UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA ELÉCTRICA

DISEÑO DE UN SISTEMA FOTOVOLTAICO EN LA CARROCERÍA DE UNA UNIDAD MÉDICA MÓVIL PARA SUMINISTRAR ENERGÍA ELÉCTRICA A EQUIPOS BIOMÉDICOS EN ZONAS ALEJADAS DE LAMBAYEQUE

TESIS PARA OPTAR EL TÍTULO DE INGENIERO MECÁNICO ELÉCTRICO

AUTOR RENZO WILLY JAIR CARVALLO ANGELES

ASESOR ALEXANDER QUEREVALÚ MORANTE

https://orcid.org/0000-0001-5672-6829

Chiclayo, 2021

DISEÑO DE UN SISTEMA FOTOVOLTAICO EN LA CARROCERÍA DE UNA UNIDAD MÉDICA MÓVIL PARA SUMINISTRAR ENERGÍA ELÉCTRICA A EQUIPOS BIOMÉDICOS EN ZONAS ALEJADAS DE LAMBAYEQUE

PRESENTADA POR:

RENZO WILLY JAIR CARVALLO ANGELES

A la Facultad de Ingeniería de la
Universidad Católica Santo Toribio de Mogrovejo
para optar el título de

INGENIERO MECÁNICO ELÉCTRICO

APROBADA POR:

Jony Villalobos Cabrera PRESIDENTE

Luis Alberto Gonzáles Bazán SECRETARIO Alexander Querevalú Morante VOCAL

DEDICATORIA

A Dios, por permitirme haber llegado a esta etapa tan importante de mi vida.

A mi familia, por ser mi apoyo incondicional en mis logros y en mis caídas, por creer en mí desde el primer momento y ser el pilar más importante.

AGRADECIMIENTO

A Dios, por haberme dado la fuerza suficiente para culminar esta etapa y por poner en mi camino a las personas indicadas para lograr mis metas.

A mi madre, por su apoyo, disposición y confianza en cada etapa de mi vida, por enseñarme a nunca rendirme y a ser perseverante, por ser una madre ejemplar que da todo por sus hijos y por creer en mí desde un primer momento.

A mi padre, por haberme inculcado desde pequeño el hábito del estudio, sin ello no sería lo que soy en la actualidad, por tus consejos y por creer en mis habilidades desde siempre.

A mis hermanos, por ser mi motor y motivo, por ser la principal razón de empezar y culminar esta etapa. Por alegrar mi existencia desde el primer momento y por brindarme el apoyo necesario para ser mejor cada día.

A mis abuelos, por cada uno de sus sabios consejos, por apostar y creer en mí sin pensarlo dos veces, por su apoyo total en cada etapa importante de mi vida y por ser para mí un ejemplo a seguir.

A mi tío, el Dr. Pedro Angeles Chero, por brindarme su apoyo y tiempo sin dudarlo desde un principio, sin su apoyo la concepción de este proyecto no hubiera sido posible.

Al Ing. James Skinner Celada Padilla y al Ing. Alexander Querevalú Morante, por toda la colaboración brindada, durante la elaboración de este proyecto.

A cada uno de los profesionales de la Escuela de Ingeniería Mecánica Eléctrica y la Facultad de Ingeniería, por ser pieza fundamental en mi formación como profesional, por brindarme sus conocimientos, consejos y experiencias.

A mis amigos y futuros colegas, por ser partícipes de esta etapa importante, por brindarme su amistad, consejos y experiencias, por cada día compartido entre risas y bromas.

Finalmente, agradezco a cada una de las personas que fueron partícipes directa e indirectamente de este proyecto.

ÍNDICE

RESUMEN	22
ABSTRACT	23
I. INTRODUCCIÓN	24
1.1. Objetivos	25
1.1.1. Objetivo general	25
1.1.2. Objetivos específicos	25
1.2. Formulación del problema	25
1.3. Formulación de la hipótesis	25
1.4. Viabilidad y justificación	25
II. MARCO TEÓRICO	26
2.1. Estado del arte	26
2.1.1. Productos similares existentes	26
2.1.2. Problemática actual de los productos similares existentes	27
2.1.3. Planteamiento del problema	27
2.1.4. Requerimientos del diseño	27
2.2. Bases Teórico-Científicas	28
2.2.1. Energía	28
2.2.1.1. Energías renovables	28
2.2.1.2. Tipos de energías renovables	28
2.2.1.2.1. Energía solar	28
2.2.1.2.1.1. Tecnología solar fotovoltaica	28
2.2.1.2.1.2. Tecnología solar térmica (o termosolar)	29
2.2.1.2.1.3. Tecnología termosolar de concentración	29
2.2.1.2.1.4. Tecnología eólico-solar	29
2.2.1.2.1.5. Tecnología solar híbrida	29
2.2.1.2.2. Energía eólica	29
2.2.1.2.3. Energía geotérmica	30
2.2.1.2.4. Energía de la biomasa	30
2.2.1.2.5. Energía hidráulica y minihidráulica	31
2.2.1.2.6. Energía de los océanos	31
2.2.1.2.6.1. Energía mareomotriz	31

