APROVECHAMIENTO DE LA SEMILLA RESIDUAL DEL AJÍ JALAPEÑO (CAPSICUM ANNUUM L.) PARA LA OBTENCIÓN DE CAPSAICINA EN LA EMPRESA GANDULES INC.

TESIS PARA OPTAR EL TÍTULO DE INGENIERO INDUSTRIAL

JEAN MANUEL UBILLÚS PÉREZ

Chiclayo, 19 de Febrero del 2014
“APROVECHAMIENTO DE LA SEMILLA RESIDUAL DEL AJÍ JALAPEÑO (CAPSICUM ANNUUM L.) PARA LA OBTENCIÓN DE CAPSAICINA EN LA EMPRESA GANDULES INC.”

POR:

BACH. JEAN MANUEL UBILLUS PEREZ

Presentada a la Facultad de Ingeniería de la Universidad Católica Santo Toribio de Mogrovejo, para optar por el Título de:

INGENIERO INDUSTRIAL

APROBADA POR EL JURADO INTEGRADO POR

Mgtr. José Manuel Genaro Lecaros Barragán
PRESIDENTE

MSc. Martha Edith Tesén Arroyo
SECRETARIA

MSc. Edith Anabel Zegarra Gonzalez
ASESORA
DEDICATORIA

A Dios

Por permitirme llegar a este momento tan especial en mi vida. Por los triunfos y los momentos difíciles que me han enseñado a valorarlo cada día más.

A mis padres

Con todo el cariño y amor. Por hacer todo en la vida para que yo pudiera lograr este sueño. Por motivarme y darme la mano en los momentos difíciles. A ustedes por siempre mi corazón y mi agradecimiento.

A mis profesores

En especial a mi asesora de Tesis y a todos los maestros que en este andar por la vida, influyeron con sus lecciones y experiencias en formarme como una persona de bien y preparada para los retos que pone la vida. A todos y cada uno de ellos les dedico cada una de estas páginas de mi tesis.
ÍNDICE

RESUMEN ... vi
ABSTRACT ... vii

I. INTRODUCCION .. 8

II. MARCO TEÓRICO .. 9
 2.1. ANTECEDENTES DEL PROBLEMA ... 9
 2.2. FUNDAMENTOS TEÓRICOS ... 11
 1. El ají o chile jalapeño ... 11
 2. Capsicinoides ... 11
 3. Capsaicina .. 14
 4. Usos del Capsicum .. 15
 5. Oleoresinas ... 16
 6. Oleoresina del cápsicum ... 16
 7. Concepto y extracción de alcaloides .. 16
 8. Análisis Cromatográfico .. 17
 9. Determinación del grado de picor mediante Análisis de cromatografía de capa líquida .. 17
 10. Lixiviación .. 18
 11. Destilación .. 18
 2.3 DEFINICIÓN DE TÉRMINOS ... 19
 1. Escala Scoville .. 19
 2. Solventes ... 19

III. MATERIALES Y MÉTODOS ... 21
 3.1. Lugar de ejecución ... 21
 3.2. Materiales y Equipos ... 21
 3.3. Métodos de Análisis ... 25
 3.4. Metodología Experimental ... 27
 3.5. Análisis del Costo del Proyecto ... 37
 3.6. Análisis Estadístico ... 41

IV. RESULTADOS Y DISCUSIÓN ... 48
 4.1. Análisis de Materia prima, semillas del ají jalapeño .. 48
 4.2. Obtención de Oleoresina Cápsica ... 49
 4.3. Obtención de Capsaicina .. 51
 4.4. Características del Producto Final .. 52

CONCLUSIONES ... 54
REFERENCIAS ... 56
FINANCIAMIENTO ... 58
ANEXOS ... 59
ÍNDICE DE ANEXOS
Anexo 1. Perfil de temperatura para digestión..59
Anexo 2. Parámetros para destilación y titulación del método Kjeldahl59
Anexo 3. Análisis Nutricional de la semilla de ají jalapeño..60
Anexo 4. Obtención de oleorresina cápsica ...67
Anexo 5. Análisis Físico-Químico de Capsaicina en laboratorio..70
Anexo 6. Resultados de Laboratorio, Análisis Físico-Químico de Capsaicina.................71
Anexo 7. Análisis Físico-Químico de Capsaicina en laboratorio..72

ÍNDICE DE TABLAS
Tabla N° 1. Composición nutritiva de chile jalapeño crudo (Capsicum annum L.v.) y chilpotle (Capsicum annum L. dulce Hort.) ...12
Tabla N° 2. Capsicinoides comúnmente presentes en Capsicum annum...............................12
Tabla N° 3. Escala de Scoville ..20
Tabla N° 4. Síntesis del Diseño de Investigación ..36
Tabla N° 5 Costos de compra de equipos (C. Fijos) ..38
Tabla N° 6. Costos de Producción (Directos) ..39
Tabla N° 7. Costo/Beneficio directo de Producción Anual ...40
Tabla N° 8. Análisis de varianza (ANOVA) para dos factores con repetición43
Tabla N° 9. Pruebas de los efectos inter-sujetos ..44
Tabla N° 10. Pruebas de Levene y T-Student ...44
Tabla N° 11. Prueba de muestras independientes ..45
Tabla N° 12. Prueba de Duncan: Volumen de Oleorresina (ml) ..45
Tabla N° 13. Prueba T-student (temperatura a 135 °C) ...46
Tabla N° 14. Prueba de muestras independientes ...46
Tabla N° 15. Caracterización de la semilla del Ají Jalapeño ...48
Tabla N° 16. Resultados obtenidos de la extracción de la Oleorresina Cápsica49
Tabla N° 17. Resultados obtenidos de la obtención de Capsaicina de la Oleorresina51
Tabla N° 18. Características Organolépticas..52
Tabla N° 19. Análisis Físico-Químico ...53
Tabla N° 20. Perfil de temperatura para digestión con K-438 ..59
Tabla N° 21. Parámetros para destilación y titulación del método Kjeldahl..........................59
Tabla N° 22. Determinación de Carbohidratos ..66
4.3- Tabla N° 23. Resultados obtenidos de la extracción de la Oleorresina Cápsica.............69

ÍNDICE DE FIGURAS
Figura 1. Molécula de nordihidrocapsaicina ..13
Figura 2. Molécula de homocapsaicina ...13
Figura 3. Molécula de homodihidrocapsaicina ...14
Figura 4. Tipos de muestras. ...32
Figura 5. Combaciones Factoriales ..33
Figura 6. Diagrama de Etapas para la Obtención de Capsaicina ..35
Figura 7. Diagrama de Rendimientos ..52
RESUMEN

Esta investigación pretendía demostrar que es posible obtener Capsaicina a partir del aprovechamiento de las semillas residuales del Ají Jalapeño (Capsicum annuum L.), en la empresa Gandules Inc. la cual dedica sus actividades a la exportación de hortalizas procesadas.

Para lograr el objetivo principal, se caracterizó la materia prima a fin de conocer la composición de su semilla y así determinar los factores que influyen en la obtención de Capsaicina. Además se determinó el método, grado de humedad y solvente que obtuvo resultados más eficientes, y se examinaron las características adquiridas por el producto final como grado de picor, viscosidad, densidad, humedad, cenizas, fibra e impurezas insolubles.

La obtención de este insumo a través de este método traería consigo la reducción de costos de compra de Capsaicina en un promedio de 15 kg mensuales ($90/kg). Además de la reducción de costos de mermas y del transporte como un beneficio importante para la empresa. Permitiría también la venta de Capsaicina a otras empresas como insumo principal para su producto final.

Palabras Clave: Solvente, Capsaicina, ají jalapeño.
This research would aim to demonstrate that it is possible to use Capsaicin from jalapeno pepper residual seeds (Capsicum annuum L.) in Gandules Company Inc. which works exporting processed vegetables.

To achieve the objective, the raw material was characterized to the aim of learning about the composition of its seed and then to determine the factors that influence the production of capsaicin. In addition, the method, humidity and solvent which obtain more efficient results were determined, and also the characteristics acquired by the final product as degree of hotness, viscosity, density, moisture, ash, fiber and insoluble impurities were examined.

Obtaining this component through this method could bring about the cost reduction in Capsaicin purchase, about 15 kg ($90/kg) in a month, and also the cost reduction of waste and transport as a significant benefit to the company. In addition it also allow the sale of capsaicin to other companies as the main component for the final product.

Key Words: Solvent, Capsaicin, jalapeno pepper.
I. INTRODUCCIÓN

La empresa agroindustrial Gandules INC SAC es una corporación privada que se encuentra en el Distrito de Jayanca, Lambayeque, en la margen izquierda del río Salas, en la antigua Panamericana Norte Km. 43.5.

Esta empresa exporta un amplio rango de alimentos procesados como los frijoles de palo (Gandules), morrones, ajíes (jalapeño), aceitunas, betarragas, tomatillo, etc. en diferentes presentaciones que son procesados respetando siempre el cumplimiento de las normas fitosanitarias y de inocuidad alimentaria, en todas y cada una de las etapas del proceso de producción. Con clientes en más de 40 países del Mundo: Estados Unidos, Canadá, Puerto Rico, México, Italia, etc.; y con campos de cultivo alrededor de la planta que aplican un moderno sistema de irrigación por goteo. Esta empresa emplea a casi 4 000 trabajadores en todas las etapas de la cadena de producción. (Municipalidad Jayanca, 2009)

Una variedad de presentación muy requerida por clientes en especial europeos es que solicitan que algunos de los denominados “pimientos dulces” contengan en el líquido de gobierno o salmuera un porcentaje de concentración de picante; éste componente activo de los pimientos picantes es un compuesto químico denominado Capsaicina; este compuesto alcaloide comercialmente no es producido en el Perú, por lo que la empresa Gandules INC se ve en la necesidad de comprar el compuesto importado de otro país.

La empresa agroindustrial Gandules INC exporta en promedio 3 containers mensuales a los diferentes países del tipo de producto mencionado en el párrafo anterior, teniendo cada container de un peso de 20 toneladas métricas. Para una cantidad de 20 toneladas se necesitan aproximadamente 5 kg de Capsaicina de 400 unidades Scoville (indica el grado de picante); entonces la empresa adquiere una cantidad de 15 Kg de Capsaicina mensualmente, lo que genera costes de adquisición, transporte, etc. (Gandules, 2009)

Con lo expuesto anteriormente una alternativa muy importante para obtener la Capsaicina sería la utilización de los residuos de los ajíes, entre ellos específicamente las semillas de los Ajíes Jalapeños; que son desechados en el proceso de producción.

Es por eso que se ha planteado el problema de analizar si es factible aprovechar la semilla residual del ají Jalapeño en la empresa agroindustrial Gandules INC para obtener Capsaicina

Con lo expuesto anteriormente se ha planteado como objetivo principal Obtener la Capsaicina a partir de la semilla del ají Jalapeño. Así como los objetivos específicos: Caracterizar la materia prima; determinar el método, el grado de humedad y el solvente que obtenga resultados más eficientes; examinar las características adquiridas por el producto final: Grado de picro (Escala Scoville), viscosidad, densidad, humedad, cenizas, impurezas insolubles; y analizar los costos del proyecto en la empresa Gandules INC.
Esta investigación sería de mucha importancia tanto para la empresa agroindustrial Gandules INC como también para la comunidad en general, en los diferentes aspectos.

En el aspecto económico beneficiaría bastante a la empresa ya que en vez de comprar y adquirir la Capsaicina a un precio comercial, si ésta es elaborada por la misma empresa sólo tendría un costo de producción e ingresos por la venta del mismo.

En el aspecto ambiental sería importante la realización del proyecto, ya que actualmente los desechos del procesado de pimientos simplemente son desechados una pequeña cantidad en campos de cultivo y otra cantidad en los botaderos.

En el aspecto social, al implementar un nuevo proceso o etapa de producción generaría nuevos puestos de empleo sobre todo para la personas residente en el distrito de Jayanca.

II. MARCO TEÓRICO

2.1. Antecedentes

(Chinn 2009). “Solvent extraction and quantification of capsaicinoids from Capsicum chinense”, afirma: La extracción de Capsaicinoides de los pimientos se realizan típicamente usando solventes orgánicos, sin embargo, las eficacias de la extracción pueden variar con pimientos, sus piezas y el proceso de la pre extracción. En la ausencia de información profundizada sobre la extracción del capsaicinoides de los pimientos del habanero, este trabajo fue emprendido para examinar los parámetros de proceso para la extracción soluble de capsaicinoides de los pimientos enteros del habanero (Capsicum chinense) y de sus varias partes. Los efectos del tipo solvente (etanol, acetona y acetonitrilo), de las partes del pimiento (semillas, cáscaras), de la preparación del tejido (congelación y secado al horno), y del tiempo sobre la recuperación del capsaicinoides (capsaicina y dihydrocapsaicina) fueron evaluados.

(Malagarie 2008). “Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells” afirma que la capsaicina (trans-8-methyl-N-vanillyl-6-nonenamide) induce a un aumento en la viabilidad celular de los andrógenos responsables de las células cáncerígenas de próstata LNCaP, los cuales son revertidos por el uso de las capsazepina. En estudios adicionales se observa la capsaicina induce a una disminución en los niveles de ceramida así como activación Akt y Erk. Para investigar el mecanismo de acción de capsaicina medimos niveles de recepción de los andrógenos (AR). La capsaicina induce a un incremento de la expresión de AR que fue revertido por los tres antagonistas de TRPV1. Así como el bloqueo de los receptores de AR con bicalutamide, inhibe el efecto proliferativo de la capsaicina.
(Duarte 2002). “Phase equilibrium for capsaicin + wáter + etanol + supercritical carbon dioxide” afirma que se investigó la posibilidad de extraer la capsaicina con dióxido de carbono supercrítico de una mezcla de hidro alcohol que contiene el alcaloide. El equilibrio de fase de alta presión en el sistema cuaternario CO2 + etanol + agua + capsaicina se midió con el fin de obtener el factor de separación del producto natural de las mezclas del modelo hidro alcohólico. Se realizaron experimentos sobre el comportamiento de equilibrio de fase a varias presiones (12, 15 y 18 MPa) y temperaturas de 40 y 50 ° C. Los factores de la separación de tres mezclas de diferente composición: se comparan 0,40 agua + fracción de masa de etanol de 0,60 y 0,9 agua + 0,10 fracción de masa de etanol, que contiene 0,02% de capsaicina y fracción de masa de agua 0,40 que contenga 0,04% de la capsaicina. Se examinó el efecto del contenido de agua en la selectividad del proceso de extracción.

