UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL AMBIENTAL

FACTORES QUE INFLUYEN EN LA DETERMINACIÓN DEL MÓDULO DE ELASTICIDAD DEL CONCRETO

TRABAJO DE INVESTIGACIÓN PARA OPTAR EL GRADO ACADÉMICO DE BACHILLER EN INGENIERÍA CIVIL AMBIENTAL

AUTOR DIEGO ALONSO RUIZ SANCHEZ

ASESOR

HÉCTOR AUGUSTO GAMARRA UCEDA

https://orcid.org/0000-0002-3653-1394

Chiclayo, 2019

ÍNDICE

RES	SUMEN	5
ABS	STRACT	6
I.	INTRODUCCIÓN	7
II.	MARCO TEÓRICO	9
2.1	ANTECEDENTES	9
	2.1.1. ANTECEDENTE 01	ç
	2.1.2. ANTECEDENTE 02	9
	2.1.3. ANTECEDENTE 03	9
	2.1.4. ANTECEDENTE 04	10
	2.1.5. ANTECEDENTE 05	10
	2.1.6. ANTECEDENTE 06	10
	2.1.7. ANTECEDENTE 07	11
	2.1.8. ANTECEDENTE 08	11
	2.1.9. ANTECEDENTE 09	12
2.2.	BASES TEÓRICO-CIENTÍFICAS	12
	2.2.1. MÓDULO DE ELASTICIDAD	12
	2.2.2. FACTORES QUE INFLUYEN EN EL MÓDULO DE ELASTICID	AD
	DEL CONCRETO SIMPLE	14
III.	OBJETIVO GENERAL Y ESPECÍFICOS	17
3.1.	OBJETIVO GENERAL	17
IV.		17
4.1	TIPO DE ESTUDIO Y DISEÑO DE CONTRASTACIÓN DE HIPÓTESIS	17
4.2	HIPÓTESIS	17
4.3.	VARIABLE-OPERACIONALIZACIÓN	17
4.4.	POBLACIÓN, MUESTRA DE ESTUDIO Y MUESTREO	18
	4.4.1. POBLACIÓN:	18
	4.4.2. MUESTRA DE ESTUDIO:	18
	4.4.3. MUESTREO:	18
4.5.	MÉTODOS, TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DAT	
	,	18
	PROCESAMIENTO PARA ANÁLISIS DE DATOS	18
4.7.	RESULTADOS Y DISCUSIÓN	19

V.	CONCLUSIONES	22	
VI.	RECOMENDACIONES	22	
VII.	REFERENCIAS BIBLIOGRÁFICAS	23	
VIII	. ANEXOS	25	
Anex	Anexo 01: Fichas de análisis 25		

LISTA DE TABLAS

Tabla 1: Factores que afectan el Ec [23]	16
Tabla 2: Operacionalización de variables	17
Tabla 3: Métodos, técnicas e instrumentos de recolección de datos	18
Tabla 4: Resultados y discusión a nivel internacional	19
Tabla 5: Resultados y discusión a nivel nacional	20

LISTA DE FIGURAS

Figura 1: Reajustes para las fórmulas del ACI 318-11 Y RNE E-060 para la ciudad de
Chimbote
Figura 2: Representación gráfica de la relación esfuerzo vs. deformación para el concreto simple.
Figura 3: Degradación de la pendiente esfuerzo-deformación ante cargas repetidas con esfuerzos mayores al 0.7f°c
Figura 4: Relación esfuerzo-deformación para el concreto y sus componentes 15
Figura 4: Relación esfuerzo-deformación para el concreto y sus componentes
Figura 5: Efecto de la resistencia.
Tabla 1: Factores que afectan el Ec [23]Figura 5: Efecto de la resistencia

RESUMEN

En el presente informe se busca dar a conocer cuáles son los estudios en la actualidad que se tiene sobre los factores que influyen en la determinación del módulo de elasticidad del concreto simple, por ende, este objetivo se convierte en el principal, Actualmente se ha podido ver en todos los diseños que se emplea la fórmula convencional de las normas de cada país sin percatarse en algún factor de variación para obtener valores cercanos a la realidad, esto afecta tanto el sector científico, económico y estructural de las zonas geográficas. Se concluye de acuerdo a estos estudios que el país con más investigación respecto a este tema es Estados Unidos, a nivel nacional el departamento de La Libertad y a nivel local no se encontraron estudios.

PALABRAS CLAVE: Concreto simple, Agregado fino, Agregado Grueso, Módulo de Elasticidad, Ensayos.

ABSTRACT

In this report seeks to make changes known are the studies currently about influential factors in determining the modulus of elasticity of simple concrete, therefore, this goal becomes the director, currently it has been achieved to see in all the designs that the conventional formula of the norms of each country are used without noticing in some variation factor to obtain values close to reality, this affects both the scientific, economic and structural sector of the geographical areas. The agreement to these studies is concluded that the country with more research on this issue in the United States, a national level the department of La Libertad and a local level no studies were found.

KEYWORDS: Simple concrete, fine aggregate, coarse aggregate, modulus of elasticity, Essays.

I. INTRODUCCIÓN

El material más empleado en la construcción es el concreto por las distintas características ya que es sencillo de fabricar, y si se analiza la relación seguridad-economía, resulta ser el más accesible. [1]

Los antecedentes internacionales empleados como base de la presente investigación fueron obtenidos de estudios realizados en Colombia y Estados Unidos los cuales, a diferencia del Perú, presentan avances científicos considerables respecto al módulo de elasticidad del concreto simple (E_c), ya que dichos estudios han demostrado resultados distintos de este parámetro a los empleados previamente en sus respectivos reglamentos. Se puede observar como ejemplo estudios realizados en la universidad de Minnesota, la cual da a conocer que los valores propiciados por las ecuaciones del ACI 318 [1]de los años 1989 y 2004 presentaron valores sobreestimados del E_c respecto a los obtenidos en campo; asimismo se realizaron estudios por medio de la Universidad de Texas en Austin, manipulando ecuaciones iguales (ACI 318-89 y ACI-318-04) [1], que demostraron que estas subestimaban la gran mayoría de los módulos de elasticidad que se midieron experimentalmente [2]

De la misma manera se realizaron pruebas en 1300 muestras en la ciudad de Bogotá, la cuales presentaban como finalidad la variación del parámetro E_c obtenido en laboratorio con los estipulados en las ecuaciones del código colombiano NSR-98, basadas en el ACI, concluyendo que estas sobreestiman el valor de los concretos de la capital colombiana. [3].