2.2.1.3. Las energías renovables en el Perú	31
2.2.1.3.1. Potencial de las fuentes renovables en el Perú	32
2.2.1.3.2. Centrales de generación eléctrica con RER	32
2.2.2. La energía del Sol	33
2.2.2.1. La geometría Tierra-Sol	33
2.2.2.1.1. Movimientos de la Tierra	33
2.2.2.1.2. Trayectoria aparente del Sol	34
2.2.2.2. Características de las radiaciones solares	35
2.2.2.1. Radiación directa, difusa y global	35
2.2.3. La conversión de la luz en electricidad	36
2.2.3.1. La conversión fotovoltaica	36
2.2.3.1.1. La absorción de la luz	36
2.2.3.1.2. Transferencia de energía desde los fotones	37
2.2.3.1.3. Recolección de las cargas	37
2.2.3.2. Tecnología de las células solares	37
2.2.3.2.1. Células de silicio cristalino	37
2.2.3.2.1.1. Células monocristalinas	38
2.2.3.2.1.2. Células multicristalinas	39
2.2.3.2.2. Células de silicio amorfo	39
2.2.3.2.3. Otras tecnologías	39
2.2.4. Sistemas Fotovoltaicos (SFV)	39
2.2.4.1. Ventajas y desventajas de los SFV	39
2.2.4.2. Tipos de SFV	40
2.2.4.2.1. Off-grid	40
2.2.4.2.2. Sistemas híbridos	40
2.2.4.2.3. On-grid	41
2.2.4.2.4. Sistemas de bombeo solar	41
2.2.4.3. Componentes de los SFV	41
2.2.4.3.1. Modulo fotovoltaico	41
2.2.4.3.2. Controlador de carga o regulador de carga	42
2.2.4.3.3. Batería o almacenamiento de energía	43
2.2.4.3.4. Inversor de corriente o convertidor	44

2.2.4.3.4.1. Inversor de corriente DC/AC	45
2.2.4.3.4.2. Inversor cargador	45
2.2.4.3.4.3. Inversor de interconexión	46
2.2.5. Evaluación económica de la propuesta	46
2.2.5.1. Valor Actual Neto o Valor Presente Neto (VAN)	46
2.2.5.2. Tasa Interna de Retorno o Tasa Interna de Rentabilidad (TIR)	47
III. DISEÑO	48
3.1. Metodología	48
3.1.1. Instrumentación	48
3.1.2. Métodos y técnicas	48
3.1.3. Diagrama de Flujo	48
3.2. Diseño conceptual de elementos o partes	48
3.2.1. Método 1	48
3.2.1.1. El proceso general	48
3.2.1.1.1. Cálculo de la potencia máxima	49
3.2.1.1.2. Cálculo del consumo máximo	49
3.2.1.1.3. Cálculo del número de paneles	50
3.2.1.1.3.1. Energía generada por un panel	50
3.2.1.1.4. Cálculo de la capacidad del acumulador	51
3.2.1.2. Instalación sólo con equipos de tensión alterna	51
3.2.1.2.1. Elección del regulador	51
3.2.1.2.1.1. Asociación en paralelo	52
3.2.1.2.2. Elección del convertidor.	52
3.2.1.3. Cálculo del cableado de la instalación	53
3.2.1.3.1. Cálculo de la sección	53
3.2.1.3.1.1. En corriente continua	53
3.2.1.3.2. Elección del cableado	54
3.2.2. Método 2	56
3.2.2.1. Elección del sistema	56
3.2.2.2. Dimensionado básico	56
3.2.2.2.1. Subsistema de generación	57
3.2.2.2. Subsistema de acumulación	59