(Cano 2002). “Obtención y caracterización de capsaicina, ingrediente activo de productos fitofarmacéuticos y agroindustriales de 3 especies de Capsicum (Capsicum chinense, Capsicum annuum) cultivadas en Guatemala” afirma que de las 3 especies de capsicum analizadas de la que se obtuvo el mayor porcentaje de capsaicina en la oleorresina fue con el Capsicum chinense, el chile Habanero. Para obtener el más alto porcentaje de capsaicina en la oleorresina la variable que produce un efecto más marcado es el nivel de deshidratación seguido de la especie y concentración del solvente.

(Perucka 2000). “Extraction and determination of capsaicinoids in fruit of hot pepper Capsicum annuum L. by spectrophotometry and high-performance liquid chromatography” afirma: El método espectrofotométrico simple de determinación de capsaicinoides en fruta fresca del pimiento picante y el método HPLC fueron comparados. Los capsaicinoides fueron extraídos de la fruta del pimiento picante con la mezcla de éter: mezcla de la acetona, y entonces separados usando la cromatografía de capa delgada en el gel de sílice evaluado cuantitativamente usando el método HPLC y espectrofotométrico. El alto factor de correlación obtenido para estos métodos (0.93) probó que cualquier método se puede utilizar para determinar el total de capsaicinoides en las frutas frescas y pulverizadas de los pimientos picantes aisladas con el método del TLC y que ambos se pueden utilizar con éxito en los laboratorios que no están tan bien equipados.

(Sharapin, 1998). “Fundamentos de Tecnología de productos fitoterapéuticos” señala que la capsaicina es la responsable del comportamiento picante, en mayor o menor grado de los frutos de la familia Capsicum, localizándose fundamentalmente en sus semillas y membranas. Es un compuesto orgánico de Nitrógeno de naturaleza lipídica. La capsaicina purificada diluida cien mil veces, sigue siendo tan activa que aún es capaz de producir ampollas en la lengua. Debido a sus acciones específicas la capsaicina es utilizada en los laboratorios de investigación neuronal ya que, dependiendo de su dosis puede provocar efectos analgésicos, antiinflamatorios.
(Macedo Dos Santos, 1996). “Extracao de Ditofármacos, Aspectos Tecnológicos.” afirma que las oleoresinas de especies que constituyen la forma líquida más concentrada de la especia, reproducen el carácter de la especia con mucha mayor plenitud que los aceites esenciales. La oleoresina de capsicum se utiliza en la industria alimenticia y farmacéutica por sus propiedades medicinales.

(Wren, 1994). “The evolution of management thought” afirma que la capsaicina tiene muchos efectos farmacológicos, entre los que se incluyen efectos antibióticos, sobre algunos microorganismos, efectos sobre el sistema circulatorio específicamente sobre los músculos lisos y regulación de la temperatura corporal. Desensibiliza las terminales nerviosas a los estímulos dolorosos al modular la peroxidación de lípidos. Basando su uso como analgésico local en este efecto.

2.2. Bases Teórico Científicas

2.2.1. El ají o chile jalapeño

El chile jalapeño es un fruto alargado de aproximadamente 7.5 cm. y su diámetro de 2.5, el color lo define el grado de maduración que tenga, comenzando en verde, después amarillo, y hasta llegar a rojo que es la maduración total y entonces se le conoce comúnmente como chilpotle\(^1\) (Ver Tabla Nº 1). El peso de cada fruto fluctúa entre los 20 y 30 gramos y es de elevada pungencia, aspecto que los caracteriza. (Boruges 1996).

2.2.2. Capsicinoides

El ingrediente activo de los chiles, considerado en un inicio como una sola sustancia: Capsaicina, es una mezcla de homólogos di y tri insaturados, como lo demostraron los químicos japoneses S. Kosuge y Y. Inagaki en 1964. La mezcla es actualmente llamada capsicinoides. Los capsicinoides son producidos por glándulas en la placenta del chile, que es la parte superior justo debajo de tallo (Zewdie, 2000).

Los componentes pungentes del Capsicum annum incluyen por lo menos cinco compuestos conocidos como capsicinoides a los que incluso se les ha valorado su pungencia. (Ver Tabla Nº 2)

\(^{1}\) El chile chipotle (también llamado chilpoctle o chilpotle, que significa chile ahumado) es un tipo de chile, normalmente de la variedad del jalapeño, que se ha dejado madurar hasta enrojecer y secar.
Tabla N° 1. Composición nutritiva de chile jalapeño crudo (*Capsicum annum* L.v.) y chilpotle (*Capsicum annum* L. dulce Hort.).

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Jalapeño 1 taza 90g</th>
<th>Jalapeño 1 Chile 14g</th>
<th>Chipotle 1 taza 90g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad g</td>
<td>82.89</td>
<td></td>
<td>13.05</td>
</tr>
<tr>
<td>Cenizas g</td>
<td>0.45</td>
<td></td>
<td>6.21</td>
</tr>
<tr>
<td>Proteína g</td>
<td>1.215</td>
<td>0.189</td>
<td>14.40</td>
</tr>
<tr>
<td>Carbohidratos g</td>
<td>5.319</td>
<td>0.827</td>
<td>42.03</td>
</tr>
<tr>
<td>Fibra g</td>
<td>2.520</td>
<td>0.392</td>
<td>8.64</td>
</tr>
<tr>
<td>ácido ascórbico mg</td>
<td>67.68</td>
<td></td>
<td>21.78</td>
</tr>
<tr>
<td>Extracto etéreo g</td>
<td>0.117</td>
<td></td>
<td>5.67</td>
</tr>
</tbody>
</table>

Aminoácidos

Triptofano g	0.015	0.002
Lisina g	0.055	0.009
Fenilalanina g	0.038	0.006

Fuente: (Boruges 1996)

Tabla N° 2. Capsicinoides comúnmente presentes en *Capsicum annum*.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Nombre Científico</th>
<th>Unidades Scoville</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsaicina</td>
<td>trans-8-metil-n-vanilil-6-nonamida</td>
<td>16,000,000</td>
<td>69%</td>
</tr>
<tr>
<td>Dihidrocapsaicina (DHC)</td>
<td>8-metil-n-vanilil-nonamida</td>
<td>16,000,000</td>
<td>22%</td>
</tr>
<tr>
<td>Nordihidrocapsaicina (NDHC)</td>
<td>7-metil-n-vanilil-octamida</td>
<td>9,100,000</td>
<td>7%</td>
</tr>
<tr>
<td>Homodihidrocapsaicina (HDHC)</td>
<td>9-metil-n-vanilil-decamida</td>
<td>8,600,000</td>
<td>1%</td>
</tr>
<tr>
<td>Homocapsaicina (HC)</td>
<td>trans-9-metil-n-vanilil-7-decenamida</td>
<td>8,600,000</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fuente: (Krajewska 2001)
La capsicaina y dihidrocapsicaina son los compuestos más fuertes y producen ardor por toda la boca. Nordihidrocapsicaina es el compuesto menos irritante y poco dulce; homodihidrocapsicaina es un compuesto muy irritante y produce cierto ardor, el más prolongado en su duración. La homocapsicaina produce poco ardor en la garganta, con una sensación lenta de pungencia a través de ella. (Krajewska 2001)

Evidentemente todos los capsicinoides actúan juntos para producir la pungencia de los chiles, pero la capsicaina es el más fuerte de todos los compuestos. La fórmula molecular de los capsicinoides menos activos en pungencia es:

Figura 1. Molécula de nordihidrocapsicaina

Fuente: (Krajewska 2001)

Figura 2. Molécula de homocapsicaina.

Fuente: (Krajewska 2001)

![Molécula de homodihidrocapsaicina](image)

Fuente: (Krajewska 2001)

En los frutos *Capsicum*, los capsicinoides son producidos y sintetizados en glándulas en la parte superior de la placenta. Los capsicinoides son acumulados en las vacuolas de las células epidemiales de la placenta, hasta ser metabolizados.

Iwai sugiere, que la producción de capsicinoides se incrementa conforme la maduración del fruto, hasta llegar a un máximo que depende de cada especie, posteriormente sufre cambios bruscos de degradación hasta un 60%, al igual que el fruto. (Iwai 1979)

2.2.3. Capsaicina

El principal ingrediente activo que causa la pungencia en los ajíes o chiles es un compuesto sólido cristalino en forma de agujas llamado capsaicina. La capsaicina es un alcaloide increíblemente poderoso aparentemente inafectable por el frío o el calor, el cual retiene su potencial a pesar del tiempo, cocinado o congelado.

Dado que no tiene sabor, color u olor, solo incita la liberación de neurotransmisores que estimulan las células trigeminales, puntos receptores de dolor, en la lengua, estómago y boca. En respuesta a este estímulo, el cerebro libera endorfinas, las cuales proporcionan al cuerpo una sensación placentera, se acelera el metabolismo y ritmo cardiaco, se libera más saliva, se sudan y se crea un estado temporal de euforia. A pesar de que no tiene sabor es uno de los compuestos más pungentes conocidos, detectable al paladar en diluciones de 1 a 70 millones. Es poco soluble en agua, pero muy soluble en alcohol, grasas y aceites.

Este compuesto se vincula a la medicina, a la industria alimenticia, a la de los colorantes y cosméticos y a la de los embutidos, entre otras. La capsaicina como una óleo resina es demandada en la preparación de ciertas carnes frías como saborizante, como solución para salsas con pungencia definida, en la fabricación de cigarrillos, en la agricultura como repelente y en la ganadería
menor contra mamíferos depredadores, como sustancia activa de las pinturas marinas para rechazar la adherencia de caracolillos, como estimulante en la industria farmacéutica y como colorante en la industria de alimentos balanceados en sustitución de la Flor de Cempazúchitl pero técnicamente corresponde con el nombre de Caléndula.

La capsaicina está disponible en forma natural o sintética. Se debe tener extremo cuidado con los compuestos sintéticos análogos que se emplean para aumentar la pungencia en extractos de Capsicum y también en imitaciones de óleo resinas Capsicum para reducir costos de producción. Algunos compuestos sintéticos análogos conocidos son:

N-vanilil octanamida, N-vanilil nonanamida, N-vanilil decanamida, N-vanilil undecanamida y N-vanilil paiperiacidamida.
Estos compuestos son ácidos en forma natural y causan serios daños a la salud (Contreras 1998)

2.2.4. Usos del Capsicum
Además del uso para consumo humano, recientemente se están demandando muchas especies de Capsicum, con las cuales se producen fármacos contra presión alta, reumatismo, varices, asma artritis, problemas digestivos y como fuente de vitamina C.

Los usos de los frutos naturales o procesados de las variedades de Capsicum annuum son múltiples. Aparte del consumo en fresco, cocido, o como un condimento o "especia" en comidas típicas de diversos países, existe una gran gama de productos industriales que se usan en la alimentación humana: congelados, deshidratados, encurtidos, enlatados, pastas y salsas. Además, un uso de significación en Chile, es como materia prima para la obtención de colorantes y de oleoresinas para fines industriales. (UNCTAD/GATT, 1986)

Generalmente se asocia al chile con propiedades estimulantes, tonificantes, laxantes, espasmódico, diaforético, antiséptico, rubefaciente y anti irritantes. Se ha usado frecuentemente para mejorar la circulación periférica, aliviar la flatulencia y los cólicos, además se le atribuyen acciones estimulantes de la digestión. Se utiliza también para gargarismos en el tratamiento de la laringitis, así como ungüento para el dolor y rigidez muscular y lumbago.

Esta "picantez" del fruto es variable según el cultivar y el método tradicional de estimarla es la determinación del valor recíproco de la dilución máxima que permite detectar pungencia al gusto; el resultado se expresa en unidades Scoville (uS), en honor del inventor del método. Algunos ejemplos de valores promedio que demuestran la gran variación en picantez entre cultivares son: Pimientos entre 0 (no detectable) a 100 uS. Jalapeño entre 4 000 a 6 000 uS. Cayena entre 30 000 a 50 000 uS. Habanero 200 000 a 350 000 uS.

(UNCTAD/GATT, 1986)
2.2.5. Oleorresinas

Son extractos de especias, que se obtienen por tratamientos con disolventes. Los disolventes empleados son eliminados casi completamente por procesos de destilación al vacío, destilación azeotrópica, o ambas. Tienen el aroma de las plantas en forma concentrada y son típicamente líquidos muy viscosos o sustancias semisólidas. Tienen uso en las industrias de alimentos y de medicamentos, sustituyendo las plantas secas o las tinturas. Las oleorresinas contienen aceites esenciales, aceites fijos, colorantes y principios activos de las plantas.

2.2.6. Oleorresina del cápsicum

Según UNCTA/GATT, aunque la oleorresina de páprika se deriva de un pimiento de la especie cápsicum, el término “oleorresina de cápsico” denota generalmente las oleorresinas más picantes que habitualmente se extraen de *capsicum frutescens* y variedades afines. Existe oleorresina de cápsicum de diversos grados de picante. El principio principal del picante, aunque no el único es la capsaicina química. Se puede fabricar oleorresina de diversos grados de picante con el empleo de especies de cápsicum ligeramente distintas o incluso mediante la elaboración de dos o más variedades juntas. El precio de estas oleorresinas depende en gran parte de su intensidad picante, medida principalmente en unidades Scoville.

La producción anual alcanza de 100 a 140 toneladas aproximadamente, de las cuales la mayor parte se producen y consumen en los Estados Unidos. El resto se consume principalmente en Europa Occidental.

La demanda de oleorresina de cápsico está floreciente y posiblemente está aumentando ligeramente y en ocasiones escasea la oferta. A la larga podría haber buenas perspectivas en el mercado para una mayor producción de los países que actualmente producen especias. (UNCTAD/GATT, 1986)

2.2.7. Concepto y extracción de alcaloides

La capsaicina se clasifica como un alcaloide. Las plantas que contienen alcaloides han sido utilizadas como medicamentos, alimentos y venenos desde la era antigua. Los primeros alcaloides fueron aislados a comienzos del siglo XIX y la identificación del primero de ellos y también la determinación de su estructura química, ocurrió en el año 1870, igualmente el primero en ser sintetizado en 1889.

