inicial</th>
<th>1 Ciclo (g)</th>
<th>2 Ciclo (g)</th>
<th>3 Ciclo (g)</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2859.6</td>
<td>2852.4</td>
<td>2843.9</td>
<td>2838.2</td>
</tr>
<tr>
<td>M 02</td>
<td>2567.2</td>
<td>2560.8</td>
<td>2554.1</td>
<td>2547.7</td>
</tr>
<tr>
<td>M 03</td>
<td>2719.8</td>
<td>2710.1</td>
<td>2703.4</td>
<td>2699.5</td>
</tr>
</tbody>
</table>

\[f'c = 350 \text{ kg/cm}^2, \text{ Patrón} \]

<table>
<thead>
<tr>
<th>Peso inicial</th>
<th>1 Ciclo (g)</th>
<th>2 Ciclo (g)</th>
<th>3 Ciclo (g)</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2712.1</td>
<td>2707.4</td>
<td>2702.8</td>
<td>2695.7</td>
</tr>
<tr>
<td>M 02</td>
<td>2734.6</td>
<td>2729.1</td>
<td>2725.3</td>
<td>2717.6</td>
</tr>
<tr>
<td>M 03</td>
<td>2767.8</td>
<td>2760.1</td>
<td>2755.3</td>
<td>2750.7</td>
</tr>
</tbody>
</table>

\[f'c = 350 \text{ kg/cm}^2, 10\% \text{ Polvo granito} \]
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido
TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chepén
UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO: DURABILIDAD - Resistencia al desgaste del concreto
REFERENCIA: Norma ASTM C-944

F'c diseñado: 420 kg/cm²

<table>
<thead>
<tr>
<th></th>
<th>PESO INICIAL (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% DESGASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2216.4</td>
<td>2211.8</td>
<td>2205.3</td>
<td>2203.8</td>
<td>0.57</td>
</tr>
<tr>
<td>M 02</td>
<td>2169.4</td>
<td>2164.6</td>
<td>2161.4</td>
<td>2157.1</td>
<td>0.57</td>
</tr>
<tr>
<td>M 03</td>
<td>2215.2</td>
<td>2212.8</td>
<td>2209.8</td>
<td>2205.4</td>
<td>0.53</td>
</tr>
</tbody>
</table>

f'c=420 kg/cm², Patrón

<table>
<thead>
<tr>
<th></th>
<th>PESO INICIAL (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% DESGASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2420.4</td>
<td>2417.8</td>
<td>2412.3</td>
<td>2408.7</td>
<td>0.48</td>
</tr>
<tr>
<td>M 02</td>
<td>2129.6</td>
<td>2124.1</td>
<td>2121.5</td>
<td>2119.6</td>
<td>0.47</td>
</tr>
<tr>
<td>M 03</td>
<td>2261.7</td>
<td>2258.4</td>
<td>2253.1</td>
<td>2251.4</td>
<td>0.46</td>
</tr>
</tbody>
</table>

F'c diseñado: 420 kg/cm², 10% Polvo granito

<table>
<thead>
<tr>
<th></th>
<th>PESO INICIAL (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% DESGASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2500.0</td>
<td>2497.8</td>
<td>2493.5</td>
<td>2489.2</td>
<td>0.45</td>
</tr>
<tr>
<td>M 02</td>
<td>2199.6</td>
<td>2194.1</td>
<td>2191.5</td>
<td>2189.6</td>
<td>0.47</td>
</tr>
<tr>
<td>M 03</td>
<td>2261.7</td>
<td>2258.4</td>
<td>2253.1</td>
<td>2251.4</td>
<td>0.46</td>
</tr>
</tbody>
</table>
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA: Chávarry Boy Guido

Tesis: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén.

Ubicación: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

Ensayo: DURABILIDAD - Resistencia al desgaste del concreto

Referencia: Norma ASTM C-944

Pesos Iniciales y CICLO 1, 2, 3

<table>
<thead>
<tr>
<th>Peso Inicial (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>1870.2</td>
<td>1868.8</td>
<td>1866.6</td>
<td>1862.7</td>
</tr>
<tr>
<td>M 02</td>
<td>1977.6</td>
<td>1976.4</td>
<td>1972.1</td>
<td>1969.3</td>
</tr>
<tr>
<td>M 03</td>
<td>2061.1</td>
<td>2059.3</td>
<td>2057.7</td>
<td>2053.2</td>
</tr>
</tbody>
</table>

f’c diseñado: 500 kg/cm²

f’c=500 kg/cm², Patrón

![Diagrama del ensayo](image)

<table>
<thead>
<tr>
<th>Peso Inicial (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2070.0</td>
<td>2075.0</td>
<td>2080.0</td>
<td>2085.0</td>
</tr>
<tr>
<td>M 02</td>
<td>2092.8</td>
<td>2089.8</td>
<td>2088.4</td>
<td>2083.5</td>
</tr>
<tr>
<td>M 03</td>
<td>2090.5</td>
<td>2086.8</td>
<td>2085.0</td>
<td>2081.6</td>
</tr>
</tbody>
</table>

f’c=500 kg/cm², 10% Polvo granito

![Diagrama del ensayo](image)

<table>
<thead>
<tr>
<th>Peso Inicial (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% Desgaste</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>2070.0</td>
<td>2075.0</td>
<td>2080.0</td>
<td>2085.0</td>
</tr>
<tr>
<td>M 02</td>
<td>2092.8</td>
<td>2089.8</td>
<td>2088.4</td>
<td>2083.5</td>
</tr>
<tr>
<td>M 03</td>
<td>2090.5</td>
<td>2086.8</td>
<td>2085.0</td>
<td>2081.6</td>
</tr>
</tbody>
</table>
ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL

TESISTA: Chávarry Boy Guido

TESIS: Elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera talambo, Chépén.

UBICACIÓN: Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.