3.2.2.2.3. Subsistema de regulación	60
3.2.2.2.4. Subsistema de acondicionamiento de potencia	61
3.2.2.3. Dimensionado de la sección del cableado	61
IV. RESULTADOS	63
4.1. Situación actual	63
4.1.1. Situación energética actual de las zonas rurales de Lambayeque	63
4.1.2. Situación de la salud pública en la actualidad	69
4.2. Niveles de radiación solar	69
4.2.1. Atlas de Energía Solar del Perú	69
4.2.2. Global Solar Atlas	71
4.2.3. NASA Surface Meteorology and Solar Energy	76
4.2.4. RETScreen Expert	87
4.2.5. Meteonorm	89
4.3. Diseño del sistema fotovoltaico	112
4.3.1. Método 1	112
4.3.1.1. Determinación de las necesidades de la Unidad Médica Móvil .	112
4.3.1.1.1 Identificación de los Dispositivos Médicos	112
4.3.1.1.2. Medición del remolque de la Unidad Médica Móvil	115
4.3.1.1.3. Identificación de los Equipos Biomédicos	117
4.3.1.2. Cálculo de la potencia máxima	118
4.3.1.2.1. Factor de carga	120
4.3.1.3. Cálculo del consumo máximo	121
4.3.1.4. Cálculo del número de paneles	122
4.3.1.5. Cálculo de la capacidad del acumulador	128
4.3.1.6. Elección del regulador	133
4.3.1.7. Elección del convertidor	140
4.3.2. Método 2	142
4.3.2.1. Elección del sistema	142
4.3.2.2. Dimensionado básico	143
4.3.2.2.1. Subsistema de generación	144
4.3.2.2.2. Subsistema de acumulación.	150
4.3.2.2.3. Subsistema de regulación	157

4.3.2.2.4. Subsistema de acondicionamiento de potencia	162
4.3.2.2.5. Dimensionado de la sección del cableado	164
4.3.2.3. Selección de los dispositivos de protección	182
4.3.2.4. Selección de dispositivos y accesorios para el montaje del sistema	186
4.3.2.4.1. Paneles fotovoltaicos	186
4.3.2.4.1.1. Selección de Estructura de soporte	186
4.3.2.4.1.2. Selección de Conectores	187
4.3.2.4.1.3. Selección de Caja estanca de paso	188
4.3.2.4.1.4. Selección del Repartidor o Bornera	189
4.3.2.4.2. Baterías	189
4.3.2.4.2.1. Selección de Terminales de Compresión	189
4.3.2.4.3. Otros	190
4.3.2.4.3.1. Selección del Tablero Adosable	190
4.4. Evaluación económica de la propuesta	190
4.4.1. Cálculo del Valor Actual Neto (VAN)	191
4.4.1.1. Ingresos	191
4.4.1.2. Egresos	191
4.4.2. Cálculo de la Tasa Interna de Retorno	193
V. CONCLUSIONES	195
VI. RECOMENDACIONES	195
VII. OBSERVACIONES	195
REFERENCIAS BIBLIOGRÁFICAS	196
ANEXOS	200
ANEXO 1	200
ANEXO 2	203
ANEXO 3	204
ANEXO 4	205
ANEXO 5	206
ANEXO 6	208
ANEXO 7	211
ANEXO 8	212
ANEXO 9	232

ANEXO 10	233
ANEXO 11	236
ANEXO 12	240
ANEXO 13	244
ANEXO 14	257
ANEXO 15	259
ANEXO 16	261
ANEXO 17	265
ANEXO 18	266
ANEXO 19	270
ANEXO 20	272
ANEXO 21	273
ANEXO 22	276
ANEXO 23	277
ANEXO 24	
ANEXO 25	
ANEXO 26	

ÍNDICE DE TABLAS

Tabla 1: Potencial de energías renovables. [4]	32
Tabla 2: Calores de capacidad y energía por voltaje final de la celda. [10]	44
Tabla 3: Tipo de Instalación. [12]	54
Tabla 4: Valores según tipo de Instalación, conductores y aislamiento. [12]	
Tabla 5: Valores de intensidades máximas. [12]	55
Tabla 6: Rango práctico de valores de los coeficientes de pérdidas. [13]	57
Tabla 7: Valores recomendados para la caída de tensión. [13]	61
Tabla 8: Incremento de sección en función del tipo de aislamiento y temperatura máxim	a
admisible	62
Tabla 9: Oferta total (kbep) de las Energías Primarias en el 2016. [14]	63
Tabla 10: Oferta total de los sectores que conforman el consumo final en el 2016. [14]	64
Tabla 11: Hogares según área de residencia, que tienen energía eléctrica por red pública	. [3]
	66
Tabla 12: Coordenadas en Latitud y Longitud de los Centros Poblados sin proyecto	
asociado. [17]	
Tabla 13: Población afiliada a seguro de salud, según tipo de seguro y área de residencia	
[3]	
Tabla 14: Valores Mínimos de Irradiación Horizontal Global, Irradiación Normal Direct	
Irradiación Horizontal Difusa e Irradiación Inclinada Global. [19]	76
Tabla 15: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial	
Tabla 16: Codificación de los Centros Poblados	
Tabla 17: Irradiación Solar diaria-horizontal según los meses de los Centros Poblados. [
Table 19: Irradicción alabal mínimo en una cunarficia inclinada [22]	
Tabla 18: Irradiación global mínima en una superficie inclinada. [22]	
Tabla 20: Dispositivos médicos de la Unidad Médica Móvil I. [23]	
Tabla 21: Dispositivos médicos de la Unidad Médica Móvil II. (continuación) [23]	
Tabla 21: Dispositivos medicos de la Unidad Médica Móvil II. [23]	
Tabla 23: Equipos Biomédicos presentes en la Unidad Médica Móvil I	
Tabla 24: Potencia (W) de cada Equipo Biomédico	
Tabla 25: Ítem y especificaciones de la Impresora láser	
Tabla 26: Modos de consumo de la Impresora láser.	
Tabla 27: Cálculo del consumo (Wh) en 8 horas de la "Impresora láser"	
Tabla 28: Consumo total (Wh) de los Equipos Biomédicos de la Unidad Médica Móvil l	
The transfer of the contract o	
Tabla 29: Dimensiones del remolque, cálculo de la potencia máxima y cálculo del consu	
máximo en Excel.	
Tabla 30: Posibles escenarios utilizando cada panel fotovoltaico de la base de datos	
Tabla 31: Datos según criterios de selección del panel fotovoltaico	
Tabla 32: Intervalos y ponderaciones según criterios de selección del panel fotovoltaico.	