Debido a la diversidad y la complejidad de sus estructuras químicas, la nomenclatura de los alcaloides no ha sido esquematizada y su clasificación ha sido realizada por semejanza con estructuras moleculares más simples. Los alcaloides son clasificados como indólicos, quinolínicos, isoquinolínicos, derivados del tropano, etc.
A pesar de la gran diversidad de sus estructuras químicas, los alcaloides constituyen un grupo bastante homogéneo desde el punto de vista tecnológico. Se caracteriza por la presencia de Nitrógeno básico, teniendo la propiedad de formar sales solubles en el agua con ácidos orgánicos e inorgánicos, mientras que sus bases libres son solubles en solventes orgánicos. Esta propiedad es la base de los procesos generales de extracción de los alcaloides (Sharapin, 1998).

2.2.8. Análisis Cromatográfico

El análisis cromatográfico de los componentes volátiles de un líquido que tiene componentes volátiles y permanentes es logrado vaporizando la porción volátil de una muestra líquida en una columna tubular hueco que se vaporiza y posteriormente analizando la porción así-vaporizada de la muestra. Los componentes permanentes de la muestra se conservan en la columna que se vaporiza durante vaporización y después son quitados lavando la columna que se vaporiza con un volumen pre-selección de un solvente líquido.

2.2.9. Determinación del grado de picor mediante Análisis de cromatografía de capa líquida

El análisis de cromatografía de capa líquida se emplea para la determinación de sustancias orgánicas no volátiles como vitaminas, aditivos, aceites, ácidos grasos, colorantes, etc. Esta técnica de separación permite separar físicamente los distintos componentes de una solución por la absorción selectiva de los constituyentes de una mezcla. En toda cromatografía existe un contacto entre dos fases, una fija que suele llamarse fase estacionaria, y una móvil que fluye permanente durante el análisis, y que en este caso es un líquido o mezcla de varios líquidos. La fase estacionaria por su parte puede ser alúmina, sílice o resinas de intercambio iónico que se encuentran disponibles en el mercado.

Los intercambiadores iónicos son matrices sólidas que contienen sitios activos (también llamados grupos ionogénicos) con carga electrostática (positiva o negativa). De esta forma, la muestra queda retenida sobre el soporte sólido por afinidad electrostática. Dependiendo de la relación carga/tamaño unos constituyentes de la mezcla serán retenidos con mayor fuerza sobre el soporte sólido que otros, lo que provocará su separación. Las sustancias que permanecen más tiempo libres en la fase móvil, avanzan más rápidamente con el fluir de la misma y las que quedan más unidas a la fase estacionaria o retenidas avanzan menos y por tanto tardarán más en salir o fluir. (Stella Torres 2004)

Este análisis permitirá medir el grado de picante presente en el producto final (Grados Scoville).
La escala Scoville es una medida de picor en los ajíes. Estas frutas del género *Capsicum* contienen Capsaicina, un componente químico el cual estimula el receptor térmico en la piel, especialmente las membranas mucosas. El número de unidades Scoville (SHU) (del inglés Scoville heat units) indica la cantidad presente de Capsaicina. Muchas salsas picantes usan la escala Scoville para publicitarse comercialmente.

2.2.10. Lixiviación

La lixiviación produce el desplazamiento de sustancias solubles o de alta dispersión. Es un proceso en el cual se extrae uno o varios solutos de un sólido, mediante la utilización de un disolvente líquido. Ambas fases entran en contacto íntimo y el soluto o los solutos pueden difundirse desde el sólido. Industrialmente la lixiviación se utiliza para preparar elixires, para ello se toma la materia prima, se pulveriza y se mezcla con el menstruo (etanol regularmente), se coloca en un lixiviador y se deja macerando el tiempo requerido. Aunque dicho proceso de extracción es comúnmente utilizado en la extracción de minerales metálicos y es estudiado en el proceso ambiental por la difusión de contaminantes o sales en el suelo a través del agua; es un proceso apto para la extracción de sabor y aroma vegetales (SNMPE, 2005).

2.2.11. Destilación

Es un Proceso que consiste en calentar un líquido hasta que sus componentes más volátiles pasan a la fase de vapor y, a continuación, enfriar el vapor para recuperar dichos componentes en forma líquida por medio de la condensación.

El objetivo principal de la destilación es separar una mezcla de varios componentes aprovechando sus distintas volatilidades, o bien separar los materiales volátiles de los no volátiles.

En la evaporación y en el secado, normalmente el objetivo es obtener el componente menos volátil; el componente más volátil, casi siempre agua, se desecha.

Sin embargo, la finalidad principal de la destilación es obtener el componente más volátil en forma pura.

Por ejemplo, la eliminación del agua de la glicerina evaporando el agua, se llama evaporación, pero la eliminación del agua del alcohol evaporando el alcohol se llama destilación, aunque se usan mecanismos similares en ambos casos.

Si la diferencia en volatilidad (y por tanto en punto de ebullición) entre los dos componentes es grande, puede realizarse fácilmente la separación completa en una destilación individual.
El agua del mar, por ejemplo, que contiene un 4% de sólidos disueltos (principalmente sal común), puede purificarse fácilmente evaporando el agua, y condensando después el vapor para recoger el producto: agua destilada.

Para la mayoría de los propósitos, este producto es equivalente al agua pura, aunque en realidad contiene algunas impurezas en forma de gases disueltos, siendo la más importante el dióxido de carbono.

Si los puntos de ebullición de los componentes de una mezcla sólo difieren ligeramente, no se puede conseguir la separación total en una destilación individual.

Un ejemplo importante es la separación de agua, que hiere a 100 °C, y alcohol, que hiere a 78,5 °C. Si se hiere una mezcla de estos dos líquidos, el vapor que sale es más rico en alcohol y más pobre en agua que el líquido del que proviene, pero no es alcohol puro.

Con el fin de concentrar una disolución que contenga un 10% de alcohol hasta una disolución que contenga un 50% de alcohol, el destilado ha de destilarse una o dos veces más, y si se desea alcohol industrial (95%) son necesarias varias destilaciones. (Tadeo 2004)

2.3. Definición De Términos

2.3.1. Escala Scoville

La escala Scoville es una medida de picor en los ajíes, también conocidos como chiles, morrones o pimientos. Estas frutas del género Capsicum contienen Capsaicina, un componente químico el cual estimula el receptor térmico en la piel, especialmente las membranas mucosas (Ver Tabla N° 3). El número de unidades Scoville (SHU) (del inglés Scoville heat units) indica la cantidad presente de Capsaicina. Muchas salsas picantes usan la escala Scoville para publicitarse en los centros comerciales. (Asociación de Hortelanos de Madrid 2010)

2.3.2. Solventes

Los solventes son compuestos orgánicos basados en el elemento Carbono. Algunos de ellos tienen aplicaciones industriales como los pegamentos, pinturas, barnices y fluidos de limpieza. Otros son utilizados como gases en aerosoles, extintores de fuego o encendedores para cigarrillos.

Estas sustancias que expelen vapores a temperatura ambiente (solventes volátiles como la nafta o la cetona) o que son en sí mismas gases (butano, propano) pueden ser inhaladas a través de la boca o nariz generando un efecto psicoactivo.
Muchos de los disolventes que se emplean en procesos industriales de extracción dejan residuos en los productos o tienen efectos nocivos sobre el ambiente. En muchos casos pueden ser reemplazados por gases no tóxicos de fácil separación y de impacto ambiental prácticamente nulo, como el dióxido de carbono o el propano. Para ello es necesario que estos gases estén en con ellos.

Los solventes, solventes usados, mezclas de solventes, o los residuos de solventes son frecuentemente peligrosos.

Tabla N° 3. Escala de Scoville

<table>
<thead>
<tr>
<th>Unidades Scoville</th>
<th>Tipo de ají o chile</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 000 000 - 16 000 000</td>
<td>Capsaicina pura y dihydrocapsaicina</td>
</tr>
<tr>
<td>8 600 000-9 100 000</td>
<td>Varios capsaicinoides, como homocapsaicina, homodihydrocapsaicina, y nordihydrocapsaicina</td>
</tr>
<tr>
<td>2 000 000-5 300 000</td>
<td>Spray de pimienta, FN303 munición irritante</td>
</tr>
<tr>
<td>855 000-1 041 427</td>
<td>Naga Jolokia, Dorset Naga</td>
</tr>
<tr>
<td>350 000-580 000</td>
<td>Habanero Red Savina, Tezpur</td>
</tr>
<tr>
<td>100 000-350 000</td>
<td>Pimiento de Dáttil, Rocoto, Chile Jamaicano, Aji ojo de pájaro africano, Habanero naranja, Chile Scotch Bonnet, Pimiento de cayena de Carolina</td>
</tr>
<tr>
<td>50 000-100 000</td>
<td>Chile Thai, Pimiento Malagueta, Chiltepin, Piquin, Santaka, Chile de las Bahamas, Tabiche, Amazonas rojo</td>
</tr>
<tr>
<td>30 000-50 000</td>
<td>Cayena, Tabasco, algunos Chipotles, Rocoto, Cobán</td>
</tr>
<tr>
<td>15 000-30 000</td>
<td>Serrano, Chile de árbol, manzano, Chile de seda</td>
</tr>
<tr>
<td>5 000-15 000</td>
<td>Chile cera</td>
</tr>
<tr>
<td>2 500-5 000</td>
<td>Jalapeño, Guajillo, variedades de Nuevo México de Anaheim, Chile de cera húngaro, Mirasol, Chipotle, Poblano</td>
</tr>
<tr>
<td>1 500-2 500</td>
<td>Rocotillo, Sandía, Cascabel, Padrón</td>
</tr>
<tr>
<td>1 000-1 500</td>
<td>Ancho, Pasilla, Española, Anaheim</td>
</tr>
<tr>
<td>100-1 000</td>
<td>Pepperoncini, Campanas mexicanas, Chile Cherry, Nuevo México, Big Jim, Paprika, Santo Domingo, Chile Cherry rojo</td>
</tr>
<tr>
<td>0</td>
<td>Pimientos campana, Campanas dulces, Banana dulce, Pimiento italiano</td>
</tr>
</tbody>
</table>

Fuente: (Asociación de Hortelanos de Madrid 2010)
III. MATERIALES Y MÉTODOS

3.1. Lugar de ejecución

a) Materia Prima
La obtención de la materia prima se llevó a cabo en la zona de acopio de la Empresa Agroindustrial Gandules INC. Ubicada en el Distrito de Jayanca, Lambayeque, en la margen izquierda del río Salas, en la antigua Panamericana Norte Km. 43.5. En el cual el Ají Jalapeño utilizado en este estudio provino del Fundo San Pedro, Jayanca.

Caracterización de la materia prima
- La caracterización de la materia prima y análisis nutricional se realizaron en las instalaciones de la Universidad Pedro Ruiz Gallo-Lambayeque, en el laboratorio de Química Inorgánica de la Facultad de Ing. Química e Industrias Alimentarias – FIQIA.

b) Obtención de Oleorresina Cápsica
- El método para obtener la oleorresina fue mediante el Método de extracción continua Soxhlet, éste proceso se llevó a cabo en el laboratorio del área de Aseguramiento de la Calidad de la Empresa Agroindustrial Gandules INC – Jayanca.

c) Obtención de Capsaicina
- El método de extracción de alcaloides para obtener la Capsaicina se llevó a cabo en el laboratorio del área de Aseguramiento de la Calidad de la Empresa Agroindustrial Gandules INC – Jayanca.

d) Análisis del producto final
- El análisis del producto final se realizó en las instalaciones de la Universidad Pedro Ruiz Gallo- Lambayeque, en el laboratorio de Química Inorgánica de la Facultad de Ing. Química e Industrias Alimentarias – FIQIA.

3.2. Materiales y Equpos

3.2.1. Materia Prima e Insumos
3.2.1.1. Materia Prima
La materia prima empleada fue la semilla del ají jalapeño extraído aleatoriamente de un lote del proceso de producción del ají.
Cabe resaltar que la selección aleatoria y posterior separación fue realizada a los ajíes enteros frescos, para luego manualmente con apoyos de una cuchilla y una cuchara pequeña extraer las semillas para su utilización.

Para la etapa de análisis de la materia prima se seleccionaron 4 Kg de ají jalapeño entero.

Para la etapa de obtención de oleoresina cápsica fueron seleccionados 3 Kg de ají jalapeño entero.

3.2.1.2. Insumos

Solventes:

a) Etanol.- Alcohol absoluto es alcohol deshidratado, no tiene agua, y su pureza está cercana al 100%. Líquido transparente e incoloro. Miscible con agua y la mayoría de los disolventes.

PROPIEDADES FÍSICAS

- Punto de ebullición: 79°C
- Punto de fusión: -117°C
- Densidad relativa (agua = 1): 0,8
- Solubilidad en agua: miscible
- Presión de vapor, kPa a 20°C: 5,8
- Densidad relativa de vapor (aire = 1): 1,6
- Punto de inflamación: 13°C c.c.
- Temperatura de auto-ignición: 363°C
- Límites de explosividad, % en volumen en el aire: 3.3-19
(Fuente: UNCTAD/GATT, 1986)

b) Hexano pureza al 97%.- El hexano es un líquido incoloro con un olor parecido al del petróleo. Es menos denso que el agua e insoluble en ella, sus vapores son más densos que el aire.

El producto comercial generalmente contiene otros productos hidrocarbonados como isómeros de seis carbonos, benceno, algunos compuestos de 5 y 7 carbonos y otros con azufre, oxígeno, cloro o dobles ligaduras, aunque en menor proporción.
Se obtiene del petróleo. Por destilación de fracciones de las que se obtienen gasolinas o a través de reformados catalíticos, por medio de los que se obtienen compuestos aromáticos. (Programa Internacional de Seguridad de las Sustancias Químicas)

PROPIEDADES FÍSICAS

- Punto de ebullición: 69°C
- Punto de fusión: -95°C
- Densidad relativa (agua = 1): 0.66
- Solubilidad en agua: Ninguna
- Presión de vapor, kPa a 20°C: 16
- Densidad relativa de vapor (aire = 1): 3.0
- Punto de inflamación: -22°C (c.c.)
- Temperatura de autoignición: 240°C
- Límites de explosividad, % en volumen en el aire: 1.1-7.5
(Fuente: PISSQ.)

c) Éter.- El éter etílico es un líquido incoloro con un olor característico. Es menos denso que el agua e insoluble en ella. Sus vapores son más densos que el aire. Tiende a generar peróxidos en presencia de luz y aire, por lo que puede encontrarse estabilizado con limadura de fierro, naftoles, polifenoles, aminas aromáticas y aminofenoles, para disminuir el riesgo de explosiones.