ENSAYO: DURABILIDAD - Resistencia al desgaste del concreto

REFERENCIA: Norma ASTM C-944

<table>
<thead>
<tr>
<th></th>
<th>PESO INICIAL (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% DESGASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>1822.5</td>
<td>1820.1</td>
<td>1818.3</td>
<td>1815.4</td>
<td>0.39</td>
</tr>
<tr>
<td>M 02</td>
<td>1931.6</td>
<td>1930.0</td>
<td>1927.7</td>
<td>1924.4</td>
<td>0.37</td>
</tr>
<tr>
<td>M 03</td>
<td>1767.3</td>
<td>1768.2</td>
<td>1764.4</td>
<td>1760.7</td>
<td>0.37</td>
</tr>
</tbody>
</table>

\[f'c = 550 \text{ kg/cm}^2, \text{ Patrón} \]

\[f'c = 550 \text{ kg/cm}^2, 10\% \text{ Polvo granito} \]

<table>
<thead>
<tr>
<th></th>
<th>PESO INICIAL (g)</th>
<th>1 CICLO (g)</th>
<th>2 CICLO (g)</th>
<th>3 CICLO (g)</th>
<th>% DESGASTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>1984.3</td>
<td>1982.5</td>
<td>1980.5</td>
<td>1976.1</td>
<td>0.41</td>
</tr>
<tr>
<td>M 02</td>
<td>1979.1</td>
<td>1976.4</td>
<td>1974.1</td>
<td>1971.2</td>
<td>0.40</td>
</tr>
<tr>
<td>M 03</td>
<td>1988.1</td>
<td>1984.6</td>
<td>1983.2</td>
<td>1980.1</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\[f'c = 550 \text{ kg/cm}^2, 10\% \text{ Polvo granito} \]
Anexo N° 15. REACTIVIDAD POTENCIAL ÁLCALI SÍLICE SEGÚN ASTM C1260

UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL AMBIENTAL
LABORATORIO DE ENSAYO DE MATERIALES, SUELOS Y PAVIMENTOS
Av. San Josemaría Escrivá N°855. Chiclayo - Perú

ESCUELA: ESCUELA DE INGENIERÍA CIVIL AMBIENTAL
TESISTA Chávarry Boy Guido
TESIS Elaboración de concreto de alta resistencia incorporando partículas residuales del charcado de piedra de la cantera talambo, Chepén.
UBICACION Distrito de Chiclayo, Provincia de Chiclayo, Departamento de Lambayeque.
ENSAYO : DURABILIDAD - determinación de la reactividad potencial álcali-sílice
REFRERENCIA : Norma ASTM C1260-07

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0291</td>
<td>0.0739</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0292</td>
<td>0.0742</td>
<td>0.00025</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0297</td>
<td>0.0754</td>
<td>0.00152</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0301</td>
<td>0.0765</td>
<td>0.00254</td>
</tr>
</tbody>
</table>

Porcentaje de expansión 0.017

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0298</td>
<td>0.0757</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0300</td>
<td>0.0762</td>
<td>0.00203</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0306</td>
<td>0.0777</td>
<td>0.00299</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0307</td>
<td>0.0780</td>
<td>0.00299</td>
</tr>
</tbody>
</table>

Porcentaje de expansión 0.015

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0299</td>
<td>0.0739</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0301</td>
<td>0.0765</td>
<td>0.00251</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0308</td>
<td>0.0782</td>
<td>0.00299</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0310</td>
<td>0.0786</td>
<td>0.00267</td>
</tr>
</tbody>
</table>

Porcentaje de expansión 0.018

Observación: No existe expansión por reacción álcali-sílice
Ensayo de Durabilidad: determinación de la reactividad potencial álcali-sílice

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0517</td>
<td>0.1313</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0519</td>
<td>0.1318</td>
<td>0.002051</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0538</td>
<td>0.1367</td>
<td>0.00533</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0547</td>
<td>0.1389</td>
<td>0.00762</td>
</tr>
</tbody>
</table>

Porcentaje de expansión: 0.052

Ensayo 02

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0425</td>
<td>0.1080</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0428</td>
<td>0.1087</td>
<td>0.00076</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0445</td>
<td>0.1125</td>
<td>0.00457</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0445</td>
<td>0.1130</td>
<td>0.00508</td>
</tr>
</tbody>
</table>

Porcentaje de expansión: 0.034

Ensayo 03

<table>
<thead>
<tr>
<th>N°</th>
<th>Fecha</th>
<th>Lectura (pulg)</th>
<th>Lectura (cm)</th>
<th>Expansión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/06/2017</td>
<td>0.0450</td>
<td>0.1143</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16/06/2017</td>
<td>0.0451</td>
<td>0.1146</td>
<td>0.00025</td>
</tr>
<tr>
<td>3</td>
<td>23/06/2017</td>
<td>0.0472</td>
<td>0.1199</td>
<td>0.00559</td>
</tr>
<tr>
<td>4</td>
<td>30/06/2017</td>
<td>0.0474</td>
<td>0.1204</td>
<td>0.00610</td>
</tr>
</tbody>
</table>

Porcentaje de expansión: 0.041

Observación: No existe expansión por reacción álcali-sílice
Anexo N° 16. CURADO DE PROBETAS CILÍNDRICAS

Anexo N.° 16.1: Curado de muestras cilíndricas en condiciones reales

Anexo N.° 16.2: Curador de concreto Sika Antisol
Anexo N.° 16.3: Curado de muestras cilíndricas en laboratorio, piscina de 4.00 m x 2.20 m
Anexo N° 17. FICHA TÉCNICA DE ADITIVO CURADOR DE CONCRETO

HOJA TÉCNICA

Sika® Antisol® S
Compuesto líquido para el curado de concreto

DESCRIPCIÓN DEL PRODUCTO

Sika® Antisol® S es una emulsión líquida que cuando es aplicada con un pulverizador sobre concreto fresco desarrolla una película impermeable y sellante de naturaleza micro cristalina. Asegura una protección perfecta al concreto después que el cemento ha reaccionado positivamente, de gran adherencia y resistencia mecánica para anclajes estructurales.

USOS

Sika® Antisol® S ofrece una protección durable y consistente del concreto fresco contra una evaporación demasiado rápida debido a la acción del sol y viento, por lo tanto previene el desarrollo de fisuras superficiales en la mezcla de cemento en proceso de endurecimiento.

Es especialmente apropiado para el tratamiento de superficies verticales donde la previsión es realizada para la posterior protección de la estructura sin efectos negativos.

CARACTERÍSTICAS / VENTAJAS

Si el Sika® Antisol® S es aplicado correctamente no mancha las superficies. Hace las superficies muy resistentes y compactas debido a que el residuo cristalino del producto cierra todos los poros superficiales del concreto incorporándose en éste. Además, la película no impide la adherencia de tratamientos posteriores o pinturas. Adicionalmente, se puede caminar (tráfico ligero) sobre las áreas tratadas sólo después de 24 horas.

NORMA

Cumple con la Norma U.N.I. 8656 bajo la clase tipo 1.

DATOS BÁSICOS

<table>
<thead>
<tr>
<th>FORMA</th>
<th>ASPECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Líquido</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLORES</th>
<th>PRESENTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparente</td>
<td>- Balde x 20 L.</td>
</tr>
<tr>
<td></td>
<td>- Cilindro x 200 L.</td>
</tr>
</tbody>
</table>

Hoja Técnica
Sika® Antisol® S
10.11.14. Edición 10

1/3
ALMACENAMIENTO
CONDICIONES DE ALMACENAMIENTO / VIDA ÚTIL
Sika® Antisol® S puede ser almacenado en un sitio libre de congelamiento a temperaturas sobre los +5 °C durante 2 años.