Tabla 33: Matriz de decisión del panel fotovoltaico.	. 125
Tabla 34: Características del panel fotovoltaico WAARE WS-200/12 V. [26]	. 126
Tabla 35: Posibles escenarios utilizando cada batería de la base de datos	. 129
Tabla 36: Posibles escenarios utilizando cada batería de la base de datos. (continuación)	130
Tabla 37: Datos según criterios de selección de la batería.	. 130
Tabla 38: Intervalos y ponderaciones según criterios de selección de la batería	
Tabla 39: Matriz de decisión de la batería	
Tabla 40: Matriz de decisión de la batería. (continuación)	
Tabla 41: Características de la batería UPOWER UP-TFS250-12. [26]	
Tabla 42: Diferencias entre reguladores MPPT y PWM. [27]	
Tabla 43: Tipo de regulador en función del número de celdas del panel FV y la tensión	
banco de baterías. [28]	
Tabla 44: Pros y contras de los controladores PWM y MPPT. [29]	
Tabla 45: Posibles escenarios utilizando cada regulador de la base de datos	
Tabla 46: Ponderación según tipo de regulador.	. 137
Tabla 47: Datos según criterios de selección del regulador.	
Tabla 48: Intervalos y ponderaciones según criterios de selección del regulador	
Tabla 49: Matriz de decisión del regulador.	
Tabla 50: Características del regulador VICTRON ENERGY MPPT MPPT 150/100. [20]	
Tabla 51: Posibles escenarios utilizando cada convertidor de la base de datos	
Tabla 52: Posibles escenarios utilizando cada convertidor de la base de datos.	
(continuación)	. 141
Tabla 53: Selección del convertidor.	. 141
Tabla 54: Características del convertidor MUST SOLAR EP20-800. [26]	. 142
Tabla 55: Dimensiones del remolque, datos preliminares, elección del sistema y	
dimensionado básico en Excel.	. 145
Tabla 56: Posibles escenarios utilizando cada panel fotovoltaico de la base de datos	. 146
Tabla 57: Datos según criterios de selección del panel fotovoltaico	. 146
Tabla 58: Intervalos y ponderaciones según criterios de selección del panel fotovoltaico	
Tabla 59: Matriz de decisión del panel fotovoltaico.	. 147
Tabla 60: Características del panel fotovoltaico CSUN CSUN 320-72P. [26]	. 148
Tabla 61: Posibles escenarios utilizando cada batería de la base de datos	. 152
Tabla 62: Posibles escenarios utilizando cada batería de la base de datos (continuación).	. 153
Tabla 63: Datos según criterios de selección de la batería.	
Tabla 64: Datos según criterios de selección de la batería. (continuación)	. 154
Tabla 65: Intervalos y ponderaciones según criterios de selección de la batería	. 154
Tabla 66: Matriz de decisión de la batería.	
Tabla 67: Matriz de decisión de la batería. (continuación)	
Tabla 68: Características de la batería UPOWER UP-GC16-6RE. [26]	. 156
Tabla 69: Posibles escenarios utilizando cada regulador de la base de datos	
Tabla 70: Ponderación según tipo de regulador.	
Tabla 71: Datos según criterios de selección del regulador	. 159