Estudios demuestran que el valor del E_c en realidad oscila entre 400 000-100 000 kg/cm² [4]. En el Perú, país donde no se tienen estudios propios del E_c , se emplea la fórmula americana, la cual podría darnos valores erróneos respecto a este parámetro. El Reglamento Nacional de Edificaciones -2019 [5], en su norma E-060, cuya última actualización se realizó en el año 2009, da a conocer en el capítulo 8, una fórmula para determinar el E_c , E_c =15000 $\sqrt{f'_c}$, que se encuentra en función de la resistencia a compresión del concreto (f'c), que sólo puede ser usada para el análisis lineal de estructuras; cabe resaltar que este estudio fue realizado por American Concrete Institute [1] con agregados del territorio estadounidense y de acuerdo a la afirmación siguiente

[6]: "la forma, textura, densidad, y porosidad de los agregados ,que son propiedades específicas de los materiales, representan un efecto significativo en la calidad del concreto", dando a conocer que si cambian los elementos del concreto variaría su calidad. También, se observa que la falta de estudios de ensayos de E_c en el Perú, origina que no se pueda realizar un correcto análisis no-lineal de las edificaciones respecto a la ductilidad de las mismas, razón de ser de nuestros diseños sismo resistentes, debido a que como se mencionó anteriormente el RNE (Reglamento Nacional de Edificaciones) solamente propicia una fórmula desarrollada para agregados y cementos de la zona estadounidense.

Frente a lo descrito anteriormente surge la pregunta ¿Existirá alguna variación respecto al valor del E_c, estipulado en el Reglamento Nacional de Edificaciones, con el obtenido en laboratorio? Se definió como objetivo general determinar el estado de conocimiento de los estudios que se han realizado sobre la determinación del E_c. Así mismo. La justificación de este trabajo viene enmarcada en los siguientes puntos:

En cuanto al aspecto científico, satisfacer la necesidad de conocimiento respecto al valor real del E_c la cual permitirá brindar mayor seguridad a las edificaciones en Chiclayo, así como, un sobredimensionamiento de las estructuras.

En cuanto al aspecto técnico esta investigación permitió el proyecto analiza el problema desde el punto de estudio de la tecnología del concreto, teniendo en cuenta además de la teoría, los respectivos ensayos para determinar las propiedades del concreto simple, tales como, resistencia a la compresión, ensayo de asentamiento, peso específico, etc.; y analizar si posteriormente con estos valores el parámetro E_c difiere con la norma E-060.

II. MARCO TEÓRICO

2.1 ANTECEDENTES

2.1.1. ANTECEDENTE 01

Vargas,B. ,indica en su tesis denominada "Determinación de la Ecuación del módulo de elasticidad del concreto en base a la resistencia a la compresión simple, elaborado con los agregados de las canteras ISLA y YOCARA de la ciudad de Juliaca", indica que la variación del E_c empleando agregados de la cantera Isla presenta una variación del 58.00% respecto a la fórmula propiciada por el ACI 318-RNE, la cual es la más empleado para el diseño estructural; asimismo la cantera Yocara presenta una variación del 52.52% en el valor del E_c respecto a la fórmula brindada por el ACI 318-RNE [4].

2.1.2. ANTECEDENTE 02

Ispilco, J. y López, J, en su tesis denominada "Influencia de los agregados de las canteras Mashcón y Chonta para la obtención de módulos de elasticidad y rotura, en el diseño de pavimentos rígidos", indica que para un f'_c = 265 kg/cm² se obtuvieron E_c = 245337 kg/cm² para la cantera Chonta y E_c = 239684 kg/cm² para la cantera Mashcón, presentando una variación del 0.47% y -1.84% respectivamente; asimismo afirma que para un f'_c = 304 kg/cm² se obtuvieron E_c = 270868 kg/cm² para la cantera Chonta y E_c = 262247 kg/cm² para la cantera Mashcón, presentando una variación del 3.57% y 0.27% respectivamente [5].

2.1.3. ANTECEDENTE 03

Bruno, E. y Peralta, J., por medio de su tesis denominada "Determinación del módulo de elasticidad estático a compresión del concreto producido en la planta concretera Dino-Chimbote", determina un parámetro de corrección "k", tanto para el Reglamento Nacional de Edificaciones y el ACI 318-11, que fueron 1.0577 y 1.1985 respectivamente, presentando por medio de la figura 4.1 fórmulas reajustada para la ciudad de Chimbote [6].

Figura 1: Reajustes para las fórmulas del ACI 318-11 Y RNE E-060 para la ciudad de Chimbote. [6]

NORMA	FORMULA INICIAL	FORMULA REAJUSTADA	
ACI 318-11, 8.5.1	$E_{ct} = 0.14 (\gamma)^{1.5} \sqrt{fc}$	$E_{cr} = 0.15 (\gamma)^{1.5} \sqrt{f_{cc}}$	
RNE E-060, 8.5.1	$E_{ct} = 15,000\sqrt{\text{fc}}$	$E_{cr} = 18,000\sqrt{\text{fc}}$	

2.1.4. ANTECEDENTE 04

Roncalla,A., en su tesis denominada "Influencia del Módulo de Finura de la combinación de agregados en el módulo de elasticidad del concreto reo-plástico", sostiene indirectamente una variación del módulo de elasticidad, por medio del módulo de finura por la combinación de agregados, para lo cual dividió sus muestras en tres grupos: A, B y C, presentando variaciones de 3.46%, 3.91% y 7.57% respectivamente por grupo en función a la Norma RNE-E 0.60 [7].