DATOS TÉCNICOS
DENSIDAD
1.13 kg/L ± 0.01

INFORMACIÓN DEL SISTEMA

DETALLES DE APLICACIÓN
CONSUMO / DOSIS
El consumo de Sika® Antisol® S es de 162 cm³ – 180 cm³ de producto por m² de superficie. Haciendo uso de un equipo pulverizador operado por una sola persona, se puede aplicar alrededor de 1000 m² de superficie en una jornada de 8 horas.

MÉTODO DE APLICACIÓN
MODO DE APLICACIÓN
Sika® Antisol® S debe ser aplicado puro mediante un equipo pulverizador a una presión aproximada de 1 atmósfera de presión, pulverizándolo directamente en una sola pasada sobre el concreto fresco.
La aplicación debe ser realizada después de colocado y acabado el concreto inmediatamente después que el agua superficial haya desaparecido, teniendo cuidado de lograr una película de protección continua y consistente. En el caso de superficies verticales, inmediatamente después de retirar el encofrado las superficies deben ser lavadas con agua limpia y luego el producto debe ser pulverizado en forma uniforme sobre la superficie.

DESECHO
No arrojar el producto a ríos, canales o al suelo.
No arrojar los envases vacíos en el medio ambiente
El producto no es tóxico ni inflamable

INSTRUCCIONES DE SEGURIDAD

PRECAUCIONES DE MANIPULACIÓN
Durante la manipulación de cualquier producto químico, evite el contacto directo con los ojos, piel y vías respiratorias. Protéjase adecuadamente utilizando guantes de goma naturales o sintéticos y anteojos de seguridad.
En caso de contacto con los ojos, lavar inmediatamente con abundante agua durante 15 minutos manteniendo los párpados abiertos y consultar a su médico.

OBSERVACIONES
La Hoja de Seguridad de este producto se encuentra a disposición del interesado. Agradeceremos solicitarla a nuestro Departamento Comercial, teléfono: 618-6060 o descargarla a través de Internet en nuestra página web: www.sika.com.pe

NOTAS LEGALES
La información y en particular las recomendaciones sobre la aplicación y el uso final de los productos Sika son proporcionadas de buena fe, en base al conocimiento y experiencia actuales en Sika respecto a sus productos, siempre y cuando éstos sean adecuadamente almacenados, manipulados y transportados; así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra en donde se aplicarán los productos Sika son tan particulares que de esta información, de alguna recomendación escrita o de algún asesoramiento técnico, no se puede deducir ninguna garantía respecto a la comercialización o adaptabilidad del producto a una finalidad particular, así como ninguna responsabilidad contractual. Los derechos de propiedad de las terceras partes deben ser respetados.
 Todos los pedidos aceptados por Sika Perú S.A. están sujetos a Cláusulas Generales de Contratación para la Venta de Productos de Sika Perú S.A. Los usuarios siempre deben remitirse a la última edición de la Hoja Técnica de los productos; copias copias se entregará a solicitud del Interesado o a las que pueden acceder en Internet a través de nuestra página web www.sika.com.pe.

Hoja Técnica
Sika® Antisol® S
19.11.14, Edición 10

BUILDING TRUST
"La presente Edición anula y reemplaza la Edición Nº 9
la misma que deberá ser destruida"

PARA MÁS INFORMACIÓN SOBRE Sika® Antisol® 5:

1. - SIKA PRODUCT FINDER: APLICACIÓN DE CATÁLOGO DE PRODUCTOS

2. - SIKA CIUDAD VIRTUAL

Sika Perú S.A.
Waterproofing
Centro Industrial "Las Praderas
de Lurín" s/n M2 B, Lotes 5 y
6, Lurín
Lima
Perú
www.sika.com.pe

Versión elaborada por: Sika Perú
S.A.
HS, Departamento Técnico
Tel: 618-6060
Fax: 618-6070
Mail: Informacion@pe.sika.com

Sika Perú S.A.

BUILDING TRUST
FICHA TÉCNICA DE CEMENTO PORTLAND TIPO I

Composición Química

<table>
<thead>
<tr>
<th>Muy Hidratado (MgO)</th>
<th>%</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximo 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinker (C3S)</th>
<th>%</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximo 3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perdida por Ignición</th>
<th>%</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximo 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residuo Inscindible</th>
<th>%</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximo 0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propiedades Físicas

<table>
<thead>
<tr>
<th>Clinker (C3S)</th>
<th>%</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximo 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supersuf. Específica</th>
<th>cm²/g</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimo 2800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Densidad</th>
<th>g/ml</th>
<th>CPSAA</th>
<th>NTP 334.009 / ASTM C150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasta 3.07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resistencia Compresión:

- Resistencia Compresión a 3 días (MPa):
 - CPSAA: 39.4
 - NTP 334.009 / ASTM C150: Mínimo 12.0

- Resistencia Compresión a 7 días (MPa):
 - CPSAA: 53.3
 - NTP 334.009 / ASTM C150: Mínimo 19.0

- Resistencia Compresión a 28 días (MPa):
 - CPSAA: 43.7
 - NTP 334.009 / ASTM C150: Mínimo 28.0

Tiempo de Prescindible Víctim:

- Fractura Inicial: 160 min
- Fractura Final: 214 min

Los resultados anteriores corresponden a pruebas de laboratorio realizadas durante el periodo del 01-03-2016 al 31-03-2016. La resistencia a la compresión a 28 días está correlacionada al mes de Febrero 2016.

(*) Requisito opcional.

Ing. Ivanoff V. Rojas Tello
Superintendente de Control de Calidad

Soliciiado por: Distribuidora Norte Pacasmayo S.R.L.
Anexo N° 19. FICHA TÉCNICA DE CONCRETOS DE ALTA RESISTENCIA SEGÚN EMPRESA UNICON

CONCRETO DE ALTA RESISTENCIA UNICON

Una solución eficiente, durable y económica para estructuras que soportan alta demanda de carga.

Descripción:
- Concretos de resistencias iguales o superiores a 420 kg/cm² (6,000 PSI).
- Los materiales y el producto final son controlados y ensayados de acuerdo al Reglamento Nacional de Construcciones y la norma ACI - 318.

Usos:
- Recomendado para proyectos que requieran de elementos estructurales que soporten altas demandas de carga.
- En todas las estructuras donde se requiera obtener resistencias a 28 días o resistencias iniciales altas.
- Por sus características mecánicas mejoradas es ideal para construir:
 - Muros de rigidez, columnas y vigas en edificios de oficinas, departamentos, centros comerciales, hoteles y edificios de gran altura.
 - Se específica para concretos pre-esforzados (ej. vigas pre-esforzadas).
 - Estructuras costeras, sanitarios y militares.
 - Bóvedas de seguridad.
 - Elementos prefabricados.
- Ideal para sistemas industrializados.