Tabla 72: Intervalos y ponderaciones según criterios de selección del regulador	159
Tabla 73: Matriz de decisión del regulador.	159
Tabla 74: Matriz de decisión del regulador. (continuación)	160
Tabla 75: Características del regulador SOLAR SYSTEM MPPT PC16-6015A	
Tabla 76: Posibles escenarios utilizando cada convertidor de la base de datos	162
Tabla 77: Posibles escenarios utilizando cada convertidor de la base de datos.	
(continuación)	163
Tabla 78: Características del convertidor MUST SOLAR EP20-800. [26]	
Tabla 79: Comparación de equipos en ambos métodos.	
Tabla 80: Equipos seleccionados que abastecerán a los equipos biomédicos	164
Tabla 81: Caída de tensión en cada circuito. [13]	
Tabla 82: Cantidad y longitud estimada del cableado para cada circuito	
Tabla 83: Cuadro resumen del cálculo de la sección del cableado según el circuito	
Tabla 84: Métodos de instalación referenciales. [30]	
Tabla 85: Capacidad de corriente en A de conductores aislados-En canalización o cabl	
[30]	
Tabla 86: Capacidad de corriente en A de conductores aislados-Al aire libre. [30]	
Tabla 87: Capacidad de corriente en A de conductores aislados-En canalización o cabl	
Alternativa para calibre AWG. [30]	
Tabla 88: Capacidad de corriente en A de conductores aislados unipolares-Al aire libro	
Alternativa para calibre AWG. [30]	
Tabla 89: Capacidad nominal de corriente según los métodos referenciales. [31]	
Tabla 90: Coeficientes y exponentes. [31]	
Tabla 91: Coeficientes y exponentes (continuación). [31]	
Tabla 92: Tabla 8 de la NTP 370.301-capacidad de corriente nominal en amperes para	
métodos de instalación E, F y G con Aislamiento PVC, conductores de cobre	
Tabla 93: Conversión AWG-mm ² . [32]	
Tabla 94: Base de datos de cables (PROMART). [33]	
Tabla 95: Tabla 9 de la NTP 370.301-capacidad de corriente nominal en amperes para	
métodos de instalación E, F y G con Aislamiento XLPE o EPR, conductores de cobre.	
Tabla 96: Base de datos de cables (AUTOSOLAR). [26]	
Tabla 97: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	
Tabla 98: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	
Tabla 99: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	
Tabla 100: Características del Interruptor Tipo Riel Bifásico 10 A Bticino. [32]	
Tabla 101: Características del Interruptor Diferencial Salvavida Bticino. [32]	
Tabla 102: Base de datos de Repartidores. [26]	
Tabla 103: Base de datos de Terminales de Compresión. [26]	
Tabla 104: Cantidad de polos necesarios en el Tablero.	
Tabla 105: Precio del balón de gas según las provincias de Lambayeque	
Tabla 106: Datos preliminares para el VAN.	
Tabla 107: Cálculo del Valor Actual Neto.	
Tabla 108: Cálculo de la Tasa Interna de Retorno.	
Tabla 100. Calculo de la Tasa illettia de Retorito	ェフサ

Tabla 109: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica	
mediante red pública, según región y departamento, 2011-2017. [6]	204
Tabla 110: Centros Poblados del Departamento de Lambayeque que no tienen ningún	
proyecto asociado. [16]	
Tabla 111: Datos de coordenadas geográficas, producción de electricidad fotovoltaica,	
irradiación horizontal global, irradiación normal directa, irradiación horizontal difusa,	
irradiación inclinada global, ángulo óptimo de módulos fotovoltaicos, temperatura del	
y elevación; de los centros poblados. [19]	211
Tabla 112: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Botijilla" (kWh/m²/día). [20]	212
Tabla 113: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Yerba Santa" (kWh/m²/día). [20]	213
Tabla 114: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Nueva Jerusalén" (kWh/m²/día). [20]	214
Tabla 115: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Chillaca" (kWh/m²/día). [20]	215
Tabla 116: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Paja Blanca" (kWh/m²/día). [20]	216
Tabla 117: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "El Sauce" (kWh/m²/día). [20]	217
Tabla 118: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Walcochala" (kWh/m²/día). [20]	218
Tabla 119: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Lique" (kWh/m²/día). [20]	219
Tabla 120: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Molino" (kWh/m²/día). [20]	220
Tabla 121: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Palo Blanco" (kWh/m²/día). [20]	221
Tabla 122: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Huamachuco" (kWh/m²/día). [20]	222
Tabla 123: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Cueva Blanca" (kWh/m²/día). [20]	223
Tabla 124: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Señor de la Humildad" (kWh/m²/día). [20]	224
Tabla 125: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Los Pinos" (kWh/m²/día). [20]	225
Tabla 126: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Vinguar Chico" (kWh/m²/día). [20]	226
Tabla 127: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "El Carrizo" (kWh/m²/día). [20]	227
Tabla 128: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Pueblo Nuevo" (kWh/m²/día). [10]	228