2.1.5. ANTECEDENTE 05

Mallma,L. y Sierra, B, en su tesis denominada "Determinación del módulo de elasticidad del concreto pre dosificado en seco de f'c=210 kg/cm2 en la ciudad del Cuzco", indica como conclusión que el módulo de elasticidad del concreto presenta una gran variación porcentual respecto a la norma E-060, para lo cual recomiendan que se debe realizar ensayos de E_c para cada proyecto de construcción. [12]

2.1.6. ANTECEDENTE 06

Dos Santos, A.; María de Arruda, A. y otros, en su artículo científico "Influence of coarse aggregate on concrete's elasticity modulus", concluyen que el módulo de elasticidad obtenido mediante los ensayos correspondientes, presenta una gran variación respecto a su norma brasileña, resaltando la diferencia mineralógica que presentan sus agregados respecto a otras zonas, dando hincapié que este factor sea una de las principales razones del bajo E_c que presenta su investigación. [13]

2.1.7. ANTECEDENTE 07

Caitlin, T.; Perry, M.; Ferraro, C. y Hamilton, T. en su investigación: "Aggregate Correction Factors for Concrete Elastic Modulus Prediction" sostienen que de acuerdo a la seleccionaron de cinco tipos de áridos gruesos: tres áridos limerock de Florida, un agregado calero de Calera y un agregado de granito de Georgia da a conocer los siguiente puntos: la corrección del factor agregado de 1.0 a 0.9 para el limerock Florida, respecto al manual FDOT Structures Design Guidelines para reflejar los hallazgos de esta investigación; la incorporación de la oolita Miami como agregado grueso en cemento portland resultó en la mayor resistencia a la compresión y la mejor correlación entre la resistencia a la compresión y el módulo de elasticidad para los agregados producidos en Florida; la porosidad y rugosidad superficial del limerock Florida produjeron una unión significativamente mejor entre agregados y pasta, demostrada por superficies de fractura transgranular en su mayoría; l agregado con mayor resistencia suele tener superficies más lisas, lo que resulta en una menor resistencia de unión entre agregados y pasta y resultó en superficies de fractura intergranulares para hormigón con granito y agregado calero de Calera y Las predicciones del módulo elástico basadas en la ecuación AASHTO LRFD dieron la mejor estimación para concreto que incorporó limerock Florida como agregado grueso, mientras que las ecuaciones AASHTO, FHWA y NCHRP dieron predicciones similares para el concreto que contiene granito y agregado Calera [14].

2.1.8. ANTECEDENTE 08

Jiménez,I. y Valladares A. en su tesis denominada: "Determinación de la ecuación del módulo de elasticidad representativo para la provincia de Pichincha, en muestras de cilindros de hormigón con materiales de la mina de San Antonio de Pichincha", concluyen que "el Módulo de Elasticidad es un valor que no solo depende de la resistencia característica a la compresión del hormigón, si no es un valor que depende de las características físico-mecánicas de sus agregados y la dosificación" [15].

2.1.9. ANTECEDENTE 09

Yealemnegus, F. en su tesis denominada: "Investigation on the static modulus of elasticity of concrete in compression made using locally available coarse aggregates" da a conocer en sus conclusiones lo siguiente: "el tipo de agregado tiene un efecto tanto en el valor del f'c, el módulo estático y el peso unitario del concreto" [16]; indica al mismo tiempo que de acuerdo a los tipos de agregado grueso que empleo, tanto como escorio, piedra caliza o agregado basáltico este presentará diferentes valores para el E_c, así presente el mismo f'c. [16]

2.2. BASES TEÓRICO-CIENTÍFICAS

2.2.1. MÓDULO DE ELASTICIDAD

En resistencia de materiales siempre se ha explicado que el E_c es la relación que existe entre una fuerza F_i y una deformación σ, es decir; la pendiente de la curva esfuerzo deformación que origina esa relación; como se conoce la resistencia a la tracción que presenta el concreto es demasiado baja, por ello una de las formas de medir el parámetro de estudio es mediante la prueba estándar de compresión basada en la Norma ASTM C46 (American Society for Testing and Materials) [19], que explica que se debe aplicar una carga axial de manera gradual hasta que la probeta falle, mayormente el ensayo es aplicado hasta el 40% f'c del concreto, debido a que es el estado límite de la máxima resistencia a la rotura; ya que como se puede observar en la figura 3 al aumentar cargas mayores al 40% del f'c, el material deja de presentar elasticidad y ocurre la elastoplasticidad, como se puede ver al disminuir sus pendientes debido a los ciclos de carga y descarga en incremento. La figura 2 muestra la curva esfuerzo vs. deformación del concreto, en ella se aprecia que el módulo tangente y el módulo secante presentan una gran similitud respecto al parámetro en estudio; el módulo tangente inicial es aquel que corresponde al esfuerzo nulo, el módulo tangente es la pendiente de la recta tangente a la curva esfuerzo-deformación en cualquier punto y la recta secante es la pendiente que parte del origen a cualquier otro punto de la curva, este valor se realiza hasta el 40% del f'c del concreto.

Figura 2: Representación gráfica de la relación esfuerzo vs. deformación para el concreto simple. [20]

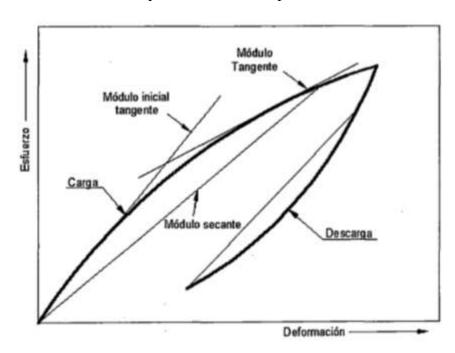
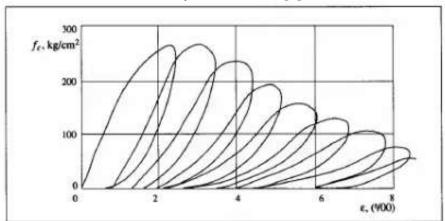
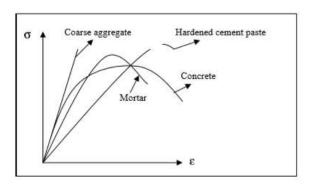



Figura 3: Degradación de la pendiente esfuerzo-deformación ante cargas repetidas con esfuerzos mayores al 0.7f°c. [7]


"El módulo de elasticidad del concreto (Ec) ha sido considerado como un factor importante en el diseño de estructuras de concreto" [3]. Este parámetro refleja la habilidad del concreto para poder presentar carácter elástico hasta un determinado punto. Esto permitirá ver con que fuerzas, mayormente originadas por el sismo, la estructura pasará de un estado elástico a uno inelástico; dejando así de cumplir la Ley de Hooke.