Tipos:
- Se específica de acuerdo al tipo de agregado empleado: agregado fino, estándar y medio; pueden ser bombeados.

Ventajas:
- Mayor rendimiento en ejecución de obras. Permite mayor rotación de encofrados y menos tiempo de uso.
- Se pueden diseñar menores secciones estructurales, con ahorro en áreas de construcción.
- Permite disminuir cuantías de refuerzo en los diseños.
- Permite la reducción de la cantidad de acero de refuerzo en columnas.
- Mejora la protección contra la corrosión del acero de refuerzo.
- La estructura tiene un menor costo versus otras diseñadas en acero.
- Mayor resistencia a la erosión.
- Su consistencia permite bombearlo a grandes alturas.
- Su alta fluidez permite su colocación aún en zonas congestionadas de acero de refuerzo.

Precauciones:
- Requiere excelentes condiciones de curado.
- Cualquier adición de agua, cemento o aditivo en obra alterará su diseño, perjudicando la calidad de concreto.
- El concreto que haya empezado con el proceso de fraguado no debe vibrarse, ni mezclarse, ni utilizarse en caso de demoras en obra.
- Se deben cumplir estrictamente todas las normas referentes a manejo de protección y control de concreto.

Oficina Principal: Av. Panamericana Sur km. 11.4, San Juan de Miraflores Central: (511) 215-4600
Ventas: (511) 215-4700 **Servicio al cliente:** (511) 215-4700 **E-mail:** Ventas: comercial@unicom.com.pe
Programación: es@unicom.com.pe **Despacho:** despacho@unicom.com.pe **www.unicom.com.pe**
<table>
<thead>
<tr>
<th>TIPO DE CONCRETO</th>
<th>CONCRETO DE ALTA RESISTENCIA</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencias de especificación</td>
<td>420, 500, 600, 700, 800, 900, 1000</td>
<td>Kg/cm²</td>
</tr>
<tr>
<td>Edades de verificación de resistencia f' c</td>
<td>28</td>
<td>Dias</td>
</tr>
<tr>
<td>Tamaño máximo de agregado</td>
<td>Huso 67 ASTM = ⅜</td>
<td>Pulgadas</td>
</tr>
<tr>
<td></td>
<td>Huso 89 ASTM = ⅜</td>
<td></td>
</tr>
<tr>
<td>Tiempo de manejabilidad desde la llegada a la obra</td>
<td>1.5</td>
<td>Horas</td>
</tr>
<tr>
<td>Asentamiento de diseño</td>
<td>3 ± 1</td>
<td>Pulgadas</td>
</tr>
<tr>
<td>Tiempos de fraguado inicial desde la salida de la planta</td>
<td>3.5</td>
<td>Horas</td>
</tr>
</tbody>
</table>
Anexo N° 20. ENSAYO DE ANÁLISIS POR SEDIMENTACIÓN DE ADICIÓN POLVO DE GRANITO, LABORATORIO A&M Geotecnia y Mecánica de Suelos S.A.C.

<table>
<thead>
<tr>
<th>Hora</th>
<th>Temp. °C</th>
<th>m</th>
<th>t</th>
<th>R</th>
<th>R + m</th>
<th>Grano mm</th>
<th>P</th>
<th>Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.00</td>
<td>21</td>
<td>0.5</td>
<td>10 seg.</td>
<td>21</td>
<td>21</td>
<td>23.4</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>1100.30</td>
<td>21</td>
<td>0.5</td>
<td>30 seg.</td>
<td>21</td>
<td>21</td>
<td>23.9</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.01</td>
<td>21</td>
<td>0.5</td>
<td>1 min.</td>
<td>21</td>
<td>21</td>
<td>21.3</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.02</td>
<td>21</td>
<td>0.5</td>
<td>2 min.</td>
<td>21</td>
<td>21</td>
<td>21.8</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.05</td>
<td>21</td>
<td>0.5</td>
<td>5 min.</td>
<td>21</td>
<td>21</td>
<td>16.7</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.15</td>
<td>21</td>
<td>0.5</td>
<td>15 min.</td>
<td>21</td>
<td>21</td>
<td>15.4</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.45</td>
<td>21</td>
<td>0.5</td>
<td>45 min.</td>
<td>21</td>
<td>21</td>
<td>14.5</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>13.01</td>
<td>17.7</td>
<td>0.5</td>
<td>2 h</td>
<td>12.7</td>
<td>12.7</td>
<td>15.0</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>16.00</td>
<td>17.9</td>
<td>0.5</td>
<td>5 h</td>
<td>13.2</td>
<td>13.2</td>
<td>10.3</td>
<td>15.6</td>
<td>95.1</td>
</tr>
<tr>
<td>11.01</td>
<td>19.3</td>
<td>0.5</td>
<td>24 h</td>
<td>7.3</td>
<td>7.8</td>
<td>7.8</td>
<td>15.6</td>
<td>95.1</td>
</tr>
</tbody>
</table>

Peso de la muestra: 40,00 g
Fracción < 0,074 mm.

Vaso N°: 1
Anexo N° 21. ENSAYO DE PESO ESPECÍFICO DE POLVO DE GRANITO SEGÚN NTP 334.005

<table>
<thead>
<tr>
<th>Cantera</th>
<th>Talambo, Chepén.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>Polvo de granito color gris</td>
</tr>
<tr>
<td>Peso específico del polvo de granito</td>
<td>g/cm³</td>
</tr>
</tbody>
</table>

OBSERVACIONES:
1) Muestreo e identificación realizado por el Tesista.
- El presente documento no deberá reproducirse sin la autorización escrita del Laboratorio, salvo que la reproducción sea en su totalidad (GUÍA PERUANA INDECOPI : GP 004:1993)
Anexo N° 22. FICHA TÉCNICA POLVO DE GRANITO

DESCRIPCIÓN

Es un aditivo mineral que se añade en forma de polvo, brindando más y mejores características al concreto; su composición basada en óxido de sílice involucra un incremento en la resistencia a la compresión del concreto, y un incremento a la capacidad de resistencia al desgaste del concreto hasta resistencias de 420kg/cm². El proceso de obtención del polvo de granito no representa mayor peligro gracias a la baja tasa de contaminación que se genera en su producción en comparación con otros productos.

USOS

- Concretos con resistencia hasta 420 kg/cm² con un alto contenido de cemento y en los que se requiera mejorar su durabilidad.
- Colocar concretos en servicio a una edad menor, como por ejemplo en el uso de pavimentos.
- Elementos estructurales donde se requiera mejorar su resistencia para soportar las demandas de carga.
- Construcción de superestructuras de puentes y mejora de la durabilidad de sus elementos.
- Aplicaciones especiales donde se requiera mejorar su durabilidad, como por ejemplo presas, cubiertas de graderías, cimentaciones marinas, pisos industriales de tráfico pesado.