Es obtenido como subproducto en la producción de etanol a través de la hidratación en fase vapor de etileno, utilizando ácido fosfórico como catalizador. Otra forma de obtenerlo es mediante la deshidratación de etanol con ácido sulfúrico a 140 °C. (Programa Internacional de Seguridad de las Sustancias Químicas)

PROPIEDADES FÍSICAS

- Punto de ebullición: 35°C
- Punto de fusión: -116°C
- Densidad relativa (agua = 1): 0.7
- Solubilidad en agua, g/100 ml a 20°C: 6.9
- Presión de vapor, kPa a 20°C: 58.6
- Densidad relativa de vapor (aire = 1): 2.6
- Punto de inflamación: -45°C
- Temperatura de autoignición: 180°C
(Fuente: PISSQ.)
d) **Cloroformo.-** El cloroformo es un líquido incoloro con olor dulce característico, muy volátil. Generalmente contiene pequeños porcentajes (1-5 %) de etanol como estabilizador. Es ligeramente soluble en agua y con densidad mayor que ésta. Es no inflamable, pero productos de su oxidación, como el fosgeno, son muy peligrosos. Es peligroso por inhalación e ingestión. (Fuente: PISSQ.)

PROPIEDADES FISICAS
- Punto de ebullición: 62°C
- Punto de fusión: -64°C
- Densidad relativa (agua = 1): 1.48
- Solubilidad en agua, g/100 ml a 20°C: 0.8
- Presión de vapor, kPa a 20°C: 21.2
- Densidad relativa de vapor (aire = 1): 4.12

3.2.2. **Equpos**

a) Análisis de Materia Prima
- 01 Agitador magnético FISATOM, Mod. 753A
- 01 Ampolla de decantación
- 02 Balón de destilación
- 01 Balanza Analítica OHAUS, Mod. AR2140
- 02 Bureta
- 03 Crisol
- 01 Desecador de vidrio SIMAX 250mm
- 01 Embudo de decantación
- 01 Estufa de laboratorio MEMMERT
- 01 Gafas de protección
- 01 Matraz de Erlenmeyer
- 01 Mechero Bunsen
- 01 Mortero
- 01 Mufla de Laboratorio TECNO DALVO Mod. TDHM/1
- 06 Unid. Papel Filtro
- 01 Pera de succión
- 02 Pipeta
- 02 Probeta
- 02 Tubo de ensayo

b) Obtención de Oleoresina
- 01 Equipo Soxhlet TRADEMARK 250 ml
3.3. Métodos de Análisis

a) Muestreo

Se procedió a seleccionar 4 kg de Ají Jalapeño entero fresco por muestreo aleatorio simple, se seleccionaron 2 kg del Lote PIJ1805SP y 2 kg del Lote PIJ2105SP, para que posteriormente sean analizados. Cabe mencionar que el día 21 de Mayo de 2011 que se realizó el muestreo solamente permanecían en el almacén de acopio de materia prima los 2 únicos Lotes en mención y el tamaño de muestra fue proporcionada por la Empresa Gandules, teniendo en cuenta que el peso mínimo requerido para el uso del equipo Soxhlet es de 10g de muestra. El Lote PIJ1805SP tiene un peso de 2032 Kg, en donde el Ají Jalapeño está distribuido en 8 Bins, el Lote PIJ2105SP tiene un peso de 2865 Kg distribuido en 11 Bins. Por lo tanto para obtener los 2 kg de cada lote se extrajo aleatoriamente 1 kg de un Bin ubicado en la parte extrema anterior y 1 kg de otro Bin ubicado en la parte extrema posterior del Lote.

b) Análisis de Materia Prima

- Determinación de humedad.

Mediante el método gravimétrico en estufa hasta obtener peso constante. Esto se realizó a 98 °C (CODEX ALIMENTARIUS AOAC 925.09)

2 Bins: Contenedor de Madera o Plástico el cual permite el acopio y almacenamiento de materia
- **Determinación de proteínas.**
 Se empleó el método básico de Digestión de Kjeldahl usando el factor 6.25 (CODEX AOAC 955.04D); este método es aplicable para todo tipo de alimentos.

- **Determinación de cenizas totales.**
 Método directo, Mediante proceso de incineración, el producto se introdujo en una mufla a una temperatura promedio de 550 °C (CODEX AOAC 923.03) este proceso destruye la materia orgánica.

- **Determinación de grasas.**
 Se determinaron por el método de extracción con solvente en equipo Soxhlet, según Codex Alimentarius CAC/RM 55-1976 - Method 1.

- **Determinación de Carbohidratos:**
 Se determinaron por el método del cálculo (CODEX CAC/VOL IX-Ed.1), el cual indica que el cálculo total de carbohidratos es la diferencia entre el 100%, menos el porcentaje de humedad, menos el porcentaje de proteínas, menos porcentaje de cenizas, menos el porcentaje de grasas totales.

c) **Análisis del producto final**
Las 2 combinaciones con mejores rendimientos fueron analizadas, las características que se determinaron son:

✓ Humedad: Método gravimétrico en estufa hasta obtener peso constante. Esto se realizó a 98 °C (CODEX ALIMENTARIUS AOAC 925.09)

✓ Cenizas: Mediante proceso de incineración, el producto se introdujo en una mufla a una temperatura promedio de 550 °C (CODEX AOAC 923.03) este proceso destruye la materia orgánica.

✓ Proteínas: Se empleó el método básico de Digestión de Kjeldahl usando el factor 6.25 (CODEX AOAC 955.04D); este método es aplicable para todo tipo de alimentos.

✓ Carbohidratos: Se determinaron por el método del cálculo (CODEX CAC/VOL IX-Ed.1), el cual indica que el cálculo total de carbohidratos es la diferencia entre el 100% menos el porcentaje de humedad, menos el porcentaje de proteínas, menos porcentaje de cenizas, menos el porcentaje de grasas totales.
✓ La viscosidad se medirá con el instrumento llamado Viscosímetro de Ostwald.
✓ La densidad se medirá con un densímetro.
✓ La Pungencia se medirá con el método HPLC (Cromatografía Líquida de Alta Eficacia

3.4. Metodología Experimental
El diseño de la presente investigación es un diseño bifactorial (dos factores de 2 x 3), Dos condiciones de humedad (H) y Tres tipos de solventes(S), donde cabe mencionar nuevamente que cada combinación factorial es considerado un Tratamiento (2H x 3 S). A partir de muestras aleatoriamente extraídas se procedió a la extracción de las semillas, tanto para su análisis nutricional, como para el proceso de obtención de Capsaicina (Ver Tabla Nº 4), se han aplicado los siguientes pasos:

3.4.1. Caracterización de la materia prima
En primer lugar se realizó una caracterización de la materia prima, mediante un análisis nutricional se determinaron las siguientes características: Humedad, Cenizas, Proteínas, Carbohidratos y Grasas. Para esta etapa se emplearon 4 Kg de Ají Jalapeño.

- **Determinación de humedad.**

 Se cortó el ají jalapeño para sacar las semillas (muestra) y se procedió a pesar.

 Luego se introdujeron las muestras en una estufa a 98°C por 5.5 horas.

 Posteriormente se llevaron las muestras a un desecador (conteniendo silicagel en la base) hasta que alcancen la temperatura ambiente para poder ser pesadas y reportar la pérdida de peso como humedad. (Ver anexo 3.1)

 Se empleó el promedio de los resultados de las 2 muestras, determinando una humedad promedio de 81.58%.

- **Determinación de proteínas.**

 Primero se secó la semilla del ají jalapeño siguiendo el mismo procedimiento empleado para la determinación de humedad, se procedió a secar la semilla en una estufa pro 5.5 horas a 98 °C, hasta que alcance peso constante.
Luego se molió la semilla seca en un mortero hasta uniformizar la muestra

Se taró una Fiola vacía para así eliminar su peso y posteriormente se añadieron 0.5 g de muestra (semilla seca molida)

A la Fiola se agregó 20 ml de Ácido Sulfúrico que contenía 1g de Ac. Salicílico. Se dejó reposando 30 minutos. (Ver Imagen N° 2. Anexo 3.2)

Posteriormente se agregó 2.5 g de Hiposulfato de Sodio (Na$_2$S$_2$O$_3$) y se reposó por 5 minutos.

Se procedió a la digestión durante 90 minutos. Según las tablas de digestión Kjeldahl para que proceda la digestión, la temperatura es de 420 ºC pero debido a la limitación de los equipos del laboratorio no se pudo indicar la temperatura exacta del proceso. (Ver Tabla N°20 de temperaturas para la digestión en el Anexo 1)

Luego para destilar la muestra, se agregó a la Fiola 80 ml de H$_2$O destilada, 10 ml de Hidróxido de Sodio concentrado (40%), 2 gotas de Fenolftaleína al 1% (Indicador de pH).

Se puso debajo del condensador un matraz y se añadió 50 ml Ac. Bórico al 4%, 3 gotas de Indicador para Nitrógeno (Metileno + Verde Bromo Cresol).

Se destiló la muestra por 300 segundos luego de que caiga en el matraz la primera gota condensada. (Ver imagen N° 3. Anexo 3.2)

Para indicar el pH de aprox. 4.65 se empleó como indicador Naranja de Metilo el cual vira a un color rojo con pH inferiores a 3.1 y a un color anaranjado con pH superiores a 4.5. Y posteriormente se realizó la valoración con Ac. Sulfúrico tal como lo indica el Método Kjeldahl (Ver Tabla N°21 Parámetros para Destilación y Titulación del Método Kjeldahl en el Anexo 2)

Se determinó el promedio de las 2 muestras como el resultado final de la valoración, este fue de 1.20 % de Proteínas. (Ver Anexo 3.2.1).

- **Determinación de cenizas totales.**

Se pesó en 2 crisoles (por duplicado) aprox. 2 g. de semilla de ají Jalapeño (Ver Anexo 3.3)

Se incineraron las muestras en un mechero sobre tela de amianto hasta carbonización. Para estas muestra obtuvo una duración de 20 minutos,
luego se introdujeron las muestras en una mufla a 500 °C hasta obtener peso constante, esto se logró en 60 minutos.

Luego se enfriaron los crisoles en el desecador hasta obtener temperatura ambiente (45 minutos) y se procedió a pesar.

Se determinó el promedio de los resultados de las 2 muestras analizadas como resultado del análisis de cenizas, éste fue de 6.73% de cenizas.

- **Determinación de grasas.-**

Primero se pesó 5.0104 g. de muestra (semilla de ají jalapeño seco).

Se pesó un Balón de fondo plano para posteriormente restarle al peso de las grasas contenidas en este, su peso fue: 107.9091 g.

Se envolvió la muestra en un cartucho de papel filtro experimental y se introdujo en el tubo del equipo Soxhlet. Luego se introdujo algodón alrededor del cartucho previamente humedecido con el disolvente de extracción de éter de petróleo.

Se vertieron 250ml. De disolvente (éter de petróleo) en el Balón de fondo plano.

Se procedió a la extracción continua, hasta que el disolvente residual se disolvió y clarificó, se alcanzaron las 6 lixiviadas (6 veces continuas).

Se puso el balón con la grasa en un baño de agua hirviendo para evaporar el disolvente. Luego se colocó el Balón en un horno a 100° C para secar la grasa durante 90 minutos (hasta que alcance peso contante).

Se colocó el balón en el disecador hasta que enfríe a temperatura ambiente para posteriormente pesar. (Ver Anexo 3.4.)

El porcentaje de contenido de grasas totales fue: 5.55%

- **Determinación de Carbohidratos:**

El total de carbohidratos es la diferencia entre el 100% menos % de Humedad, menos % de Cenizas, menos % de Proteínas, menos % de Grasas:

El porcentaje de Carbohidratos es: 4.94%.
3.4.2. **Obtención de oleorresina cápsica**

La materia prima empleada (semillas extraídas del ají Jalapeño) fue seleccionada aleatoriamente de un lote del proceso de producción del ají en la Empresa Gandules INC. Fueron destinados para este proceso 3 kg de ají jalapeño entero.

La presente investigación utilizó un diseño completamente al azar con un arreglo combinatorio, en el cual se aplicó un experimento bifactorial, los cuales son 3 tipos de solventes y 2 niveles de deshidratación (en fresco y en seco). Cabe mencionar que se han empleado 3 repeticiones por cada combinación.

La oleorresina cápsica se obtuvo por el método de extracción Soxhlet, el cual consiste en un proceso de lixiviación continuo con solventes para separar líquidos de una muestra sólida.

Para esto se analizó la semilla empleada en el proceso de conserva del ají jalapeño de la empresa Gandules INC. La semilla utilizada para la extracción de oleorresina cápsica se dividió en 2 Lotes: 1 Lote 1 de 1 kg de producto fresco a temperatura ambiente (Humedad 81.58%) y otro Lote 2 de 2 kg de semilla secada hasta obtener una humedad del 10% (Cardona 2006)

Se emplearon 3 tipos de solventes para la extracción: Etanol 99% (Gonzales 2007); Éter y Hexano concentrados. Determinando el tipo de muestra con mejores rendimientos. (Ver Figura 4)

Con lo dicho anteriormente se llevaron a cabo un total de 6 tratamientos experimentales cada uno de éstos presentando 3 repeticiones por tratamiento, tal como se presenta en la Figura 5.

El proceso fue el siguiente:

Primero se separó la semilla del ají jalapeño obtenida al azar y aleatoriamente de un lote de producción.