Tabla 129: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Huaca de Toro" (kWh/m²/día). [10]	229
Tabla 130: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "Muy Finca Rama Diaz" (kWh/m²/día). [10]	230
Tabla 131: Mínima irradiación incidente en una superficie inclinada con dirección	
ecuatorial del Centro Poblado "San Sebastian" (kWh/m²/día). [10]	231
Tabla 132: Irradiación Solar diaria-horizontal (kWh/m2/d) según los meses del año de	cada
Centro Poblado. [21]	232
Tabla 133: Base de datos de la irradiación global en una superficie inclinada según los	3
meses y la inclinación de cada Centro Poblado. [22]	233
Tabla 134: Base de datos de la irradiación solar de cada centro poblado según la fuente	e y el
mes	236
Tabla 135: Base de datos de las potencias de los Equipos Biomédicos utilizada para re	alizar
la curva de carga en 1 hora	257
Tabla 136: Base de datos de paneles fotovoltaicos. [26]	259
Tabla 137: Base de datos de paneles fotovoltaicos. (continuación) [26]	260
Tabla 138: Base de datos de baterías. [26]	261
Tabla 139: Base de datos de baterías. (continuación) [26]	263
Tabla 140: Base de datos de controladores. [26]	266
Tabla 141: Base de datos de controladores. (continuación) [26]	268
Tabla 142: Base de datos de controladores. [26]	270
Tabla 143: Presupuesto general de la propuesta	272
Tabla 144: Precio del balón de gas en la provincia de Ferreñafe	273
Tabla 145: Precio del balón de gas en la provincia de Lambayeque	274
Tabla 146: Precio del balón de gas en la provincia de Chiclayo	275

ÍNDICE DE GRÁFICOS

Grafico 1: Curvas características. [10]	44
Gráfico 2: Generación Eléctrica (GWh) en el Perú por fuente de energía durante el año 2016. [14]	
Gráfico 3: Capacidad Instalada Total (MW) en el Perú según tipo de fuente de energía e	
2015. [14]	
Gráfico 4: Capacidad Instalada Total (%) en el Perú según fuente de energía en el 2015	
[14]	
Gráfico 5: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica	03
mediante red pública, según región natural. [6]	66
Gráfico 6: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica	00
mediante red pública en el departamento de Lambayeque. [6]	67
Gráfico 7: Energía solar incidente diaria en el Departamento de Lambayeque (kWh/m2	
según el mes. [18]según el mes. [18]	
Gráfico 8: Producción de electricidad fotovoltaica según centro poblado. [19]	
Gráfico 9: Irradiación horizontal global según centro poblado. [19]	
Gráfico 10: Irradiación normal directa según centro poblado. [19]	
Gráfico 11: Irradiación horizontal difusa según centro poblado. [19]	
Gráfico 12: Irradiación inclinada global según centro poblado. [19]	
Gráfico 14: Eleveción según centro poblado. [19]	
Gráfico 14: Elevación según centro poblado. [19]	13
Gráfico 15: Irradiación mínima incidente en una superficie inclinada con orientación	77
ecuatorial en el centro poblado "Botijilla". [20]	/ /
Gráfico 16: Irradiación mínima incidente en una superficie inclinada con orientación	77
ecuatorial en el centro poblado "Yerba Santa". [20]	/ /
Gráfico 17: Irradiación mínima incidente en una superficie inclinada con orientación	70
ecuatorial en el centro poblado "Nueva Jerusalén". [20]	/8
Gráfico 18: Irradiación mínima incidente en una superficie inclinada con orientación	70
ecuatorial en el centro poblado "Chillaca". [20]	/8
Gráfico 19: Irradiación mínima incidente en una superficie inclinada con orientación	70
ecuatorial en el centro poblado "Paja Blanca". [20]	79
Gráfico 20: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "El Sauce". [20]	79
Gráfico 21: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Walcochala". [20]	80
Gráfico 22: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Lique". [20]	80
Gráfico 23: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Molino". [20]	81
Gráfico 24: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Palo Blanco". [20]	81
Gráfico 25: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Huamachuco". [20]	82

Gráfico 26: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Cueva Blanca". [20]	2
Gráfico 27: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Señor de la Humildad". [20]	3
Gráfico 28: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Los Pinos". [20]	3
Gráfico 29: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Vinguar Chico". [20]	4
Gráfico 30: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "El Carrizo". [20]	4
Gráfico 31: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Pueblo Nuevo". [20]	5
Gráfico 32: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Huaca de Toro". [20]	5
Gráfico 33: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "Muy Finca Rama Diaz". [20]	6
Gráfico 34: Irradiación mínima incidente en una superficie inclinada con orientación	
ecuatorial en el centro poblado "San Sebastian". [20]	6
Gráfico 35: Irradiación Solar diaria-horizontal según Centro Poblado durante los meses del	
año. [21]	9
Gráfico 36: Irradiación global en una superficie inclinada en el centro poblado "Botijilla".	
[22]9	
Gráfico 37: Irradiación global en una superficie inclinada en el centro poblado "Chillaca".	
[22]9	1
Gráfico 38: Irradiación global en una superficie inclinada en el centro poblado "Cueva	
Blanca". [22]	2
Gráfico 39: Irradiación global en una superficie inclinada en el centro poblado "El	
Carrizo". [22]	2
Gráfico 40: Irradiación global en una superficie inclinada en el centro poblado "El Sauce".	
[22]	3
Gráfico 41: Irradiación global en una superficie inclinada en el centro poblado "Huaca de	
Toro". [22]	3
Gráfico 42: Irradiación global en una superficie inclinada en el centro poblado	
"Huamachuco". [22]	4
Gráfico 43: Irradiación global en una superficie inclinada en el centro poblado "Lique".	
[22]94	
Gráfico 44: Irradiación global en una superficie inclinada en el centro poblado "Los Pinos"	
[22]	5
Gráfico 45: Irradiación global en una superficie inclinada en el centro poblado "Molino".	
[22]	
Gráfico 46: Irradiación global en una superficie inclinada en el centro poblado "Muy Finca	,
Rama Diaz". [22]9	6