2.2.2. FACTORES QUE INFLUYEN EN EL MÓDULO DE ELASTICIDAD DEL CONCRETO SIMPLE

La norma técnica peruana (N.T.P) [21] da la definición del concreto simple como un material aglomerante, que en este caso será el cemento Portland y agua, y agregados finos y grueso los cuales al mezclarse formarán un nuevo material denominado concreto, la reacción química que origina la mezcla agua-cemento origina la unión de sus partículas con la de los agregados, originando un material heterogéneo [22]. De acuerdo a las definiciones que otorga la N.T.P. 339.047 [21] ,define al agregado fino como el material obtenido mediante la degradación de piedras, de manera natural y cuyo tamaño de partícula pase el tamiz normalizado de 3/8 pulgadas(9.5 mm) y que cumpla con los límites estipulados en la N.T.P. 400.037;asímismo, la N.T.P 339.047 [21] define al agregado grueso como a las partículas pétrea, tales como ripios corrientes, que se encuentran retenidas en el tamiz normalizado 4.75 mm (N° 4) y que cumpla al mismo tiempo con los límites estipulados en la N.T.P. 400.037 [21], las definiciones que otorga la N.T.P. respecto a los agregados es muy similar a la propiciada por el RNE [5].

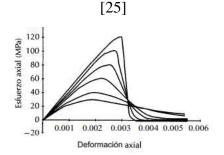

El concreto es un material diverso, debido a la presencia de diferentes materiales: pasta, agregado fino y agregado grueso [22] ,lo cual origina un comportamiento diferente de acuerdo a la calidad de los mismos. En la figura 4 se puede observar las diferentes curvas de los módulos de elasticidad de los componentes del concreto simple y su la curvatura del parámetro, mostrando una gran variación entre ellos. Esto permite observar que la fuerza a compresión de los elementos es muy variada entre ellas, pero el concreto presenta un comportamiento muy dúctil a diferencia de sus elementos.

Figura 4: Relación esfuerzo-deformación para el concreto y sus componentes [23]

Otro factor que influye en la determinación del E_c es el valor del f'_c del concreto es uno de los parámetros más importantes. El E_c se encuentra en función del f'_c del concreto simple, mayor valor de f'_c origina mayor fragilidad del concreto, lo cual puede respaldarse con el Reglamento Nacional de Edificaciones donde en el capítulo 21.-Disposiciones Especiales para el Diseño Sismo resistente, nos indica de acuerdo al artículo 21.3.2.2. que la resistencia máxima a la compresión permitida del concreto simple será de 550 kg/cm², manteniéndose de esta manera el diseño dúctil que se espera en las estructuras en zona sísmica. "Mientras mayor es la resistencia, el comportamiento es más frágil" [24]. En la figura 5 se puede observar lo ya mencionado entre curvas, esfuerzodeformación, cuyo f'_c varía entre 250-1200 kg/cm²; observando la rectitud que toma la curva dando pase a la fragilidad del concreto al aumento de la resistencia a la compresión.

Figura 6: Efecto de la resistencia.

Por ello, se puede observar que cada elemento del concreto cumple un rol fundamental para la estimación del E_c , si uno de ellos no presenta una calidad adecuada la determinación del E_c no será óptima; se puede resumir lo mencionado en la tabla 1.

Tabla 2: Factores que afectan el Ec [23]

Concreto Fresco	Concreto Fresco		
Pasta	Agregado	Experimentales	
Módulo de elasticidad de la matriz de pasta.	Módulo de elasticidad de los agregados.	Aplicación de la carga.	
Porosidad de la mezcla.	Porosidad.	 Contenido de humedad de los especímenes. 	
 Condiciones de la matriz de pasta. 	Fracción volumétrica de los agregados.		

III.OBJETIVO GENERAL Y ESPECÍFICOS

3.1. OBJETIVO GENERAL

• Determinar el estado de arte respecto a la variación del E_c en el ámbito internacional, nacional y local.

IV.MATERIALES Y MÉTODOS

4.1 TIPO DE ESTUDIO Y DISEÑO DE CONTRASTACIÓN DE HIPÓTESIS

La investigación desarrollada es de tipo descriptiva, pues se detallaron las definiciones lo que respecta al tema de investigación, el impacto que tiene la zona de donde se extrajo el agregado, las variaciones del E_c de acuerdo a la zona con la del RNE-E-060. Este estudio está en base a la consulta de artículos y tesis ya existentes.

Por otro lado, la característica específica de este estudio se trató de una investigación transversal, haciendo un análisis de los materiales con potencial a reutilización y convertir específicamente los residuos de concreto hidráulico a un nuevo hormigón hidráulico.

 $M \leftarrow 0$

Muestra:

• Artículos y tesis acerca de la influencia de agregados en la determinación del $E_{\rm c}$.

4.2 HIPÓTESIS

Debido a la naturaleza de la investigación realizada, descriptiva-investigativa, no se formuló una hipótesis ya que esta no es necesaria.

4.3. VARIABLE-OPERACIONALIZACIÓN

Tabla 4: Operacionalización de variables

VARIABLE	DIMENSIONES	INDICADORES
Módulo de Elasticidad	Agregado fino	Propiedades físicas del agregado fino de acuerdo a la zona
Elasticidad	Agregado Grueso	Propiedades físicas del agregado grueso de acuerdo a la zona

4.4. POBLACIÓN, MUESTRA DE ESTUDIO Y MUESTREO 4.4.1. POBLACIÓN:

Debido a que esta investigación fue de tipo descriptiva, la población abarcó el conjunto de fuentes utilizadas, como son artículos, tesis y libros.