VENTAJAS Y CARACTERÍSTICAS

- Incrementa la resistencia a la compresión, el polvo de granito absorbe parte de las fuerzas internas que se producen en la matriz del concreto.
- Aumenta la cohesión y disminuye la exudación de la mezcla fresca.
- Incrementa la durabilidad del concreto, su resistencia a la abrasión hasta concretos de 420 kg/cm².

DATOS BÁSICOS

Aspecto: polvo
Color: gris

DATOS TÉCNICOS

Peso específico: 2.68 g/cm³

ANÁLISIS QUÍMICO

<table>
<thead>
<tr>
<th>Óxido</th>
<th>Proporción</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>82.00 %</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.59 %</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.41 %</td>
</tr>
</tbody>
</table>
CaO..............................3.94 %
MgO..............................1.18 %
Cl...................................0.01 %

Finura (diámetro promedio):
6.1 µm

DOSIFICACIÓN
Se debe adicionar a la mezcla en dosis de aproximadamente 10 % del peso del cemento, para concretos con resistencias de hasta 420 kg/cm².

MÉTODO DE APLICACIÓN
El polvo de granito deberá ser adicionado después de ingresados todos los materiales que componen la mezcla de concreto, inmediatamente después de verter el agua de mezclado; de esta manera se puede apreciar los cambios ligeros que genera la adición en la fluidez de la mezcla y no resulta necesario agregar más agua que la dosificación de mezcla patrón.

ALMACENAMIENTO
Se deberá almacenar en bolsas plásticas con cierre hermético, en un lugar fresco y seco alejado de los rayos del sol y de cualquier otra fuente de contaminación perjudicial para el concreto.

INSTRUCCIONES DE SEGURIDAD
Para la extracción de polvo de granito mediante el tamizado manual será de uso obligatorio el uso de equipos de protección personal (EPP).

- **Protección respiratoria**: NIOSH recomienda usar un respirador de partículas de media cara con filtros N95 ajustado correctamente y en buenas condiciones para la exposición al sílice que superen los límites de exposición. Marca: 3M (NIOSH 8511).

- **Protección ocular**: Para manipulación usar gafas de seguridad de policarbonato de alta resistencia, con protección 99% rayos UV y anti empañante. Cumplen las normativas americanas ANSI. No se recomienda usar lentes de contacto. Marca: 3M.

- **Protección dérmica**: Usar guantes de neoprene de 14”, botas de jebe y ropa protectora impermeable al agua para evitar el contacto con la piel. Después de entrar en contacto con el material lavar las áreas expuestas.

Es muy importante realizar inspecciones al EPP antes de colocárselo, verificando que no tenga averías o deterioros. Así como también realizar la limpieza antes y después de utilizarlos y almacenarlos adecuadamente.

La capacitación del personal involucrado incluye la indicación de Riesgos por exposición a la adición (concentración alta de sílice), considerando que puede
provocar la enfermedad llamada “Silicosis” (Enfermedad que disminuye la capacidad pulmonar de extraer el oxígeno del aire y puede ser aumento del riesgo de contraer cáncer).

De ser el caso, será necesario la instalación de un equipo de monitoreo al personal que manipula la adición, a través de un sistema que capta el polvo que se está respirando y que consta de: Bomba de aspiración eléctrica a un flujo de 1,7 litros/min, ciclón para captar polvo respirable del tipo Dorr – Oliver, Porta-filtro con filtro de PVC de 37 mm de diámetro y 5 µm tamaño de poro, y Mangueras de conexión. El proceso termina cuando por el equipo pase a través del filtro un volumen mínimo de 400 litros y un máximo de 800 litros. El Límite Permissible Ponderado [mg/m³] de Sílice libre es 0,08 (NIOSH 7602). Los controles de salud ocupacional en esta materia se realizarán de 1 a 3 años en función de las concentraciones encontradas.

Para los EPP especiales se debe tener en cuenta los siguientes cuidados:
- Respirador de partículas o polvo: Cuando no utiliza su respirador guárdelo en una bolsa plástica bien cerrada, de lo contrario se saturará con la contaminación dispersa en el ambiente. Deberán considerar que los filtros se cambien según el tiempo de vida útil indicada en la ficha del producto.
- Gafas de seguridad: Deben ser limpiadas con un paño húmedo antes de comenzar la jornada. Si están sucias o rayadas limitan su visión y pueden ocasionarle un accidente.
- Calzado de seguridad: Si sus botas están agujeradas o rotas, no las repare, cámbielas. Ninguna reparación que usted pueda realizar le dará una protección adecuada.
- Guantes y ropa: Después de la jornada laboral lávelos con abundante agua, y considerar 02 juegos por personal. Deben estar limpios, disponibles todos los días y deben ponerse antes de trabajar.

Recomendaciones de seguridad:
- Los ambientes de trabajo deben ser ventilados, no sólo como un medio de resguardar la salud de los trabajadores, sino que también contribuye a mejorar la producción evitando zonas calurosas.
- Se debe trabajar en lugares secos.
- Se debe realizar exámenes médicos anuales a los trabajadores
- No se debe permitir el acceso a personas con enfermedades respiratorias, mujeres embarazadas, niños y ancianos.
- No dormir o descansar en los lugares de almacenaje.
- No se debe permitir el libre acceso a personas, sin uso de los equipos de protección personal.
- No se debe permitir el consumo de alimentos dentro de los ambientes de trabajo para evitar la inhalación de este material.
PRECAUCIONES DE MANIPULACIÓN

Se recomienda tener en cuenta ensayos previos a la elaboración del concreto en obra para evaluar posibles cambios dentro de la mezcla por la acción de los agregados y el diseño de mezcla. La adición de polvo de granito debe hacerse dentro de las proporciones recomendadas; usar mayor cantidad de adición que la recomendada reduce la resistencia de diseño inicial.

El uso de polvo de granito está condicionado solo a la utilidad de materiales componentes del concreto con temperaturas normales. Cualquier adición distinta o uso contrario al mencionado en la presente ficha técnica deberá ser previamente analizada y autorizada por el profesional encargado.

Durante la manipulación de este mineral mantener seco el polvo de granito en bolsas hasta que se utilicen. Apilar el material en bolsas de manera segura para evitar caídas. En el acto de incorporar la adición al concreto se debe hacer uso de los equipos de protección personal descritos en las instrucciones de seguridad.

Evitar en todo momento acciones que permitan que el aire levante el polvo durante la limpieza, como barrer en seco o usar aire comprimido. Usar una aspiradora con filtro HEPA, compuesto por una malla de fibras de vidrio de entre 0,5 y 2 µm de diámetro, o mojar bien con agua para recoger el polvo. Usar los equipos de protección personal descritos en las instrucciones de seguridad.