Gráfico 47: Irradiación global en una superficie inclinada en el centro poblado "Nueva	06
Jerusalén". [22]	
Blanca". [22]	97
Blanco". [22]	97
Gráfico 50: Irradiación global en una superficie inclinada en el centro poblado "Pueblo	
Nuevo". [22]	98
Gráfico 51: Irradiación global en una superficie inclinada en el centro poblado "San Sebastian". [22]	98
Gráfico 52: Irradiación global en una superficie inclinada en el centro poblado "Señor de	la
Humildad". [22]	99
Chico". [22]	99
Gráfico 54: Irradiación global en una superficie inclinada en el centro poblado	
"Walcochala". [22]	00
Gráfico 55: Irradiación global en una superficie inclinada en el centro poblado "Yerba Santa". [22]	00
Gráfico 56: Irradiación Solar del centro poblado "Botijilla" según fuente y mes	
Gráfico 57: Irradiación Solar del centro poblado "Chillaca" según fuente y mes	
Gráfico 58: Irradiación Solar del centro poblado "Cueva Blanca" según fuente y mes 1	
Gráfico 59: Irradiación Solar del centro poblado "El Carrizo" según fuente y mes 1	
Gráfico 60: Irradiación Solar del centro poblado "El Sauce" según fuente y mes	
Gráfico 61: Irradiación Solar del centro poblado "Huaca de Toro" según fuente y mes1	
Gráfico 62: Irradiación Solar del centro poblado "Huamachuco" según fuente y mes 1	
Gráfico 63: Irradiación Solar del centro poblado "Lique" según fuente y mes	
Gráfico 64: Irradiación Solar del centro poblado "Los Pinos" según fuente y mes 1	
Gráfico 65: Irradiación Solar del centro poblado "Molino" según fuente y mes	
Gráfico 66: Irradiación Solar del centro poblado "Muy Finca Rama Diaz" según fuente y	
mes	
Gráfico 67: Irradiación Solar del centro poblado "Nueva Jerusalén" según fuente y mes. 1	
Gráfico 68: Irradiación Solar del centro poblado "Paja Blanca" según fuente y mes 1	
Gráfico 69: Irradiación Solar del centro poblado "Palo Blanco" según fuente y mes 1	
Gráfico 70: Irradiación Solar del centro poblado "Pueblo Nuevo" según fuente y mes 1	
Gráfico 71: Irradiación Solar del centro poblado "San Sebastian" según fuente y mes 1	09
Gráfico 72: Irradiación Solar del centro poblado "Señor de la Humildad" según fuente y	10
mes	
Gráfico 74: Irradiación Solar del centro poblado "Walcochala" según fuente y mes 1	
Gráfico 75: Irradiación Solar del centro poblado "Yerba Santa" según fuente y mes 1 Gráfico 76: Variación de potencia en función de los modos durante 1 hora 1	
Gráfico 77: Curva de carga de los Equipos Biomédicos en 1 hora	
Statico / /, Cut va uc catza uc tos Equidos Divilicultos ell 1 liuta, ,	\