4.4.2. MUESTRA DE ESTUDIO:

Considerando la población mencionada anteriormente, las muestras utilizadas en este estudio fueron aquellas tesis, artículos y libros que giran en torno a la determinación del E_c. Se ha revisado un aproximado de 30 fuentes de las cuales 18 de ellas han servido como base para esta investigación, fueron elegidas a partir, principalmente, aquellas que fuesen publicadas entre los años 2015 y 2019 para la obtención de fuentes actualizadas.

4.4.3. MUESTREO:

La información investigada en cada una de las fuentes ya existentes a cerca de la determinación del E_c en diferentes zonas geográficas. Muestreo no probabilístico, por conveniencia.

4.5. MÉTODOS, TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE DATOS

TÉCNICA INSTRUMENTO

BLEMENTOS DE LA POBLACIÓN

Análisis documental

Fichas de análisis.

Ver Anexo 4

Tesis y artículos

Tabla 5: Métodos, técnicas e instrumentos de recolección de datos

4.6. PROCESAMIENTO PARA ANÁLISIS DE DATOS

Se obtuvo información relevante a partir del análisis de los artículos y tesis relacionados al tema, los cuales nos permiten conocer la situación de la determinación del $E_{\rm c}$ a nivel internacional y nacional.

4.7. RESULTADOS Y DISCUSIÓN
Del primer objetivo el cual se basa en la determinación del estado del arte se puede observar en tres ambientes, aspecto internacional, nacional y local. Estos se darán a conocer en lo siguientes cuadros:

Tabla 6: Resultados y discusión a nivel internacional

NIVEL INTERNACIONAL

NIVEL INTERNACIONAL			
PAÍS	NOMBRE DEL DOCUMENTO	AUTOR	CONCLUSIÓN
ESTADOS UNIDOS	Influence of coarse aggregate on concrete's elasticity modulus	Dos Santos Antonio Maria de Attuda Angela José da Silva Turibio Palma Vitor Paula Mouta Trautwein Leandro	El módulo de elasticidad obtenido mediante los ensayos correspondientes, presenta una gran variación respecto a su norma brasileña, resaltando la diferencia mineralógica que presentan sus agregados respecto a otras zonas, dando incapie que este factor sea una de las principales razones del bajo E. que presenta su investigación.
ESTADOS UNIDOS	Aggregate Correction Factors for Concrete Elastic Modulus Prediction	Tibbetts Caitlin Perry Michael Estrato Christopher Hamilton Trey	De acuerdo a la seleccionaron de cinco tipos de áridos gruesos: tres áridos limetock de Florida, un agregado calero de Calera y un agregado de granito de Georgia da a conocer los siguiente puntos: la corrección del factor agregado de 1.0 a 0.9 para el limetock Florida respecto al manual FDOT Structures Design Guidelines para reflejar los hallazgos de esta investigación; la incorporación de la oolita Miami como agregado grueso en cemento portland resultó en la mayor resistencia a la compresión y la mejor correlación entre la resistencia a la compresión y e módulo de elasticidad para los agregados producidos en Florida; la porosidad y rugosidad superficial del limetock Florida produjeron una unión significativamente mejor entre agregados y pasta, demostrada por superficies de fractura transgranular, en su mayoría; agregado con mayor resistencia suele tener superficies más lisas, lo que resulta en una menor resistencia de unión entre agregados y pasta y resultó en superficies de fractura intergranulares, para hormigón con granito y agregado calero de Calera y Las predicciones del módulo elástico basadas en la ecuación
ECUADOR	Determinación de la ecuación del módulo de elasticidad representativo para la provincia de Pichincha, en muestras de cilindros de hormigón con materiales de la mina de San Antonio de Pichincha	Valladares Alexis Jiménez <u>Holguer</u>	El Módulo de Elasticidad es un valor que no solo depende de la resistencia característica a la compresión del hormigón, si no es un valor que depende de las características físico- mecánicas de sus agregados y la dosificación.

ETIOPÍA	Investigation on the static modulus of elasticity of concrete in compression made using locally available coarse aggregates	Xealennegus Fufa	El tipo de agregado tiene un efecto tanto en el valor del £c, el módulo estático y el peso unitario del concreto; indica al mismo tiempo que de acuerdo a los tipos de agregado grueso que empleo, tanto como escorio, piedra caliza o agregado basáltico este presentará diferentes valores para el £a, así presente el mismo £c.

Tabla 7: Resultados y discusión a nivel nacional

NIVEL NACIONAL

	DEPARTAMENTO-CIUDAD	NOMBRE DEL DOCUMENTO	AUTOR	CONCLUSIÓN
	ÁNCASH-CHIMBOTE	DETERMINACION DEL MODULO DE ELASTICIDAD ESTATICO A COMPRESIÓN DEL CONCRETO PRODUCIDO EN LA PLANTA CONCRETERA DINO- CHIMBOTE	Bruno Castillo, Eduardo Adolfo Peralta López, Juan Carlos	Determinó que el módulo de elasticidad del concreto en la planta Dino-Chimbote, presentó una variación promedio del +5.77% respecto a la fórmula del ACI 318-11,8.5.1. y 19.85% con respecto a la fórmula del Reglamento Nacional de Edificaciones, E-060, Concreto Armad, item 8.5.1.
	LA LIBERTAD-TRUJILLO	INFLUENCIA DEL MÓDULO DE FINURA DE LA COMBINACIÓN DE AGREGADOS EN EL MÓDULO DE ELASTICIDAD DEL CONCRETO REOPLÁSTICO	Roncalla Cabrejo, David Arturo	Se determinó que para los concretos reoplásticos de relación agua cemento de 0.40, 0.45 y 0.50 un coeficiente de variación de 3.46%, 3.91% y 7.57% respectivamente a la norma ACI 318
L		INFLUENCIA DE LOS AGREGADOS DE LAS CANTERAS MASHCÓN Y CHONTA PARA LA OBTENCIÓN DE MÓDULOS DE ELASTICIDAD Y ROTURA, EN EL DISEÑO DE PAVIMENTOS RÍGIDOS	Ispilco Infante, Josué López Alaya, Jesús	Se realizó la comparación de los módulos de elasticidad de las canteras Mashcón y Chonta para un f.c. = 265 kg/cm2 y f.c. = 304 kg/cm2, utilizando la norma E.060 y la ASTM C 469 obteniendo una variación de -7.95%, -4.33%, -9.67%, -7.37.