Luego se procedió a secar la materia prima de modo natural en un desecador de vidrio conteniendo en su base Silicagel, hasta obtener una humedad del 10% (Aprox. 4 días). Esta operación sólo se ha aplicado a las muestras con las que se desea obtener una humedad del 10% (H₂). (Ver Anexo N° 4)

Luego, para ambos lotes la semilla fue molida a mano en un mortero de laboratorio hasta aparentar apariencia uniforme y se vierten 10 g de semilla en un cartucho formado a base de papel filtro.

El cartucho es introducido en el Equipo Soxhlet y a la vez se vierten 100 ml de solvente en un Balón de Fondo Plano de Laboratorio previamente tarado.
Se procede con la lixiviación en el Equipo Soxhlet por 5 fusiones o ciclos (Ver Imagen N° 7. Anexo N° 4).

Se retira el balón de laboratorio de fondo plano y se introduce en el desecador hasta obtener temperatura ambiente (enfriamiento)

Se pesa el Balón y se descuenta el peso del balón sólo previamente pesado.

Se vierte la oleoresina en una probeta para determinar el volumen.

El solvente resultante (recuperado en la parte del cartucho de papel filtro del equipo Soxhlet) es vertido en una probeta para determinar el volumen.
En la figura 4 se muestra de manera gráfica las combinaciones a realizar, empleando el método de extracción Soxhlet para la semilla del ají jalapeño, con 2 tipos de humedades diferentes: Humedad al 10% y Humedad a temperatura ambiente. En la cual para cada condición de humedad se han empleado 3 tipos de solventes, Hexano, Éter y Etanol.
Figura 5. Combinaciones Factoriales

Combinando los 2 factores: humedad (H) y solventes (S); se obtiene como resultado
la siguiente combinación factorial:

En donde los tratamientos son:

T1: H₁, S₁: Humedad a temperatura ambiente y Solvente Hexano
T2: H₁, S₂: Humedad a temperatura ambiente y Solvente Éter
T3: H₁, S₃: Humedad a temperatura ambiente y Solvente Etanol
T4: H₂, S₁: Humedad al 10% y Solvente Hexano
T5: H₂, S₂: Humedad al 10% y Solvente Éter
T6: H₂, S₃: Humedad al 10% y Solvente Etanol

3.4.3. Obtención de Capsaicina

Posteriormente a partir de a Oleorresina Cápsica extraída previamente se
procedió a obtener la Capsaicina mediante el método de extracción de alcaloides.

Se empleó el método de extracción de alcaloides. Se aplicó el procedimiento
para 2 tratamientos (combinaciones muestrales), el tratamiento T₆ (H₂, S₃);
que obtuvo los mejores resultados de rendimiento para el factor Humedad al
10%; y el tratamiento T₃ (H₁, S₃); que obtuvo los mejores resultados de rendimiento para el factor Humedad a temperatura ambiente.

Este proceso consistió primero en poner la oleorresina a calentar para concentrarla hasta aparentar consistencia de jarabe,

Luego se adicionó Ac. Sulfúrico hasta alcanzar un pH de 3.5 y calentó hasta que se haya eliminado el solvente que se encuentra aún en la oleorresina cápsica. (Hasta alcanzar peso constante).

Se agregó cloroformo (10% de la muestra) se agitó durante 3 horas y se dejó reposando hasta el siguiente día.

Posteriormente se separaron las 2 fases resultantes en una ampolla de decantación. (Fases Clorofórmicas y Fases Acuosas)

En la fase acuosa se volvió a verter cloroformo y se agitó durante 3 horas e igualmente se dejó reposar durante 1 día.

Posteriormente con ésta última muestra ya reposada se volvió a separar la fase clorofórmica y la fase acuosa se desechó.

Por último se unieron las fases clorofórmicas de las lavadas, se evaporó el solvente de la fase clorofórmica para eliminar el cloroformo y quede el compuesto resultante final. (Tadeo, 2004)

3.4.4. **Análisis del producto final**

Se realizó un análisis nutricional del producto final, en el cual se analizarán características semejantes a las presentes en la materia prima (humedad, carbohidratos, proteínas, grasas y cenizas), así como también otras características importantes por la empresa como viscosidad, densidad, grado de picor (pungecia)

Es importante señalar que para determinar el grado de picor de la Capsaicina (pungencia) se empleó el método de Cromatografía de Capa Líquida
Figura 6. Diagrama de Etapas para la Obtención de Capsaicina

1. M. P. SEMILLA AJÍ JALAPEÑO
2. ACONDICIONAMIENTO (HUMEDAD AL 10%)
3. MOLIENDA (en un mortero hasta apariencia uniforme)
4. OBTENCIÓN OLEORRESINA MEDIANTE EXTRACCIÓN (LIXIVIACIÓN) CON EQ. SOXHLET
5. Adición de Ac. Sulfúrico y Cocción
6. ADICIÓN DE CLOROFORMO Y REPOSO 24 Horas
7. SEPARACIÓN DE FASES
8. EVAPORACIÓN PARA ELIMINACIÓN DE CLOROFORMO
9. PRODUCTO FINAL

(Fuente: Propia)
Tabla N° 4. Síntesis del Diseño de Investigación

<table>
<thead>
<tr>
<th>Caracterización</th>
<th>Obtención de oleorresina cápsica</th>
<th>Obtención de Capsaicina</th>
<th>Análisis del producto final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>- Se analizó la Capsaicina extraída</td>
</tr>
<tr>
<td></td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>- Análisis nutricional</td>
</tr>
<tr>
<td></td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>- Análisis cromatográfico de capa delgada.</td>
</tr>
<tr>
<td></td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>![Diagrama de árbol con tres ramas]</td>
<td>- Análisis de rendimientos</td>
</tr>
</tbody>
</table>

- Humedad
- Carbohidratos
- Proteínas
- Grasas
- Cenizas

H₁: Humedad a temperatura ambiente, 81.58 %
H₂: Humedad al 10%
S₁: Solvente Hexano
S₂: Solvente Éter
S₃: Solvente Etanol
Para todos los tratamientos se empleó el método Soxhlet con un batch fijo de 10g de semilla de ají jalapeño y 100 ml de solvente.

- Rendimiento M.P.
- Volumen (ml)
- Peso (g)
- Rendimiento Solvente
- Volúmen
- Humedad
- Carbohidratos
- Proteínas
- Grasas
- Cenizas
- Pungencia, Picor (Grados Scoville)
- Viscosidad
- Densidad

Fuente: Propia
3.5. Análisis del Costo del Proyecto

El objetivo de realizar éste análisis del costo de elaboración de Capsaicina es determinar brevemente la rentabilidad de ésta investigación aplicada en la empresa Gandules INC. Basados en el costo de extracción de Capsaicina en el laboratorio y comparado con una extracción a gran escala.

3.5.1. Datos Informativos Generales

Se tomó como referencia la campaña del año 2011 en la que se empleó 4650,32 Tm de Ají Jalapeño. Considerando que la semilla residual abarca el 3% de la Materia Prima, se obtienen 139,5 Tn anuales de semilla de Ají Jalapeño. Se ha considerado asumir sólo el 68% de la semilla residual de Ají Jalapeño en la empresa Gandules debido a que se considera que no toda la semilla es recuperable debido a que el otro 32% de la semilla residual son mermas que no reúnen las condiciones de calidad y semilla que cae al suelo por el mismo proceso. Con una utilización del 68% la capacidad de producción estándar promedio sería de 263,51 kg de semilla fresca/día ó 94,87 Tn/año. Para el proceso más adecuado que es la semilla con un 10% de humedad; el peso de esta semilla seca sería de 32,3 kg/día o 11,6 tn/año. Es necesario el conocimiento de esta información como referencia al ser necesaria la compra de algún equipo o maquinaria.

3.5.2. Costos de Compra de Equipos (C. Fijos.)

a) Molino Triturador Forrajero JTRF60 Trapp para uso continúo

Luego de seleccionar la materia prima, la primera etapa es la molienda-trituración de la semilla seca o a temperatura ambiente (se ha despreciado costo MOD debido a que esta función no requiere mayor trabajo que el secado natural a ambiente). Para la molienda es necesaria la compra de un Molino pequeño valorizado en $1 950,00 con la siguiente especificación:

- Hasta 90 Kilos Hora Moliendo granos secos
- Hasta 120 Kilos Hora Picando ración verde
- 2 martillos Fijos 2 Cuchillas
Incluye Motor marca WEG de 1,5 HP con selector de voltaje 110/220, Suiche On-Off y 4 Cribas

(Fuente: VEYCO Molinos y Mezcladoras)

3 Se ha considerado emplear el 68% debido a que es el promedio anual standar de rendimiento de Ají Jalapeño

4 MOD: Mano de obra directa
b) Diseño de Equipo Extractor Soxhlet y fabricación

La Empresa Gandules cuenta con un Equipo extractor Soxhlet con capacidad de 100ml y 10g de materia prima por 2 horas de extracción, para aumentar la capacidad de acuerdo a la disponibilidad de materia prima se sugiere el diseño de un Equipo Extractor Soxhlet con capacidad mínima de 2,94 Kg de materia prima (trabajando 22 horas diarias) y 29,4 Litros de Solvente, debido a que éste equipo no existe en el mercado se tendría que diseñar, se ha tomado como costo referencial el de $3 950 por un equipo con capacidad de 500ml (INSBAL.COM, 2006) y con ésta información se ha asumido como costo de diseño $23 700,00 dólares.

Tabla N° 5 Costos de compra de equipos (C. Fijos)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino</td>
<td>01 unidad</td>
<td>$1 950,00</td>
</tr>
<tr>
<td>Equipo Soxhlet</td>
<td>01 unidad</td>
<td>$23 700,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>01 unidad</td>
<td>$25 650,00</td>
</tr>
</tbody>
</table>

Fuente: Propia

3.5.3. Costos de Producción e Insumos

No se considera el costo de la materia prima debido a que como ya se ha mencionado es un residuo que se va a utilizar del proceso de producción del Ají Jalapeño en sus diferentes Sub-Productos y formatos.

a) Etanol

A nivel de Laboratorio por cada 10 g de semilla se empleó 100 ml de solvente, pero es importante considerar el porcentaje de recuperación obtenida. Para el solvente Etanol presentó en promedio un 78% de recuperación. Por lo que el consumo se ha elaborado en base a 22 ml de Etanol consumido por cada 10 g de semilla.

Para un empleo de 11,6 Tn anuales de semilla de Ají Jalapeño se utilizarían 116 000 l de Etanol, valorizado en $0,65 / l de Etanol (Fuente: Alibaba Global Trade Starts).

Por lo que para 116 000 l anuales de Etanol, el costo ascendería a $75 400 dólares.
b) Ac. Sulfúrico

El consumo de Ac. Sulfúrico empleado a nivel de laboratorio fue de 3,04 ml en el tratamiento T6 (Humedad al 10% y Solvente Etanol) que obtuvo mejores resultados con 21,97 ml de Oleorresina empleando 10g de semilla. Por lo que para una cantidad de 11,6 Tn de Semilla se consumirán 3 526,4 l/año de Ac. Sulfúrico, el cual tiene un costo de $0,28 x Litro. Por lo tanto el costo asciende a $987,4 dólares anuales.

c) Cloroformo

El cloroformo utilizado en 10g de semilla de Ají Jalapeño fue de 0,6 ml, por lo que para las 11,6 Tn de Semilla de Ají Jalapeño se consumirán 696 l/año de Cloroformo, el cual tiene un costo de $25,00 x Litro. Por lo tanto el costo asciende a $17 400 dólares anuales.

d) Costos Mano Obra

Para obtener el costo de mano de obra directa MOD, se ha considerado los tiempos aproximados de cada etapa del proceso. Se han considerado convenientes el empleo de 4 operarios durante 22 horas laboradas/día para las etapas de Secado, Molienda, Extracción de Oleorresina y Proceso de Obtención de Capsaicina. La empresa Gandules INC. Costea su mano de obra directa en $1,39/hora por lo que al emplear 4 operarios x 22 horas laborales x $1,39/hora x 30 días x 12 meses; el Costo de Mano de Obra anual resulta $61 208,93 dólares anuales.

Tabla N° 6. Costos de Producción (Directos)

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etanol</td>
<td>116 000 l/año</td>
<td>75 400,00 $/año</td>
</tr>
<tr>
<td>Ac. Sulfúrico</td>
<td>3 526,4 l/año</td>
<td>987,40 $/año</td>
</tr>
<tr>
<td>Cloroformo</td>
<td>696 l/año</td>
<td>17 400,00 $/año</td>
</tr>
<tr>
<td>MOD</td>
<td>7920 h/año</td>
<td>61 208,93 $/año</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>154 996,33 $/año</td>
</tr>
</tbody>
</table>

Fuente: Propia
3.5.4. Beneficios de producción y venta de Capsaicina

Por otro lado el costo de la Capsaicina en el mercado internacional es de $90 el Kilogramo. La presente investigación obtuvo como resultado 3.19 g de Capsaicina a partir de 21,97 ml de Oleoresina obtenidos a partir de 10g de Semilla Seca de Aji Jalapeño. Por lo tanto se determina que para un abastecimiento de 11,6 Tn de Semilla Seca de Aji Jalapeño se podría obtener 3,7 Tn de Capsaicina, lo cual equivaldría a un ingreso de $333 000 dólares anuales, ya sea como venta a otras empresas y/o rubros, así como también en el ahorro de este insumo para los productos solicitados que lo conllevan.

Tabla N° 7. Costo/Beneficio directo de Producción Anual

<table>
<thead>
<tr>
<th>Egresos</th>
<th>$/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia Prima</td>
<td>0,00</td>
</tr>
<tr>
<td>Etanol</td>
<td>75 400,00</td>
</tr>
<tr>
<td>Ac. Sulfúrico</td>
<td>987,40</td>
</tr>
<tr>
<td>Cloroformo</td>
<td>17 400,00</td>
</tr>
<tr>
<td>MOD</td>
<td>61 208,93</td>
</tr>
<tr>
<td>TOTAL EGRESOS</td>
<td>154 996,33</td>
</tr>
</tbody>
</table>

| INGRESO | 333 000,00 |
| UTILIDAD año | 178 003,67 |

INVERSIÓN	
01 Máq. De Molienda	2 950,00
01 Eq. Extractor Soxhlet	23 700,00
TOTAL	**26 650,00**

Fuente: Propia
3.6. Análisis Estadístico
Se empleó un análisis de varianza de los datos. El cuál se detalla a continuación, primero teóricamente para posteriormente aplicarlo al presente diseño

3.6.1. Pasos para el contraste de hipótesis en un modelo de dos factores con repetición (Díaz, 2009)

○ PASO Nº1 Planteamiento de Hipótesis.
Las cuatro hipótesis que usualmente se prueban son las siguientes:

I) Planteamiento de Hipótesis para el primer factor Humedad

\[H_0^T: \text{Las medias de los factores (Humedades) son iguales} \ (\beta_1=\beta_2) \]
\[H_1^T: \text{Las medias de los factores (Humedades) son diferentes} \]
De manera análoga, para determinar si las medias poblacionales de los bloques.