Al término de las actividades de trabajo quitarse y lavar inmediatamente la ropa con polvo de granito. Lavarse la piel tras la exposición del polvo.

En caso de contacto con los ojos, enjuagar inmediatamente con abundante agua durante 10 minutos manteniendo los párpados abiertos, para eliminar todas las partículas y evacuar inmediatamente al centro médico más cercano.

En caso de contacto dérmico, lavar la piel con agua fresca y un jabón de pH neutral, o un detergente suave para la piel y evacuar inmediatamente al centro médico más cercano.

En caso de contacto con las vías respiratorias, llevar al personal al aire fresco y evacuar inmediatamente al centro de salud más cercano.

En caso de ingestión, no provocar vómitos, procurar beber abundante agua y evacuar al centro de salud más cercano e indicar la intoxicación originada por el contacto de la adición.

No reenvase este tipo de adición en recipientes diferentes al envase original y sobre todo mantenga lejos del alcance de personal no autorizado.

Antes de utilizar la adición leer atentamente las precauciones de uso, así como la ficha de datos de seguridad de la hoja técnica.
EVALUACIÓN DE IMPACTO AMBIENTAL DEL PROYECTO DENOMINADO “ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA INCORPORANDO PARTÍCULAS RESIDUALES DEL CHANCADO DE PIEDRA DE LA CANtera TALAMBO, CHEPÉN”
EVALUACION DE IMPACTO AMBIENTAL

1.1. Resumen ejecutivo

La provincia de Chiclayo, ubicada a 13 km de la costa del Pacífico y 770 km de la capital del país, ha delineado la presente Evaluación de Impacto Ambiental, el mismo que cumple con la normativa nacional ambiental vigente garantizando, previniendo y mitigando los impactos ambientales y sociales negativos. Además, de esta manera, logra una correcta gestión de las partículas residuales del chancado de piedra, los que son llevados para otros usos inadecuados y perjudiciales.

La EIA de este proyecto garantiza la sostenibilidad ambiental por la reutilización de las partículas residuales del chancado de piedra en la fabricación de mezcla de concreto, a través del uso de polvo de granito se busca producir un producto con la misma o mejor calidad que un convencional y también con una adecuada gestión ambiental.

1.2. Datos generales

1.2.1. Nombre del proponente, titular o representante legal

Razón social : USAT
Nombre completo : Universidad Católica Santo Toribio de Mogrovejo
Domicilio : Av. San Josemaría Escrivá de Balaguer N.º 855

1.2.2. Entidad autorizada para la elaboración de estudio de impacto ambiental

Razón social : Chávarry Boy, Guido
Domicilio : Av. Unión # 455 La Victoria
Correo electrónico : g_mchra17@hotmail.com

1.3. Aspectos generales

1.3.1. Objetivos y alcance

1.3.1.1. Objetivo general

Realizar la Evaluación de Impacto Ambiental (EIA) del proyecto “Elaboración de concreto de alta resistencia incorporando partículas residuales del
chancado de piedra de la cantera Talambo, Chepén”.

1.3.1.2. **Objetivo específico**

- Describir el proyecto
- Desarrollar la línea base ambiental
- Dar a conocer las características ambientales
- Identificar y evaluar los impactos ambientales
- Desarrollar y efectuar un Plan de Manejo Ambiental

1.3.2. **Alcances**

El presente proyecto de investigación permitirá dar un nuevo uso a las partículas residuales del chancado de piedra de talambo, que no están siendo utilizados en el campo de la ingeniería civil, pudiendo este ser reutilizado como adición para la producción de concretos.

1.3.3. **Antecedentes.**

Este material al tener elementos en su composición principalmente el sílice que mejora ciertas propiedades en el concreto simple se ha impulsado en la fabricación de concreto de alta resistencia, siendo esta aplicación el punto de partida para frenar la contaminación medio ambiental local para poder hacer de estas partículas nuevos usos para el bienestar de la población y contribuir con el cambio climático.

1.3.4. **Marco legal**

1.3.4.1. **Normas generales**

1. Ley N° 23852: Ley orgánica de Municipalidades (08.06.1984)
2. Decreto legislativo 1078
3. Ley N° 26839: Ley sobre la conservación y aprovechamiento sostenible de la diversidad biológica (17.06.1998)
4. Ley N° 26842 Ley general de salud
5. Ley N° 27314: Ley general de residuos sólidos (21.07.00)
6. Ministerio del ambiente
7. Decreto Legislativo N.° 1013
8. Organismo de evaluación y fiscalización ambiental (OEFA)
9. Ley N.° 27446: Ley del sistema nacional de evaluación del impacto ambiental (23.04.11)

1.3.5. Descripción del proyecto
 1.3.5.1. Ubicación del proyecto
 El proyecto de investigación que contempla el uso del polvo de granito como parte del concreto simple, se encuentra ubicado y se desarrollará en la Universidad Católica Santo Toribio de Mogrovejo del distrito de Chiclayo, Provincia de Chiclayo, departamento de Lambayeque.

 "Figura N° 21. Ubicación del proyecto"

Fuente: Google earth

1.3.6. Línea base
 1.3.6.1. Área de influencia directa e indirecta.
 El distrito de Chiclayo está ubicado en el departamento de Lambayeque, en el norte del Perú. Presenta una extensión de 174.50 km². Limita por el norte con el distrito de Picsi, por el sur con Zaña, Reque y La Victoria, por este con Zaña, y por el oeste con Pimentel y San José.
1.3.6.2. Aspecto físico

1.3.6.2.1. Climatología

Chiclayo está ubicado en una zona tropical pero con estado subtropical, de temperatura agradable, seca y sin lluvia. Periódicamente, por lo general cada 7 años, presentan temperaturas elevadas que puedes pasar los 30° debido al fenómeno El Niño, con lluvia de regular intensidad y un aumento de caudal en las corrientes de aguas superficial.

A lo largo del año se mantiene una temperatura promedio de 24-25 °C, con excepción a los meses de diciembre a marzo que presenta un aumento de temperatura por lo general de 5-6 °C.
1.3.6.2.2. Calidad del aire y ruido

Calidad del ruido

La calidad de ruido en la Ciudad de Chiclayo se encuentra en la clasificación media-baja por el hecho de que los Dba promedios se encuentran por debajo de los permisibles (85 dBA).

Calidad del aire

Chiclayo estaría ubicada entre las 30 ciudades más contaminadas del Perú, debido a que las actividades industriales y comerciales generan una cantidad considerable de emisiones de dióxido de carbono, plomo y dióxido de azufre.
Así lo revela un estudio realizado por la Dirección de Calidad Ambiental del Ministerio del Ambiente. Los niveles de contaminación registrados en Chiclayo son originados por su caótico crecimiento urbano, además, se realizan obras civiles sin previo estudio de impacto ambiental.