DEPARTAMENTO-CIUDAD	NOMBRE DEL DOCUMENTO	AUTOR	CONCLUSIÓN
LORETO-IQUITOS	INFLUENCIA DEL MÓDULO DE ELASTICIDAD EN EL ANÀLISIS DE LA DERIVA DE EDIFICIOS DE CONCRETO EN EL PERÚ, 2017	Saavedra García, Cynthia Fiorella Ramitez Vigo, Danny Arlan	La deriva de edificios estudiados en distintas ciudades del Perú, según la Norma Técnica Peruana E.030 vigente, difieren entre 6,73 % a 9,55% cuando se usan el módulo de elasticidad según la Norma Técnica Peruana E.060 del Concreto Armado, equivalente a Ec = 15000√f′c (kg/cm2) y el módulo de elasticidad promedio obtenido del cálculo de los módulos de elasticidad del Reglamento Colombiano de Construcción Sismo resistente vigente NSR-10 Título C- Concreto estructural Ec = 13674√f′C (kg/cm2), demostrándose que a menor módulo de elasticidad del concreto se alcanzan mayores valores de deriva para todos los tipos de estructuración.
CUSCO-CUSCO	Determinación del módulo de elasticidad del concreto pre dosificado en seco de £c=210 kg/cm2 en la ciudad del Cusco	Mallma Lucho Sierra Blatter	El módulo de elasticidad del concreto presenta una gran variación porcentual respecto a la norma E-060, para lo cual recomiendan que se debe realizar ensayos de Es para cada proyecto de construcción.

V. CONCLUSIONES

- Se observa que existe, a nivel internacional, una mayor investigación por parte de Estados Unidos respecto a los elementos que influyen en la determinación del módulo de elasticidad del concreto simple
- Se observa que existe, a nivel nacional, una mayor investigación por parte del departamento de La Libertad respecto a los componentes que intervienen en la determinación del módulo de elasticidad del concreto simple
- Se da a conocer que a nivel local no se encuentran estudios respecto al estado del arte de los constituyentes que influyen en la determinación del módulo de elasticidad del concreto simple
- Se concluye que las características mineralógicas y geológicas de la zona son un factor importante para la determinación del E_c.

VI.RECOMENDACIONES

- Se recomienda emplear investigaciones de los últimos 5 años para tener resultados actualizados.
- Sería conveniente promover la investigación respecto al predominio de los agregados en la determinación del módulo de elasticidad del concreto simple en la ciudad de Chiclayo.
- Se exhorta realizar estudios de módulo de elasticidad para cualquier diseño estructural, para poder obtener valores más cercanos a la realidad.

VII. REFERENCIAS BIBLIOGRÁFICAS

- [1] American Concrete Institute, Requisitos de Reglamento para Concreto Estructural, Farmington Hills: IHS, 2014.
- [2] X. Huo, N. Al-Omaishi y K. Tadros, «Creep, shringkage, and modulus of elasticity of high-performance concrete,» de *ACI Materials Journal*, 2001.
- [3] D. Ruiz, H. Vacca y M. Neira, «Propuesta de modificación de la ecuación para la estimación del módulo de elasticidad del concreto en función de la resistencia a la compresión para Bogotá,» Revista de la Escuela Colombiana de Ingenieria, pp. 7-15, 2007.
- [4] R. Saliger, El Hormigón Armado. Materiales, cálculo y formas constructivas, Barcelona: Labor, 1957.
- [5] Ministerio de Vivienda, Construcción y Saneamiento, Reglamento Nacional de Edificaciones, Lima: Megabyte S.A.C., 2019.
- [6] T. Al-Rousan, E. Masad, E. Tutumluer y T. Pan, «Evaluation of image analysis techniques for quantifying aggregate shape characteristics,» de *Construction and Building Materials*, 2007.
- [7] B. X. Vargas Alarcón, «"Determinación de la Ecuación del módulo de elasticidad del concreto en base a la resistencia a la compresión simple, elaborado con los agregados de las canteras ISLA y YOCARA de la ciudad de Juliaca," Juliaca, 2017.
- [8] J. Ispilco Infante y J. A. López Alaya, «INFLUENCIA DE LOS AGREGADOS DE LAS CANTERAS MASHCÓN Y CHONTA PARA LA OBTENCIÓN DE MÓDULOS DE ELASTICIDAD Y ROTURA, EN EL DISEÑO DE PAVIMENTOS RÍGIDOS,» Cajamarca, 2017.
- [9] E. A. Bruno Castillo y J. C. Peralta López, «Determinación del módulo de elasticidad estático a compresión del concreto producido en la planta concretera Dino-Chimbote,» Chimbote, 2014.
- [10 D. A. Roncalla Cabrejo, «Influencia del Módulo de Finura de la combinación de agregados en el módulo de elasticidad del concreto reoplástico,» Trujillo, 2017.
- [11 L. Mallma y B. Sierra, «DETERMINACIÓN DEL MODULO DE
] ELASTICIDAD DEL CONCRETO PRE DOSIFICADO EN SECO DE F'C=210 KG/CM2 EN LA CIUDAD DEL CUSCO,» Cusco, 2016.