II) Planteamiento de Hipótesis para el segundo factor Solvente

\[H_0^B: \text{Todas las medias de los solventes (filas) son iguales} \ (\alpha_1 = \alpha_2 = \ldots = \alpha_L = 0) \]
\[H_1^B: \text{No todas las medias de los solventes son iguales (al menos uno de los efectos} \ \alpha_i \ \text{no es igual a cero).} \]
Y con respecto a la interacción:

III) Planteamiento de Hipótesis para la Interacción entre los factores Humedad y Solventes

\[H_0^I: \text{No existe interacción entre la humedad y los solventes.} \]
\[(\gamma_{11} = \gamma_{12} = \ldots = \gamma_{LK} = 0) \]
\[H_1^I: \text{Existe interacción entre la humedad y los Solventes (al menos uno de los efectos} \ \gamma_{ij} \ \text{no es igual a cero).} \]
IV) Planteamiento de Hipótesis para la Obtención de Capsaicina

\(H_0^{E} \): No existe interacción entre el rendimiento obtenido de Capsaicina y el Factor Humedad

\((\gamma_{11} = \gamma_{12} = \ldots = \gamma_{LK} = 0) \).

\(H_1^{E} \): Existe interacción entre el rendimiento obtenido de Capsaicina y el Factor Humedad

Estas pruebas se basarán en una comparación de los estimadores independientes de la varianza poblacional común \(\sigma^2 \). Estos estimadores se obtendrán separando la suma total de los cuadrados de los datos en cuatro componentes.

- **PASO Nº 2**: Nivel de significancia: \(\alpha \) (0<\(\alpha \)<1)
- **PASO Nº 3**: Construcción de la Tabla del ANOVA.

Cálculo de ecuaciones para el Análisis de Varianza.

De lo anterior, la suma total de cuadrados de los datos se descompone en cuatro componentes, por medio de la siguiente identidad.

\[\text{SCT} = \text{SCTR} + \text{SCRL} + \text{SCI} + \text{SCE} \]

Donde SCI = Suma de cuadrados debido a la interacción.

Las fórmulas prácticas para calcular estas sumas de cuadrados son:

- **a) Variación Total.**

 \[\text{SCT} = \sum_{i=1}^{c} \sum_{j=1}^{r} \sum_{k=1}^{n} X_{ijk}^2 - C \], donde \(C = \frac{T^2}{f * c * r} \).

- **b) Variación entre tratamientos**

 \[\text{SCF} = \frac{1}{cr} \sum_{j=1}^{c} T^2 j - C \]

- **c) Variación entre Bloques.**

 \[\text{SCC} = \frac{1}{f * r} \sum_{i=1}^{c} T^2 i - C \]
d) Variación Residual

\[SCE = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{f} X_{ijk}^2 - \frac{1}{r} \sum_{j=1}^{r} T_{ji}^2 \]

e) Variación debido a la interacción.

En la práctica, su valor será obtenida por:

\[SCI = SCT - SCC - SCF - SCE \]

Tabla N° 8. Análisis de varianza (ANOVA) para dos factores con repetición

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad (gl)</th>
<th>Suma de Cuadrados (S.C)</th>
<th>Cuadrado Medio (C.M)</th>
<th>Razón F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Factores (Columnas)</td>
<td>C-1</td>
<td>SCC</td>
<td></td>
<td>F_T = CMC (\frac{CMC}{CME})</td>
</tr>
<tr>
<td>Entre Bloques (filas)</td>
<td>f-1</td>
<td>SCF</td>
<td></td>
<td>F_B = CMF (\frac{CMF}{CME})</td>
</tr>
<tr>
<td>Debido a la interacción</td>
<td>(c-1)(f-1)</td>
<td>SCI</td>
<td></td>
<td>F_I = CMI (\frac{CMI}{CME})</td>
</tr>
<tr>
<td>Error Residual</td>
<td>cf(r-1)</td>
<td>SCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td>SCT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Díaz, 2009
Para la presente investigación se han aplicado como fuente de variación entre los factores (columnas) al factor humedad, y como fuente de variación entre los bloques (filas) a los tipos de solventes empleados.

Tabla Nº 9. Pruebas de los efectos inter-sujetos

Variable dependiente: Volumen de Oleorresina (ml)

<table>
<thead>
<tr>
<th>Origen</th>
<th>Suma de cuadrados tipo III</th>
<th>gl</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>4740,010*</td>
<td>6</td>
<td>790,002</td>
<td>57,340</td>
<td>0,000</td>
</tr>
<tr>
<td>SOLVENTES</td>
<td>170,090</td>
<td>2</td>
<td>85,045</td>
<td>6,173</td>
<td>0,014</td>
</tr>
<tr>
<td>HUMEDAD</td>
<td>58,392</td>
<td>1</td>
<td>58,392</td>
<td>4,238</td>
<td>0,062</td>
</tr>
<tr>
<td>SOLVENTES * HUMEDAD</td>
<td>19,272</td>
<td>2</td>
<td>9,636</td>
<td>0,699</td>
<td>0,516</td>
</tr>
<tr>
<td>Error</td>
<td>0,331</td>
<td>12</td>
<td>13,778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4740,341</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R cuadrado = 0.966 (R cuadrado corregida = 0.949)

Tabla Nº 10. Pruebas de Levene y T-Student

Estadísticos de grupo

<table>
<thead>
<tr>
<th>Humedad</th>
<th>N</th>
<th>Media</th>
<th>Desviación típ.</th>
<th>Error típ. de la media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen de Oleorresina (ml)</td>
<td>9</td>
<td>13,996</td>
<td>2,32133</td>
<td>0,77378</td>
</tr>
<tr>
<td>Humedad a temperatura ambiente</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedad al 10%</td>
<td>9</td>
<td>17,598</td>
<td>6,24084</td>
<td>2,08028</td>
</tr>
</tbody>
</table>

44
Tabla N° 11. Prueba de muestras independientes

<table>
<thead>
<tr>
<th>Volumen de Oleorresina (ml)</th>
<th>Asumidas varianzas iguales</th>
<th>No asumidas varianzas iguales</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1,152</td>
<td>0,299</td>
</tr>
<tr>
<td>Sig.</td>
<td>0,299</td>
<td>-1,623</td>
</tr>
<tr>
<td>t</td>
<td>-1,623</td>
<td>16,00</td>
</tr>
<tr>
<td>gl</td>
<td>0,124</td>
<td>0,135</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>-3,602</td>
<td>-3,602</td>
</tr>
<tr>
<td>Diferencia de medias</td>
<td>2,2195</td>
<td>2,2195</td>
</tr>
<tr>
<td>Error tip. de la diferencia</td>
<td>-8,3074</td>
<td>-8,5363</td>
</tr>
<tr>
<td>95% Intervalo de confianza para la diferencia</td>
<td>1,1029</td>
<td>1,3318</td>
</tr>
</tbody>
</table>

Fuente: Propia

Tabla N° 12. Prueba de Duncan: Volumen de Oleorresina (ml)

<table>
<thead>
<tr>
<th>Solventes</th>
<th>N</th>
<th>Subconjunto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Solvente Eter</td>
<td>6</td>
<td>11,7700</td>
</tr>
<tr>
<td>Solvente Hexano</td>
<td>6</td>
<td>16,3950</td>
</tr>
<tr>
<td>Solvente Etanol</td>
<td>6</td>
<td>19,2283</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>0,052</td>
</tr>
</tbody>
</table>

Fuente: Propia
Tabla N° 13. Prueba T-student (temperatura a 135 °C)

<table>
<thead>
<tr>
<th>Estadísticos de grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Desviación típ.</td>
</tr>
<tr>
<td>Error típ. de la media</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volumen de Capsaicina</td>
</tr>
<tr>
<td>T° Ambiente</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>0.2556</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>Humedad al 10%</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>0.375</td>
</tr>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.00</td>
</tr>
</tbody>
</table>

Tabla N° 14. Prueba de muestras independientes

<table>
<thead>
<tr>
<th>Prueba de Levene para la igualdad de varianzas</th>
<th>Prueba T-Student para la igualdad de medias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
</tr>
<tr>
<td>F</td>
<td>Sig.</td>
</tr>
<tr>
<td>1.26</td>
<td>0.354</td>
</tr>
<tr>
<td>1.852</td>
<td>9.0</td>
</tr>
</tbody>
</table>

(Fuente: Propia)
o PASO Nº 4: Región Crítica:

i) La región crítica de la prueba de tamaño \(\alpha \) para contrastar los efectos de las columnas (factor A), es dado por:

\[
C^T = \{ F_{cal}^T: F_{cal}^T > F_{lab} = F_\alpha (c - 1, cf(r - 1)) \}
\]

ii) La región crítica de la prueba de tamaño \(\alpha \) para contrastar los efectos de las filas (factor B), es dado por.

\[
C^B = \{ F_{cal}^B: F_{cal}^B > F_{lab} = F_\alpha (c - 1, cf(r - 1)) \}
\]

iii) La región crítica de la prueba de tamaño \(\alpha \) para contrastar los efectos de interacción, es dado por:

\[
C^I = \{ F_{cal}^I: F_{cal}^I > F_{lab} = F_\alpha (c - 1, cf(r - 1)) \}
\]

o PASO Nº 5: Conclusión:

i) Si \(F_{cal}^T > F_{lab} = F_\alpha \{ (c - 1, cf(r - 1)) \} \), se rechaza \(H_0^T \) y se concluye de que hay diferencia entre las medias de tratamientos (columnas) y consecuentemente hay influencia del factor A sobre la variable analizada; en caso contrario no se rechaza \(H_0^T \) y se concluye con un riesgo de \(\alpha \) de que el factor A no causa efecto en la variable dependiente o respuesta.

ii) Si \(F_{cal}^B > F_\alpha \{ (r - 1, cf(r - 1)) \} \), se rechaza \(H_0^B \) y se concluye de que hay diferencia entre las medias de bloques (filas) y consecuentemente hay influencia del factor B sobre la variable respuesta; en caso contrario no se rechaza \(H_0^B \) y se concluye con un riesgo \(\alpha \) de que el factor B no causa efecto en la variable dependiente o respuesta.

iii) Si \(F_{cal}^I > F_\alpha \{ (c - 1, (f-1), cf(r - 1)) \} \), se rechaza \(H_0^I \) y se concluye de que hay interacción entre las filas y columnas; en caso contrario no se rechaza \(H_0^I \) y se concluye con un riesgo \(\alpha \) de que la interacción no es significativa.
IV. RESULTADOS Y DISCUSIÓN

A continuación se presentan los análisis y explicación de los resultados de cada una de las etapas desde las características de la materia prima hasta el análisis del producto final.

4.1. Análisis de Materia prima, semillas del ají jalapeño
La siguiente tabla Nº 15 detalla los resultados del análisis nutricional realizado a las semillas del ají jalapeño

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>Unidad</th>
<th>100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>g</td>
<td>81.58</td>
</tr>
<tr>
<td>Cenizas</td>
<td>g</td>
<td>6.73</td>
</tr>
<tr>
<td>Proteína</td>
<td>g</td>
<td>1.20</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>g</td>
<td>4.94</td>
</tr>
<tr>
<td>Grasas</td>
<td>g</td>
<td>5.55</td>
</tr>
</tbody>
</table>

Fuente: Propia (Ver Anexo Nº 5)

De acuerdo al análisis nutricional realizado, se determina que el mayor porcentaje del peso de la semilla del ají está determinado por la Humedad; otro aspecto es que la semilla presenta un 5.55 % de peso en Grasas, a partir de las cuales se extrae la oleorresina. Por último se determina que la semilla presenta bajos contenidos de proteínas. (1.20 gr/100 gr de semilla)

Éstos resultados, se compararon con las características nutricionales del ají jalapeño entero determinado por Boruges (1996), se observa que en las semillas 6.23% más cenizas que en el Aíl Jalapeño, pero en Porcentaje de grasas las semillas presentan aprox. 5.42 % más con respecto al ají jalapeño entero. Los otros valores como Carbohidratos, Humedad, etc presentan una variación con menos significancia.

Con respecto a otras semillas, por ejemplo la semilla del ají Amarillo o Ají Escabache, *(Capsicum baccatum)*, presenta menos porcentaje de proteínas, la semilla del Ají Escabache presenta hasta un 26 % de proteínas (Gandules Inc SAC), pero éstas últimas contienen menos porcentaje de grasas y carbohidratos (3.42% y 2.98% respectivamente). Esto implica que en las semillas de Ají Amarillo o Escabache se podría presentar menos porcentaje de rendimiento de obtención de Capsaicina.
4.2. Obtención de Oleorresina Cápsica

En la siguiente Tabla Nº 16 se detallan los resultados cuantitativos de los tratamientos como los Volúmenes y pesos de Oleorresina Obtenidos, así como el porcentaje de recuperación del solvente obtenido; en las cuales por cada tratamiento Ej. H₁, S₁ (Humedad a temperatura ambiente y solvente hexano) se presentan 3 repeticiones (Ej. H₁, S₁ A; H₁, S₁ B; H₁, S₁ C). Para cada uno de los tratamientos y sus respectivas repeticiones se emplearon los mismos pesos y los mismos volúmenes de solventes, empleándose 10 gramos de muestra y 100 ml de solvente para cada tratamiento. Y se ha obtenido la media tanto de los promedios de los pesos y volúmenes de las oleorresinas obtenidas como de los volúmenes de solvente recuperado por cada combinación muestral (Ver Anexo Nº 4.3).