1.3.6.3. **Suelo, capacidad de uso y zonificación**

Chiclayo se caracteriza por tener suelos de origen aluvial según la clasificación de suelos de la ONERN (Oficina Nacional de Evaluación de Recursos Naturales), siendo del tipo fluvioso éutrico-regosol éutrico. Estos suelos poseen problemas de salinidad debida fundamentalmente al drenaje deficiente, y en su mayoría son de textura arcillosa o franco arcilloso de estructura granular.

Según sea el tipo de suelo para habitar también se clasifica de la siguiente manera:

\[\text{Tabla N°. 38. Clasificación general de uso de suelo}\]

<table>
<thead>
<tr>
<th>CLASIFICACIÓN</th>
<th>SUPERFICIE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hás.</td>
</tr>
<tr>
<td>SUELO URBANO</td>
<td></td>
</tr>
<tr>
<td>APTO</td>
<td>3,467.22</td>
</tr>
<tr>
<td>APTO CON RESTRICCIONES</td>
<td>494.50</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>3,961.72</td>
</tr>
<tr>
<td>SUELO URBANIZABLE</td>
<td></td>
</tr>
<tr>
<td>DE EXPANSION URBANA</td>
<td>810.60</td>
</tr>
<tr>
<td>DE RESERVA URBANA</td>
<td>1,719.60</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>2,530.20</td>
</tr>
<tr>
<td>SUELO NO URBANIZABLE</td>
<td></td>
</tr>
<tr>
<td>DE PROTECCION ECOLOGICA</td>
<td>30.37</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>30.37</td>
</tr>
<tr>
<td>TOTAL AREA URBANA AL 2010</td>
<td>6,522.29</td>
</tr>
</tbody>
</table>

Fuente: INDECI 2014

1.3.6.4. **Paisaje**

El paisaje que rodea el área del proyecto es típico de características urbanas con predominantes habilitaciones industriales y área residenciales; unas área en proceso de consolidación y otras habilitación desarrolladas.

El paisaje en cuanto a residuos sólidos, se puede notar que la gestión de residuos sólidos presenta déficit ya que la cobertura de recojo de residuos sólidos aún no es del 100 %.
Tabla N°. 39. Cobertura de recolección de residuos sólidos

<table>
<thead>
<tr>
<th>Distritos</th>
<th>Cobertura (%)</th>
<th>Generación Total de RSM T/día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiclayo</td>
<td>85.82</td>
<td>194.51 (t)</td>
</tr>
</tbody>
</table>

Fuente: Planeamiento urbano metropolitano Chiclayo 2015

1.3.6.5. Aspectos biológico

1.3.6.5.1. Flora

La flora en el paisaje de Chiclayo posee una comunidad boscosa que domina el entorno, siendo el algarrobal el más representativo.

Figura N° 26. Algarrobal

Fuente: Google imágenes

1.3.6.5.2. Fauna

La fauna representativa en la ciudad de Chiclayo está formada por reptiles, roedores y aves comunes.

Figura N° 27. Columbidae

Fuente: Google imágenes
1.3.7. **Identificación y evaluación de impactos ambientales**

Se realizó la línea base para identificar los medios que podrían verse afectados positiva o negativamente ante el desarrollo del proyecto. Es prioritaria la elaboración del Plan de manejo ambiental, con la finalidad de plantear las medidas necesarias para prevenir, mitigar o corregir los impactos negativos que generen la elaboración del concreto con polvo de granito, o poder potenciar los impactos positivos para la conservación y protección del medio ambiente.

Para la caracterización y posterior evaluación de los impactos ambientales, se ha considerado utilizar el sistema matricial, para la cual se ha hecho uso de la Matriz de Leopold. Para poder identificar los impactos dentro de la Matriz de Leopold, se han colocado las actividades realizadas en el proyecto y los efectos que cada una de ellas tiene sobre diferentes aspectos ambientales, como el ruido, el aire, agua, entre otros.

Realizada la actividad anterior, se procede a realizar la sumatoria de los impactos puntuales, es decir, por cada factor y actividad particular, a fin de determinar el factor ambiental más afectado. Lo mismo se realiza para cada actividad o acción del proyecto que afectaría más significativamente al medio.
<table>
<thead>
<tr>
<th>FACTORES AMBIENTALES</th>
<th>ACCIONES</th>
<th>LABORATORIO</th>
<th>APLICADO A LA CONSTRUCCIÓN</th>
<th>IMPACTO TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OPERACION DE AGRUPEADOS</td>
<td>OPERACION DE PÓLVO DE GRANITO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPERACION DE DISEÑO DE MUESTRAS</td>
<td>ENSAYO DE CONCRETO</td>
<td>DISEÑO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENSAYO DE CONCRETO ENCUADRE</td>
<td>ENSAYO DE CONCRETO ENCUADRE</td>
<td>DISEÑO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COBRO DE MATERAL PARA EL CONCRETO</td>
<td>ELABORACIÓN DE MATERAL</td>
<td>ELABORACIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELABORACIÓN DE MATERIAL PARA EL CONCRETO</td>
<td>ELABORACIÓN DE MATERAL</td>
<td>ELABORACIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PREPARACIÓN DE EL MATERIAL</td>
<td>PREPARACIÓN DE EL MATERIAL</td>
<td>PREPARACIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELIMINACIÓN DE RESIDUOS</td>
<td>ELIMINACIÓN DE RESIDUOS</td>
<td>ELIMINACIÓN</td>
</tr>
<tr>
<td>TIERRA</td>
<td></td>
<td>-5</td>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>SUELOS</td>
<td></td>
<td>-8</td>
<td>4</td>
<td>-5</td>
</tr>
<tr>
<td>GEOMORFOLÍA</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>CALIDAD (PÓLVO)</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>CALIDAD (GASES, HUMO)</td>
<td></td>
<td>-4</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>RUIDO</td>
<td></td>
<td>-4</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>FLORESTA</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>ÁRBOLES</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>ÁRBUSTOS</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>FAUNA</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>ANIMALES TERRESTRES</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>INSECTOS</td>
<td></td>
<td>-2</td>
<td>4</td>
<td>-4</td>
</tr>
<tr>
<td>NIVEL CULTURAL USO DEL SUELO</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>NATURALEZA Y ESPACIOS ABIERTOS</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>MINERÍA Y CANTERAS</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>VISTAS ESCENICAS Y PANORÁMICAS</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>INTERCICIÓN</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>SALUD Y SEGURIDAD</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>EMPLEO</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>CONSTRUCCIONES</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>ELIMINACIÓN DE RESIDUOS</td>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>IMPACTO TOTAL</td>
<td></td>
<td>-38</td>
<td>0</td>
<td>-18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Magnitud</th>
<th>Ponderado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44</td>
<td>10</td>
</tr>
</tbody>
</table>

1.3.7.1. **Etapas de construcción**

1.3.7.1.1.1. **En el medio físico**

- **Calidad del aire**

En esta etapa afectará la calidad del aire en las canteras de donde provienen los agregados para el concreto, por parte del cemento la material prima como el resto.
de sustancias para su elaboración, con la utilización del polvo de granito.