- [12 A. Dos Santos, A. María de Arruda, T. Da Silva, P. De Carvalho Palma Vitor
] y L. Mouta, «Influence of coarse aggregate on concrete's elasticity modulus,» Acta Scientarum, Santa Mónica, 2017.
- [13 T. Caitlin, M. Perry, C. Ferraro y T. Hamilton, «Aggregate Correction] Factors for Concrete Elastic,» ACI Structural Journal, Florida, 2018.
- [14 I. Jiménez y V. Alexis, «DETERMINACIÓN DE LA ECUACIÓN DEL] MÓDULO DE ELASTICIDAD REPRESENTATIVO PARA LA PROVINCIA DE PICHINCHA, EN MUESTRAS DE CILINDROS DE HORMIGÓN CON MATERIALES DE LA MINA DE SAN ANTONIO DE PICHINCHA.,» Quito, 2019.
- [15 F. Yealemnegus, «INVESTIGATION ON THE STATIC MODULUS OF ELASTICITY OF,» Addis Ababa, 2017.
- [16 American Society for Testing and Materials, «Document Center,» 1 Enero 1962. [En línea]. Available: https://www.document-center.com/standards/show/ASTM-C46. [Último acceso: 10 octubre 2019].
- [17 A. Neville, "Creep of concrete: Plain, Reinforced, and Prestressed, Amsterdam: North-Holland publishing company, 1996.
- [18 E. Bazán y R. Meli, Diseño Sísmico de edificios, México: Limusa, 2002.
- [19 SENCICO, «Norma Técnica Peruana,» de *Norma Técnica Peruana*, Lima, INDECOPI-CTR, 2006.
- [20 F. Abanto Castillo, Tecnología del Concreto, Lima: San Marcos, 2017.]
- [21 B. Topcu y A. Ugurlo, «Elasticity theory of concrete and prediction of Static] E-modulus for dam Concrete using composite models,» Diciembre 2007. [En línea]. Available: http://www.imo.org.tr/resimler/ekutuphane/pdf/14443.pdf. [Último acceso: 1 octubre 2019].
- [22 O. Gonzáles Cuevas y F. Robles Fernández-Villegas, Aspectos] fundamentales del concreto reforzado, México: Limusa, 2005.
- [23 R. Park, «American Concrete Institute,» 11 Enero 1998. [En línea].
] Available:
 https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/194. [Último acceso: 28 Septiembre 2019].

VIII. ANEXOS

Anexo 01: Fichas de análisis

TÎTULO	DETERMINACION DEL MODULO DE ELASTICIDAD ESTATICO A COMPRESIÓN DEL CONCRETO PRODUCIDO EN LA PLANTA CONCRETERA DINO- CHIMBOTE
AUTOR(ES)	Bruno Castillo, Eduardo Adolfo Peralta López, Juan Carlos
FECHA	2014
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento del módulo de elasticidad estático a compresión del concreto producido en la planta concretera Dino-Chimbote
SOLUCIÓN PROPUESTA	Buscar el valor de los módulos de elasticidad estático por medio de probetas de concreto para la planta concretera Dino-Chimbote
METODOLOGÍA, MÉTODOS, TÉCNICA	La presenta investigación realizo los ensayos correspondientes para determinar las propiedades físicas de los agregados de Chimbote, empleo agregados de la zona.
CONCLUSIONES	Determinó que el módulo de elasticidad del concreto en la planta Dino-Chimbote, presentó una variación promedio del +5.77% respecto a la fórmula del ACI 318-11,8.5.1. y 19.85% con respecto a la fórmula del Reglamento Nacional de Edificaciones, E-060, Concreto Armad, ítem 8.5.1.
FUENTE	Universidad Nacional del Santa
TİTULO	INFLUENCIA DEL MÓDULO DE FINURA DE LA COMBINACIÓN DE AGREGADOS EN EL MÓDULO DE ELASTICIDAD DEL CONCRETO

TÍTULO	INFLUENCIA DEL MÓDULO DE ELASTICIDAD EN EL ANÁLISIS DE LA DERIVA DE EDIFICIOS DE CONCRETO EN EL PERU, 2017
AUTOR(ES)	Sazvedra Garcta, Cynthia Fiorella Ramirez Vigo, Danny Arlan
FECHA	2017
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento de la influencia del módulo de elasticidad en el análisis de la deriva de edificios de concreto en el Perú.
SOLUCION PROPUESTA	Comparación de derivas entre edificaciones de la ciudad de Lima
METODOLOGÍA, MÉTODOS, TÉCNICA	En la investigación se procedió a obtener el valor del módulo de elasticidad estático del concreto, de esta manera se sometió a estructuras de la zona para comparar las derivas que originaban con el módulo de elasticidad encontrado y el valor promedio del Reglamento Nacional de Edificaciones.
CONCLUSIONES	La deriva de edificios estudiados en distintas ciudades del Perú, según la Norma Técnica. Peruana E.030 vigente, difieren entre 6,73 % a 9,53% cuando se usan el módulo de elasticidad según la Norma Técnica Peruana E.060 del Concreto Armado, equivalente a Ec = 15000 fc (kg/cm2) y el módulo de elasticidad promedio obtenido del cálculo de los módulos de elasticidad del Reglamento Colombiano de Construcción Sismo resistente vigente NSR-10 Título C- Concreto estructural Ec = 13674 fc (kg/cm2), demostrándose que a menor módulo de elasticidad del concreto se alcanzan mayores valores

TÍTULO	INFLUENCIA DE LOS AGREGADOS DE LAS CANTERAS MASHCÓN Y CHONTA PARA LA OBTENCIÓN DE MÓDULOS DE ELASTICIDAD Y ROTURA, EN EL DISEÑO DE PAVIMENTOS RÍGIDOS
AUTOR(ES)	Ispilco Infante, Josus Lõpez Alzya, Jesüs
FECHA	2017
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento de influencia de los agregados de las canteras de Mashcón y Chonta para la obtención de módulos de elasticidad y rotura, en el diseño de pavimentos rigidos.
SOLUCIÓN PROPUESTA	Buscar determinar la influencia de los agregados, por medio de ensayos y determinación de sus propiedades físicas y químicas, su influencia para la obtención del módulo de elasticidad y rotura del concreto.
METODOLOGÍA, MÉTODOS, TÉCNICA	En la investigación se realizaron los ensayos correspondientes para la determinación de las propiedades de los agregados, al mismo tiempo las propiedades del concreto fresco y endurecido para cumplir los criterios de calidad; posteriormente se realizó el ensayo para determinar el módulo de elasticidad estático del concreto.
CONCLUSIONES	Se realizó la comparación de los módulos de elasticidad de las canteras Mashcón y Chonta para un fc = 265 kg/cm2 y fc = 304 kg/cm2, utilizando la norma E.060 y la ASTM C 469 obteniendo una variación de -7.95%, -4.33%, -9.67%, -7.37.
FUENTE	Universidad Privada del Norte