Tabla Nº 16. Resultados obtenidos de la extracción de la Oleorresina Cápsica

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1) H₁, S₁</td>
<td>H₁, S₁ A</td>
<td>102.145</td>
<td>14,09</td>
<td>7,25</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>H₁, S₁ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₁, S₁ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T2) H₁, S₂</td>
<td>H₁, S₂ A</td>
<td>74.398</td>
<td>11,41</td>
<td>6,52</td>
<td>0,67</td>
</tr>
<tr>
<td></td>
<td>H₁, S₂ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₁, S₂ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T3) H₁, S₃</td>
<td>H₁, S₃ A</td>
<td>117.480</td>
<td>15,31</td>
<td>7,67</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>H₁, S₃ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₁, S₃ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T4) H₂, S₁</td>
<td>H₂, S₁ A</td>
<td>161.888</td>
<td>17,65</td>
<td>9,17</td>
<td>0,54</td>
</tr>
<tr>
<td></td>
<td>H₂, S₁ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂, S₁ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T5) H₂, S₂</td>
<td>H₂, S₂ A</td>
<td>144.445</td>
<td>17,28</td>
<td>8,36</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>H₂, S₂ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂, S₂ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T6) H₂, S₃</td>
<td>H₂, S₃ A</td>
<td>189.893</td>
<td>21,97</td>
<td>8,64</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>H₂, S₃ B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂, S₃ C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Propia
Leyenda de tabla Nº 16

T1: H₁, S₁: Humedad a temperatura ambiente y Solvente Hexano, repeticiones A, B, C.

T2: H₁, S₂: Humedad a temperatura ambiente y Solvente Éter, repeticiones A, B, C.

T3: H₁, S₃: Humedad a temperatura ambiente y Solvente Etanol, repeticiones A, B, C.

T4: H₂, S₁: Humedad al 10% y Solvente Hexano, repeticiones A, B, C.

T5: H₂, S₂: Humedad al 10% y Solvente Éter, repeticiones A, B, C.

T6: H₂, S₃: Humedad al 10% y Solvente Etanol, repeticiones A, B, C.

Según el análisis elaborado, se puede apreciar que el mayor peso y volumen lo obtuvo el tratamiento H₂, S₃; el cual fue empleado con solvente Etanol; además en una apreciación no estadística se observa que todas los tratamientos H₂, con una Humedad del 10%; presenta mejores resultados de rendimiento que las combinaciones H₁, con una Humedad a temperatura ambiente (81.58%). También se aprecia que el tratamiento H₁, S₃ (Humedad a temperatura ambiente y Solvente Etanol); obtuvo la mayor recuperación del solvente.

Estadísticamente, con un porcentaje de significancia mayor al 5%, se puede afirmar que el factor humedad no influye significativamente; por el contrario el factor solvente influye significativamente en la obtención del Volumen de Oleorresina por tener un valor de significancia menor que 0,05 (Ver Tabla Nº9).

Mediante las pruebas de Levene y T-Student (Ver Tabla N°10) se determinó que no existe diferencias significativas entre los tratamientos o sea entre la humedad ambiente y la humedad al 10% al apreciarse en ambas pruebas valores de significancia mayores a 0.05, por lo tanto se puede determinar que estadísticamente no existe influencia del factor Humedad.

Mediante la Prueba de Duncan (Ver Tabla N°12), en la que se analizó la influencia del Solvente en el volumen de Oleorresina, se determinó estadísticamente que con el solvente Etanol se obtiene mayor volumen de Oleorresina que con los solventes Éter y Hexano.

Con respecto a otras investigaciones, Luis Ríos, en su investigación Extracción de Oleorresina de Pimentón con solvente Etanol y utilizando 10g de materia prima, obtiene un rendimiento de 14.6 ml de Oleorresina, es decir 7.37 ml menos que esta Investigación que obtuvo 21.97 ml, esto se puede explicar a que emplearon 4 ciclos en la extracción.
4.3. Obtención de Capsaicina

Para la obtención de la Capsaicina el proceso sólo fue aplicado para los 2 tratamientos que presentaron mejores rendimientos de Oleorresina, tanto con una Humedad Ambiente, como con Humedad al 10%. Para los 2 factores el solvente que obtuvo mejores resultados fue el Etanol.

<table>
<thead>
<tr>
<th>Combinación Muestral</th>
<th>Descripción</th>
<th>Oleorresina</th>
<th>Capsaicina</th>
<th>% de Capsaicina en la Oleorresina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Peso (g)</td>
<td>Volumen (ml)</td>
<td>Peso (g)</td>
</tr>
<tr>
<td>T1 H₁, S₃</td>
<td>Humedad a temperatura ambiente y Solvente Etanol</td>
<td>117.480</td>
<td>15.31</td>
<td>1.844</td>
</tr>
<tr>
<td>T2 H₂, S₃</td>
<td>Humedad al 10% y Solvente Etanol</td>
<td>189.893</td>
<td>21.97</td>
<td>3.190</td>
</tr>
</tbody>
</table>

Fuente: Propia

Como se aprecia en la Tabla N° 17, el tratamiento T2 (H₂, S₃); presenta los mejores resultados de rendimiento, con un volumen del 1.71 % del volumen de oleorresina cápsica. Además en una apreciación no estadística se puede afirmar que sí existe influencia del factor humedad en el rendimiento de obtención de Capsaicina.

Estadísticamente, mediante la prueba de T-Student (Tabla N°9) se determinó que no existe relación entre el factor humedad y el rendimiento de Capsaicina obtenido debido a que presenta nivel de significancia mayor a 0.05.

Con respecto a otras investigaciones, La Universidad Politécnica de Cartagena (UPCT), en su informe Obtención de Capsaicina a partir del Chile Habanero, obtuvo como resultado un rendimiento del 2.43%, esto probablemente se debe a que el Ají Habanero ocupa un nivel muy superior al Ají Jalapeño en la Escala Scoville-SHU.

Además según la muestra enviada a Laboratorios Miski, indica una pungencia de 2048650.3 Grados ShU. (Ver Anexo Nº 6)
Figura 7. Diagrama de Rendimientos

En la figura 7 se detallan los rendimientos obtenidos de cada etapa con respecto a la etapa anterior, así como también el rendimiento de Capsaicina (Producto Final) con respecto al Aji Jalapeño entero (materia prima). Obteniendo un 0.12% de rendimiento total.

![Diagrama de Rendimientos](image)

4.4. Características del Producto Final

Tabla Nº 18. Características Orgánolépticas

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>APARIENCIA:</td>
<td>Líquido viscoso</td>
</tr>
<tr>
<td>COLOR:</td>
<td>Café-Rojizo</td>
</tr>
<tr>
<td>OLOR:</td>
<td>Característico</td>
</tr>
<tr>
<td>SABOR:</td>
<td>Muy pungente</td>
</tr>
</tbody>
</table>
Tabla N° 19. Análisis Físico - Químico

<table>
<thead>
<tr>
<th>Mejoría de concentración (%)</th>
<th>Ensayo N° 1</th>
<th>Ensayo N° 2</th>
<th>Ensayo N° 3</th>
<th>Promedio</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMEDAD (%)</td>
<td>85.63</td>
<td>87.37</td>
<td>86.94</td>
<td>86.65</td>
<td>0.9063</td>
</tr>
<tr>
<td>PROTEÍNAS</td>
<td>1.18</td>
<td>1.04</td>
<td>1.17</td>
<td>1.13</td>
<td>0.0781</td>
</tr>
<tr>
<td>CARBOHIDRATOS</td>
<td>4.36</td>
<td>4.21</td>
<td>3.99</td>
<td>4.19</td>
<td>0.1861</td>
</tr>
<tr>
<td>GRASAS</td>
<td>5.94</td>
<td>6.04</td>
<td>5.91</td>
<td>5.96</td>
<td>0.0681</td>
</tr>
<tr>
<td>CENIZAS</td>
<td>2.89</td>
<td>1.34</td>
<td>1.99</td>
<td>2.07</td>
<td>0.7784</td>
</tr>
<tr>
<td>Densidad (g/cm^3)</td>
<td>0.98</td>
<td>1.15</td>
<td>1.79</td>
<td>1.31</td>
<td>0.4271</td>
</tr>
<tr>
<td>Viscosidad (Cp)*</td>
<td>84.65</td>
<td>84.32</td>
<td>83.48</td>
<td>84.15</td>
<td>0.6032</td>
</tr>
</tbody>
</table>

Fuente: Propia (Ver Anexo Nº 7)

* Cp*: Centipoise = 10^-2 Poises

En la tabla N° 19 se puede apreciar que aumenta el porcentaje de concentración de grasas, así como la viscosidad con respecto a la oleorresina cápsica.

La determinación de cenizas en la Capsaicina muestra que, bajo las condiciones de extracción, el solvente es capaz de extraer una importante cantidad de minerales presentes en el ají jalapeño, ya que éste vegetal contiene dentro de su composición de diversos minerales como fósforo y potasio.
V. CONCLUSIONES

- El porcentaje de Capsaicina obtenido con mejor rendimiento es de 1.71% con respecto al de la oleorresina cápsica. La combinación muestral con mejores resultados obtenidos para la obtención de Capsaicina fue la que empleó semilla con una humedad al 10% y con el solvente Etanol.

- La materia prima, la semilla del ají Jalapeño concentra gran cantidad de capsaicinoides, debido a su elevado porcentaje de grasas, que es la composición básica de la misma. Así como también el porcentaje de humedad presente en la semilla es de 81.58%.

- En las extracciones efectuadas a diferentes condiciones, se encontró que el mayor rendimiento de extracción de la oleorresina, se obtuvo en la realizada en condiciones de secado hasta obtener la humedad de 10%, con el solvente Etanol, debido a que con el empleo de los solventes Hexano y Eter se obtuvo rendimientos menores.

- Siendo la Capsaicina un compuesto complejo; el tipo y cantidad de análisis a realizar se ven restringidos a determinaciones generales aplicadas a alimentos. En este caso se determinaron la Humedad con un valor de 86.65%, 1.13% en Proteínas, 4.19% en Carbohidratos, 5.96% en Grasas y 2.07% de Cenizas, valores que sirven como referencia de sus características físicas y química medibles en forma directa, los cuales pueden ser tomados como referencia para posteriores estandarizaciones. Así como también se determinó que presenta una densidad 0.427 g/cm3, y una viscosidad de 0.603 Cp.

- Se concluye que con un rendimiento de 0.12% para obtener 1 kg de Capsaicina se necesitan 25.62 kg de semilla fresca de ají Jalapeño y por consiguiente 854 kg de ají entero. Además, tiene características físico-químicas, microbiológicas y fuerte esencia característica de los ajíes picantes con bastante pungencia, que pueden favorecer su implementación en la industria alimentaria.

- El análisis de los costos para la Obtención de Capsaicina determina una Utilidad anual de $178003.67. Considerando utilizar esta utilidad para saciar la inversión durante el primer año, esta utilidad es de $26650.00
VI. RECOMENDACIONES

Para realizar la extracción de la capsaicina con fines de obtener un producto adecuado para su utilización en alimentos, se recomienda realizar una desinfección previa del material vegetal (semilla del ají), por su alta exposición a las contaminaciones microbianas.

El análisis nutricional realizado a la semilla del ají jalapeño, puede servir como base para posteriores investigaciones debido a que no existen estudios característicos específicamente para semillas de esta variedad de ají.

VII. REFERENCIAS

 http://www.asociacionht.es/scoville.html
- Cano, Telma. 2002. Obtención y caracterización de capsaicina, ingrediente activo de productos fitofarmacéuticos y agroindustriales de 3 especies de capsicum (capsicum chínense, capsicum annuum) cultivadas en Guatemala. Guatemala
 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8JGD-50V5RNI1&_user=10&_coverDate=08%2F22%2F2010&_alid=1487461444&_rdoc=4&_fmt=high&_orig=search&_origin=search&_sort=r&_docanchor=&_ct=21&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c0376ab13044aed026c557b4a2cbe4f6&searchtype=a. (Acceso 04 Octubre 2010)
- Duarte, Catarina. 2002. Phase equilibrium for capsaicin+water+ethanol+supercritical carbon dioxide. Lisboa, Portugal
 http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VMF-450HJF4-1&_user=10&_coverDate=02%2F28%2F2002&_alid=1544793671&_rdoc=2&_fmt=high&_orig=search&_origin=search&_sort=r&_cdi=6149&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2b56c9366a7f334f7654d0da129384&searchtype=a (Acceso 14 Noviembre 2010)
- Gandules Inc SAC. Company.