- **Calidad del suelo**
 El aspecto ambiental se verá afectado en este factor ya que la calidad del suelo debido a los desechos generados por trabajos de construcción, grasa y combustible por parte de las máquinas y lugares donde estas maquinarias recorran.

- **En el medio biológico**
 El medio biológico será un aspecto favorecido ya que un tipo de partículas residuales será reutilizado y no dejar que contamine a zonas aledañas, permitiendo tener mayores espacios para áreas verdes o para insectos que habitaron. En caso de la pavimentación que se vería afectada las zonas verdes en donde posiblemente llegaría el trazo de la carretera.

- **En el medio socioeconómico**
 En el aspecto social se verá afectado positivamente el empleo por lo que el proyecto requerirá de mano de obra calificada y no calificada para el desarrollo del mismo. En caso sea la construcción del pavimento requerirá de mano de obra lo que beneficiará al empleo y a la parte económica por el ingreso económico que demandará el proyecto.

1.3.8. Plan de mitigación ambiental (PMA)

El plan de mitigación ambiental del proyecto: elaboración de concreto de alta resistencia incorporando partículas residuales del chancado de piedra de la cantera Talambo, Chepén, servirá para evitar impactos adversos en el medio físico, biológico y cultural, o sea el caso fortalecerá los impactos positivos, por ello los planes de mitigación persiguen los siguientes objetivos:

- Proporcionar información para permitir el control de la magnitud de los impactos durante la fase de elaboración del estudio del proyecto
- Establecer estrategias generales de manejo y monitoreo ambiental en las diferentes fases de construcción.
- Prevenir y mitigar impactos ambientales negativos.
5.3.8.1. PROGRAMA DE MEDIDAS PREVENTIVAS, MITIGADORAS Y CORRECTIVAS
Este programa nos da las medidas a tomar en cuenta para evitar daños consecuentes por falta de planificaciones, o en sea el caso de corregir las acciones tomadas en las diferentes fases de construcción.

5.3.8.2. SUBPROGRAMA DE MANEJO DE RESIDUOS SÓLIDOS
El subprograma de manejo de residuos sólidos busca controlar y llevar un buen manejo de residuos de la construcción, se evitará acumular escombros o residuos de la construcción por tiempos prolongados.
MEDIDA:
- Los residuos de construcción y escombros no serán almacenados más de 24 horas en la zona de trabajo.

5.2.8.2.1. SUBPROGRAMA DE MANEJO DE PROTECCIÓN DE RECURSOS NATURALES
El subprograma de protección de recursos ambientales tiene como finalidad evitar la destrucción parcial o total de áreas verdes producto de los procesos constructivos.
MEDIDA:
- Durante la etapa de construcción se evitará la remoción de cobertura vegetal cercana a la zona de trabajo.

5.2.8.2.2. SUBPROGRAMA DE SALUD LOCAL
El subprograma de salud local evitará que la población que se encuentra alrededor de la zona de trabajo se vea afectada en su salud por el levantamiento de polvo, emisión de gases o actividades afines que puedan dañar la calidad de vida
MEDIDAS:
- Humedecer de manera periódica las áreas de recepción, traslado o sea el caso de realización de concreto para evitar levantamiento de material particulado.
- En caso de transporte de material fino que genera grandes cantidad de polvo, se deberá mantener cubierto los vehículos que transporten dicho material.
5.3.8.3. PROGRAMA DE MONITOREO AMBIENTAL

El monitoreo ambiental se llevará a cabo constantemente vigilando las emisiones de gases o humo por parte de la maquinaria que se encuentra trabajando en la zona.

MEDIDA:
- Emplear vehículos y máquinas en buenas condiciones mecánicas para minimizar la emisión de material particulado, gases o humos, así como también evitar la emisión de grandes niveles de ruido ya que se busca evitar sobrepasar los decibeles máximos permisibles.

5.3.8.4. PROGRAMA DE ASUNTOS SOCIALES

5.3.8.4.1. Subprograma de contratación de mano de obra local

El subprograma de contratación de mano de obra local, busca generar trabajo a personas que se encuentran dentro del área de estudio y área de influencia.

5.3.8.5. PROGRAMA DE EDUCACIÓN AMBIENTAL

El programa de educación ambiental permitirá incentivar a los trabajadores así como también a la población cercana al proyecto la importancia de preservar el paisaje sin residuos sólidos que la afecten.

MEDIDAS:
- Se comunicará a la población cercana al proyecto, sobre el proyecto y las posibles molestias que podría ocasionar ciertos trabajos específicos, teniendo los trabajadores la obligación de preservar las áreas públicas o áreas verdes.

5.3.8.6. PROGRAMA DE CIERRE DE OBRA

El programa de cierre de obra nos dará pautas para la disposición final, ya que una vez almacenados correctamente los residuos de la construcción, estos deberán ser correctamente compactados con el espesor adecuado para la disposición de áreas verdes.

MEDIDA:
- Se ubicará la disposición final en un lugar adecuado, para su posterior cierre o
compactado del mismo, buscando que al cierre esta área sea usado como área verde o espacio público.

5.3.9. CONCLUSIONES
Luego de haber realizado la Evaluación de Impacto Ambiental (EIA) del proyecto ELABORACIÓN DE CONCRETO DE ALTA RESISTENCIA INCORPORANDO PARTICULAS RESIDUALES DEL CHANCADO DE PIEDRA DE LA CANTERA TALAMBO, CHEPÉN", se concluye que:
- Los impactos ambientales negativos en el trabajo de laboratorio lo producen en mayor magnitud la obtención de los agregados, en cuanto a la puesta en obra la mayor incidencia negativa ambiental es la elaboración de concreto con polvo de granito; ambos trabajos generarían gran cantidad de polvo, gases y ruidos.
- Unos de los impactos ambientales positivos en el trabajo de laboratorio y la puesta en obra es el empleo. Las nuevas actividades de obtener el polvo de granito mediante el tamizado, así como la elaboración de concreto utilizando este material generarían nuevos puestos de trabajo.
- En general, el grado de afección de los componentes ambientales es intermedio, sin embargo puede ser mitigable y así compensar y mantener los estándares medio ambientales saludables de la ciudad de Chiclayo
- De lo expuesto anteriormente, el proyecto resulta ambientalmente viable, siempre y cuando se tomen en cuenta las medidas de los programas y subprogramas de prevención en la etapa de construcción.