TÍTULO	Determinación del módulo de elasticidad del concreto pre dosificado en seco de f c=210 kg/cm2 en la ciudad del Cuzco
AUTOR(ES)	Mallma Lucho Sierra Blatter
FECHA	2016
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento del valor del módulo de elasticidad del concreto para f'c=210 kg/cm2 para la ciudad de cuzco
SOLUCIÓN PROPUESTA	Realizar ensayos correspondientes a las propiedades físicas de los agregados, tanto finos como grueso y realizar el diseño de mesclas para posterior ensayo con el fin de determinar el madulo de elasticidad del concreto simple.
METODOLOGÍA, MÉTODOS, TÉCNICA	En la investigación se realizaron los ensayos correspondientes para la determinación de las propiedades de los agregados, al mismo tiempo las propiedades del concreto fresco y endurecido para cumplir los criterios de calidad; posteriormente se realizó el ensayo para determinar el módulo de elasticidad estático del concreto.
CONCLUSIONES	El módulo de elasticidad del concreto presenta una gran variación porcentual respecto a la norma E-060, para lo cual recomiendan que se debe realizar ensayos de E-para cada proyecto de construcción.
FUENTE	Universidad Nacional San Antonio de Abad del Cusco

TITULO	Influence of coarse aggregate on concrete's electricity modulus
AUTOR(ES)	Dos Santos Antonio Maria de Arruda Angela José da Silva Turibio Palma Vitor Paula Mouta Trantwein Leandro
FECHA	2017
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	La influencia que tiene el agregado grueso en el valor del E.
SOLUCIÓN PROPUESTA	Tomar muestras de diferentes nonas de Brasil, con composición mineralógica distinta para poder realizarle estudios.
METODOLOGÍA, MÉTODOS, TÉCNICA	Se empleó testigos de prueba, los cuales fueron sometidos a los ensayos habituales del concreto, mostrando cada espécimen diferentes valores del Eu respecto al parámetro de la norma brasileña.
CONCLUSIONES	El módulo de elasticidad obtenido mediante los ensayos correspondientes, presenta una gran variación respecto a su norma brasileña, resaltando la diferencia mineralógica que presentan sus agregados respecto a otras zonas, dando incanie, que este factor sea una de las principales razones del bajo E. que presenta su investigación.
FUENTE	Acta Scientatium.

TITULO	Aggregate, Correction Eactors for Concrete Elastic Modulus Prediction.
AUTOR(ES)	Tibbetts Caitlin Perry Michael Ferraro Christopher Hamilton Trey
FECHA	2018
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Predicción del E. de acuerdo al agregado que se empleará
SOLUCIÓN PROPUESTA	Emplear diferentes agregados de la zona para la elaboración de concreto y estudiar sus propiedades.
METODOLOGÍA, MÉTODOS, TÉCNICA	Se realizaron los ensayos correspondientes a la determinación de las propiedades físicas del agregado fino y agregado grueso, para posteriormente ver el parametro E, por medio de distintos tipos de agregado grueso.
CONCLUSIONES	De acuerdo a la seleccionaron de cinco tipos de áridos gruesos: tres áridos limenocio de Florida, un agregado calero de Calera y un agregado de granito de Georgia da a conocer los siguiente puntos: la corrección del factor agregado de 1.0 a 0.9 para el limenocio Florida, respecto al manual FDOT Structures Design. Guidelines, para reflejar los hallazgos de esta investigación; la incorporación de la colita Miami como agregado grueso en cemento portland resultó en la mayor resistencia a la compresión y la mejor correlación entre la resistencia a la compresión y la mejor correlación entre la resistencia a la compresión y el módulo de elasticidad para los agregados producidos en Florida; la porosidad y rugosidad superficial del limerocio Florida produjeron una unión significativamente mejor entre agregados y pasta, demostrada por superficies de fractura transgravular en su mayora; l agregado con mayor resistencia suele

TÍTULO	Determinación de la ecuación del módulo de elasticidad representativo para la provincia de Pichincha, en muestras de cilindros de hormigón con materiales de la mina de San Antonio de Pichincha
AUTOR(ES)	Valladares Alexis Jiménez Holguer
FECHA	2017
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento del parametro del E. en la provincia de Pichincha
SOLUCIÓN PROPUESTA	Obtener agregados de las canteras cercanas a la zona de estudio, para realizarle ensayos correspondientes
METODOLOGÍA, MÉTODOS, TÉCNICA	Se realizaron los ensayos correspondientes a la determinación de las propiedades físicas del agregado fino y agregado grueso, para posteriormente ver el parámetro E, y dar una ecuación base para el E, en la provincia de Pichincha.
CONCLUSIONES	El Módulo de Elasticidad es un valor que no solo depende de la resistencia característica a la compresión del hormigón, si no es un valor que depende de las características físico-mecánicas de sus agregados y la dosificación.
FUENTE	Pontificia Universidad Católica del Ecuador

TÍTULO	Investigation on the static modulus of elasticity, of concrete in compression made, using breath; swellable, coarse aggregates
AUTOR(ES)	Yealenmegus Fufa
FECHA	2017
PROBLEMA QUE SOLUCIONÓ LA INVESTIGACIÓN	Desconocimiento del parametro del E. en la localidad de Addis Ababa
SOLUCIÓN PROPUESTA	Obtener agregados de las canteras cercanas a la zona de estudio, para realizarle ensayos correspondientes
METODOLOGÍA, MÉTODOS, TÉCNICA	Se realizaron los ensayos correspondientes a la determinación de las propiedades físicas del agregado fino y agregado grueso, para postariormente ver el parámetro E _v y dar una ecuación base para el E _v en la localidad de Addis Ababa
CONCLUSIONES	El tipo de agregado tiene un efecto tanto en el valor del fc, el módulo estático y el peso unitario del concreto; indica al mismo tiempo que de acusedo a los tipos de agregado grueso que empleo, tanto como escorio, piedra caliza o agregado basáltico este presentará difarentes valores para el E. así presente el mismo fc.
FUENTE	Addis Ababa University