56

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6T36-4V3566T-6-J&_cdi=4938&_user=10&_pii=S0014579308009502&_origin=search&_coverDate=01%2F05%2F2009&_sk=994169998&view=c&wchp=dGLbVlWzSkWb&md5=cd88421a0eb1c718697b8b642b98092a&ie=/sdarticle.pdf. (Acceso 04 Octubre, 2010)

http://www.munijayanca.gob.pe/empresas.php

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6R-413KVW4-P&_user=10&_coverDate=11%2F30%2F2000&_alid=1487458188&_rdoc=43&_fmt=high&_orig=search&_zone=rslt_list_item&_cdi=5037&_sort=r&_docanchor=&view=c&_ct=500&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3b0130a8f8cc4adbe2961853076d1e68&searchtype=a. (Acceso 05 Octubre, 2010)

Programa Internacional de Seguridad de las Sustancias Químicas. ICSC: 0279

http://training.itcilo.it/actrav_cdrom2/es/osl/ic/110543.htm

Sharapin Nikolai, 1998. *Fundamentos de Tecnología de Productos Fitoterapéuticos*

VIII. FINANCIAMIENTO

La empresa agroindustrial Gandules INC brindó las instalaciones, laboratorio, la materia prima requerida. Los análisis externos y otros costos para la investigación son autofinanciados.
IX. ANEXOS

Anexo 1. Perfil de temperatura para digestión

Tabla N° 20. Perfil de temperatura para digestión con K-438

<table>
<thead>
<tr>
<th>Escala</th>
<th>Temperatura [°C]</th>
<th>Time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precalentado</td>
<td>420</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>420</td>
<td>90</td>
</tr>
</tbody>
</table>

Fuente: CODEX AOAC 955.04D

Anexo 2. Parámetros para destilación y titulación del método Kjeldahl

Tabla N° 21. Parámetros para destilación y titulación del método Kjeldahl

<table>
<thead>
<tr>
<th>Destilación</th>
<th>Titulación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>Ac. Bórico 4%</td>
</tr>
<tr>
<td>80 ml</td>
<td>50 ml</td>
</tr>
<tr>
<td>Hidróxido de Sodio</td>
<td>Solución de Titulación</td>
</tr>
<tr>
<td>90 ml</td>
<td>H$_2$SO$_4$</td>
</tr>
<tr>
<td>Tiempo de Reacción</td>
<td>Método de Titulación</td>
</tr>
<tr>
<td>5 s</td>
<td>Standard</td>
</tr>
<tr>
<td>Tiempo de Destilación</td>
<td>pH</td>
</tr>
<tr>
<td>300 s</td>
<td>4.65</td>
</tr>
</tbody>
</table>

Fuente: CODEX AOAC 955.04D
Anexo 3. Análisis Nutricional de la semilla de ají jalapeño

3.1.- Determinación de Humedad

Imagen N° 1.- Separación de semillas del resto del ají

- Peso de las muestras (antes del secado)
 - Muestra #1
 Peso Crisol #1 vacío: 56.3812 g
 Peso Crisol #1 + muestra: 66.4130 g
 Peso de muestra #1: 10.0318 g

 - Muestra #2
 Peso Crisol #2 vacío: 50.5209 g
 Peso Crisol #2 + muestra: 60.5463 g
 Peso de muestra #2: 10.0254 g

- Nuevos pesos de las muestras (después del secado)
 - Muestra #1
 Nuevo Peso Crisol #1 + muestra: 58.3314 g
 Peso Crisol #1 vacío: 56.3812 g
Nuevo Peso de muestra #1: 1.9502 g
Peso perdido: 8.0816 g
\[\frac{8.0816 \times 100}{10.0318} = 80.56\% \]

% Peso perdido (humedad):

- **Muestra #2**

Nuevo Peso Crisol #2 + muestra: 52.2673 g
Peso Crisol #2 vacío: 50.5209 g
Nuevo Peso de muestra #2: 1.7464 g
Peso perdido: 8.2790 g
\[\frac{8.279 \times 100}{10.0254} = 82.59\% \]

% Peso perdido (humedad):

✓ % Humedad promedio:
\[\frac{80.56 + 82.59}{2} = 81.58\% \]

3.2. Determinación de proteínas

Imagen N° 2.- Agregar componentes químicos a las Fiolas.

Fuente: Propia
Imagen N° 3.- Agregar componentes químicos a las Fiolas.

Fuente: Propia

Imagen N° 4.- Análisis de PH con un Indicador de PH

Fuente: Propia
Imagen N° 5. Valoración con Ac. Sulfúrico

Resultado de la Valoración de proteínas

- **Muestra #1**

Contenido Nitrógeno puro: $\frac{1.9 \times 0.02 \times 0.014 \times 100}{0.3} = 0.18\%$

Proteínas: $0.18 \times 6.25 = 1.125\%$

- Peso de muestra #1: 0.3 g
- Volumen de Ac. Sulfúrico empleado para la titulación (ml): 1.9 ml
- Normalidad del Ac. Sulfúrico en moles/L: 0.02mol/l
- Peso Atómico del Nitrógeno (mg): 0.014 mg
- Factor de conversión de % de N$_2$ a % de proteína cruda: 6.25
• **Muestra #2**

Contenido Nitrógeno puro: \(\frac{2.2 \times 0.02 \times 0.014 \times 100}{0.3} = 0.205\% \)

Proteínas: \(0.205 \times 6.25 = 1.281\% \)

- Peso de muestra #2: \(0.3 \) g
- Volumen de Ac Sulfúrico empleado para la titulación (ml) \(1.9 \) ml
- Normalidad del Ac. Sulfúrico en moles/L \(0.02\) mol/l
- Peso Atómico del Nitrógeno (mg) \(0.014 \) mg
- Factor de conversión de % de N\(_2\) a % de proteína cruda.6.25

\[\checkmark \text{ % Proteínas promedio: } \frac{1.125 + 1.281}{2} = 1.20\% \]

3.3. Determinación de cenizas

- Peso de Crisoles de las 2 muestras (Antes de la incineración)
 • **Muestra #1**
 Peso Crisol #1 vacío: \(27.9509 \) g
 Peso Crisol #1 + muestra: \(29.9104 \) g
 Peso de muestra #1: \(1.9595 \) g

 • **Muestra #2**
 Peso Crisol #2 vacío: \(33.1352 \) g
 Peso Crisol #2 + muestra: \(35.2173 \) g
 Peso de muestra #2: \(2.0821 \) g
- Nuevo Peso de Críosoles de las 2 muestras (Después de la incineración)

Muestra #1

Nuevo Peso Críosol #1 + muestra: 28.0742 g

Peso Críosol #1 vacío: 27.9509 g

Nuevo Peso de muestra #1: **0.1233 g (cenizas)**

% Cenizas: \[
\frac{0.1233 \times 100}{1.9595} = 6.29\%
\]

Muestra #2

Nuevo Peso Críosol #2 + muestra: 33.2845 g

Peso Críosol #2 vacío: 27.9509 g

Nuevo Peso de muestra #1: **0.1493 g (cenizas)**

% Cenizas: \[
\frac{0.1493 \times 100}{2.0821} = 7.17\%
\]

% Cenizas promedio: \[
\frac{6.29 + 7.17}{2} = 6.73\%
\]

3.4. Determinación de grasas

Se pesó el Balón con la grasa: 108.1872 g.

Se descontó el balón vacío pesado inicialmente: 107.9091 g.

El peso de contenido de grasas totales es: 0.2781 g.

Por lo tanto el porcentaje de contenido de grasas totales fue:

\[
\frac{0.2781 \times 100}{5.0104} = 5.55\%
\]
3.5. Determinación de Carbohidratos

Tabla N° 22. Determinación de Carbohidratos

<table>
<thead>
<tr>
<th>Total</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Cenizas (-)</td>
<td>6.73%</td>
</tr>
<tr>
<td>✓ Proteínas (-)</td>
<td>1.20%</td>
</tr>
<tr>
<td>✓ Humedad (-)</td>
<td>81.58%</td>
</tr>
<tr>
<td>✓ Grasas (-)</td>
<td>5.55%</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>4.94%</td>
</tr>
</tbody>
</table>

Fuente: Propia
Anexo 4. Obtención de oleoresina cápsica

4.1.- Secado de M.P. para obtener humedad de 10%

- Muestra #1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Crisol #1 vacío:</td>
<td>28.7045 g</td>
</tr>
<tr>
<td>Peso Crisol #1 + muestra:</td>
<td>256.2729 g</td>
</tr>
<tr>
<td>Peso de muestra #1:</td>
<td>227.5684 g</td>
</tr>
</tbody>
</table>

- Muestra #1. Después de 4 días de secado

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso Crisol #1 vacío:</td>
<td>28.7045 g</td>
</tr>
<tr>
<td>Peso Crisol #1 + muestra:</td>
<td>93.7208 g</td>
</tr>
<tr>
<td>Peso de muestra #1:</td>
<td>65.0163 g</td>
</tr>
</tbody>
</table>

\[
\frac{65.0163 \times 100}{227.5684} + 81.58 - 100 = 10.15\% \text{ de Humedad}
\]

Imagen N° 6.- Semilla extraída del ají jalapeño antes de ponerla en el desecador

Fuente: Propia
4.2.- Imagen N° 7. Extracción de oleorresina por Método Soxhlet.

Imagen N° 8. Extracción de Oleorresina

Fuente: Propia
Tabla N° 23. Resultados obtenidos de la extracción de la Oleorresina Cápsica

<table>
<thead>
<tr>
<th>Combinación Muestra / Repeticiones</th>
<th>Descripción</th>
<th>Peso de Muestra (g)</th>
<th>Volumen del Solvente (ml)</th>
<th>Peso de Oleorresina (g)</th>
<th>Prom. De peso de Oleo.</th>
<th>Volumen de Oleorresina (ml)</th>
<th>Prom. De vol. de Oleo.</th>
<th>Volumen Solvente Recuperado (ml)</th>
<th>Porcentaje de Recuperación del Solvente</th>
<th>Prom. Del % de recup. del solv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1, S1</td>
<td>H1, S1 A</td>
<td>10</td>
<td>100</td>
<td>101.958</td>
<td>102.145</td>
<td>13.78</td>
<td>14.09</td>
<td>66.9</td>
<td>66,9%</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>H1, S1 B</td>
<td></td>
<td></td>
<td>102.757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1, S1 C</td>
<td></td>
<td></td>
<td>101.719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1, S2</td>
<td>H1, S2 A</td>
<td>10</td>
<td>100</td>
<td>71.682</td>
<td>74.398</td>
<td>10.46</td>
<td>11.41</td>
<td>69.4</td>
<td>69,4%</td>
<td>0,67</td>
</tr>
<tr>
<td></td>
<td>H1, S2 B</td>
<td></td>
<td></td>
<td>74.794</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1, S2 C</td>
<td></td>
<td></td>
<td>76.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1, S3</td>
<td>H1, S3 A</td>
<td>10</td>
<td>100</td>
<td>117.480</td>
<td>120.208</td>
<td>15.31</td>
<td>16,49</td>
<td>71,4</td>
<td>71,4%</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>H1, S3 B</td>
<td></td>
<td></td>
<td>123.715</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1, S3 C</td>
<td></td>
<td></td>
<td>119.428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2, S1</td>
<td>H2, S1 A</td>
<td>10</td>
<td>100</td>
<td>162.318</td>
<td>161.888</td>
<td>18.96</td>
<td>17,65</td>
<td>53,9</td>
<td>53,9%</td>
<td>0,54</td>
</tr>
<tr>
<td></td>
<td>H2, S1 B</td>
<td></td>
<td></td>
<td>164.874</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2, S1 C</td>
<td></td>
<td></td>
<td>158.472</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2, S2</td>
<td>H2, S2 A</td>
<td>10</td>
<td>100</td>
<td>148.167</td>
<td>144.445</td>
<td>18.40</td>
<td>17,28</td>
<td>52,4</td>
<td>52,4%</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td>H2, S2 B</td>
<td></td>
<td></td>
<td>143.635</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2, S2 C</td>
<td></td>
<td></td>
<td>141.532</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2, S3</td>
<td>H2, S3 A</td>
<td>10</td>
<td>100</td>
<td>187.528</td>
<td>190.055</td>
<td>21.08</td>
<td>21,97</td>
<td>64,3</td>
<td>64,3%</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td>H2, S3 B</td>
<td></td>
<td></td>
<td>189.893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2, S3 C</td>
<td></td>
<td></td>
<td>192.745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Propia
Anexo 5. Análisis Físico-Químico de Capsaicina en laboratorio
INFORME DE ENSAYO

Nro. 737/12

<table>
<thead>
<tr>
<th>Análisis Solicitado por</th>
<th>MANUEL UBILLUS PEREZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solicitudo de Ensayo</td>
<td>Sr. Manuel Ubillus Perez</td>
</tr>
<tr>
<td>Producto descrito como</td>
<td>Capsaicina de Aji jalapeño</td>
</tr>
<tr>
<td>Procedencia</td>
<td>Chiclayo</td>
</tr>
<tr>
<td>Observaciones Recepción</td>
<td>La muestra llegó en una cajeta de cartón.</td>
</tr>
<tr>
<td>Identificación de la Muestra</td>
<td>Sin codificación</td>
</tr>
<tr>
<td>Peso de muestra</td>
<td>0.35 Kg.</td>
</tr>
<tr>
<td>Cantidad de muestras</td>
<td>1</td>
</tr>
<tr>
<td>Fecha de Recepción</td>
<td>20/05/2012</td>
</tr>
<tr>
<td>Fecha de Ensayo</td>
<td>20/05/2012</td>
</tr>
<tr>
<td>Fecha de Emisión</td>
<td>31/05/2012</td>
</tr>
<tr>
<td>Cod.FQ Interno muestra</td>
<td>14740</td>
</tr>
</tbody>
</table>

ENSAYO

Determínación de Pungencia

MÉTODO

RESULTADOS

<table>
<thead>
<tr>
<th>FQ LAB</th>
<th>CODIGO CLIENTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>14740</td>
<td>Sin codificación</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALISIS</th>
<th>Sin codificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pungencia (Shu)</td>
<td>204,6650.3</td>
</tr>
</tbody>
</table>

Los porcentajes (%) de capsaicinoides encontrados fueron:

- Capsaicina: 76.3%
- Dihydrocapsaicina: 23.4%
- Nondihydrocapsaicina: 1.2%

NOTAS:

* Los resultados de este informe son válidos sólo para la muestra analizada.
* Los resultados reportados en este informe de ensayo proceden de muestras proporcionadas por el Cliente. El laboratorio no es responsable del origen o fuente de la cual las muestras han sido tomadas.
* Los resultados de los ensayos no deben ser utilizados como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

*** Los métodos indicados no han sido acreditados por el INDECOPI-SNA.***

Alte.

Maria Jaimie Espinoza
Gerente de Calidad
Anexo 7. Análisis Físico-Químico de Capsaicina en laboratorio

ANÁLISIS N°240-2012-UST/FIQIA
19 de noviembre del 2012

Solicitante: JEAN MANUEL UBILLUS PEREZ.
Asunto: Análisis Físico Químico
Muestra: Capsaicina Aji Jalapeño
Uso: Tesis - USAT
Fecha de Recepción: 05-08-2012
Fecha de Reporte: 14-08-2012

RESULTADOS DEL ANALISIS FISICO QUIMICO

<table>
<thead>
<tr>
<th>DETERMINACION</th>
<th>MEDIDA</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>%</td>
<td>86.65</td>
</tr>
<tr>
<td>Proteína</td>
<td>%</td>
<td>1.13</td>
</tr>
<tr>
<td>Grasa</td>
<td>%</td>
<td>5.96</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>%</td>
<td>4.19</td>
</tr>
<tr>
<td>Ceniza</td>
<td>%</td>
<td>2.07</td>
</tr>
<tr>
<td>Densidad</td>
<td>g/cm³</td>
<td>1.31</td>
</tr>
<tr>
<td>Viscosidad</td>
<td>centipois</td>
<td>84.15</td>
</tr>
</tbody>
</table>