ÍNDICE DE FIGURAS

Figura 1: Sistema de energía híbrida solar eólica. [4]	29
Figura 2: Interior de una turbina eólica y generación de electricidad. [4]	30
Figura 3: Proceso de generación eléctrica geotérmica. [4]	30
Figura 4: Movimientos de la Tierra. [9]	34
Figura 5: Definiciones de la posición del Sol (altura y azimut). [9]	34
Figura 6: Trayectoria del Sol en Ginebra (lat. 46° 12' N, long. 6° 09' E). [9]	35
Figura 7: Componentes de las radiaciones solares que llegan al suelo. [9]	35
Figura 8: El efecto coseno. [9]	36
Figura 9: Reflexión, transmisión y absorción de la luz en un objeto sólido. I (flujo	
incidente) = R (reflejado) + A (absorbido) + T (transmitido). [9]	37
Figura 10: Célula de silicio multicristalino (Photowatt International). [9]	38
Figura 11: Composición de una célula de silicio monocristalino. [9]	
Figura 12: Estructura de una célula de silicio amorfo hidrogenado (dibujo no hecho a	
escala). [9]	39
Figura 13: Componentes de un Sistema Off-grid. [10]	40
Figura 14: Componentes de un Sistema Híbrido. [10]	40
Figura 15: Componentes de un Sistema On-grid. [10]	41
Figura 16: Componentes de un Sistema de Bombeo solar. [10]	
Figura 17: Composición de un Panel Solar. [10]	
Figura 18: Controlador de carga o regulador de carga tipo PWM. [10]	43
Figura 19: Controlador de carga o regulador de carga tipo MPPT. [10]	
Figura 20: Distintos tipos de baterías. [10]	43
Figura 21: Inversor de corriente DC/AC. [10]	
Figura 22: Inversor cargador. [10]	
Figura 23: Inversor de interconexión. [10]	
Figura 24: Interpretación del VAN. [11]	47
Figura 25: Visor de Mapas de Electrificación Rural-DGER. [16]	
Figura 26: Plataforma web "Global Solar Atlas". [19]	71
Figura 27: Interfaz del software "Meteonorm 7". [22]	90
Figura 28: Unidad Médica Móvil I	
Figura 29: Medición del ancho del remolque de la Unidad Médica Móvil I	116
Figura 30: Medición de la longitud del remolque de la Unidad Médica Móvil I	116
Figura 31: Panel fotovoltaico WAARE WS-200/12 V. [26]	126
Figura 32: Dimensiones del panel fotovoltaico WAARE WS-200/12 V. [26]	127
Figura 33: Batería UPOWER UP-TFS250-12. [26]	133
Figura 34: Regulador VICTRON ENERGY MPPT MPPT 150/100. [26]	139
Figura 35: Convertidor MUST SOLAR EP20-800. [26]	
Figura 36: Panel fotovoltaico CSUN CSUN 320-72P. [26]	
Figura 37: Dimensiones del panel fotovoltaico CSUN CSUN 320-72P. [26]	
Figura 38: Batería UPOWER UP-GC16-6RE. [26]	
Figura 39: Regulador SOLAR SYSTEM MPPT PC16-6015A	
Figura 40: Convertidor MUST SOLARIEP20-800. [26]	

Figura 41: Cable THW 14 AWG Negro x metro. [33]	176
Figura 42: Cable THW 14 AWG Rojo x metro. [33]	176
Figura 43: Cable unifilar 16 mm ² SOLAR PV ZZ-F Rojo. [26]	179
Figura 44: Cable unifilar 16 mm ² SOLAR PV ZZ-F Negro. [26]	179
Figura 45: Cable unifilar 50 mm ² POWERFLEX RV-K Verde. [26]	
Figura 46: Cable unifilar 50 mm ² POWERFLEX RV-K Negro. [26]	
Figura 47: Cable unifilar 50 mm ² POWERFLEX RV-K Verde. [26]	181
Figura 48: Cable unifilar 50 mm ² POWERFLEX RV-K Negro. [26]	181
Figura 49: Cable THW 14 AWG Negro x metro. [33]	
Figura 50: Cable THW 14 AWG Rojo x metro. [33]	182
Figura 51: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	182
Figura 52: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	
Figura 53: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]	184
Figura 54: Interruptor Tipo Riel Bifásico 10 A Bticino. [32]	
Figura 55: Interruptor Diferencial Salvavida Bticino. [32]	
Figura 56: Estructura Cubierta Metálica 4 ud KH915 60mm. [26]	
Figura 57: Conector MC4 Multicontact Macho-Hembra. [26]	
Figura 58: Caja estanca de paso 150 x 120 mm. [26]	
Figura 59: Legrand bornera seleccionable 100 A. [26]	189
Figura 60: Terminal de Compresión Cable 50 mm-Perno 8 mm. [26]	
Figura 61: Diagrama de Flujo de la Investigación.	
Figura 62: Balance Energético resumido del Perú en el 2016. [14]	
Figura 63: Energía solar incidente diaria promedio anual del Perú (1975-1990). [18]	206
Figura 64: Energía solar incidente diaria en el departamento de Lambayeque (1975-19	
[18]	
Figura 65: Irradiación normal directa del Perú (1999-2015). [19]	208
Figura 66: Irradiación horizontal global del Perú (1999-2015). [19]	209
Figura 67: Potencial de energía fotovoltaica del Perú (1999-2015). [19]	210
Figura 68: Acta de Recepción y Entrega de Bienes. [23]	
Figura 69: Acta de Recepción y Entrega de Unidades Móviles. [23]	243
Figura 70: Hoja de Producto de seca 354-Pesabebés electrónica de doble utilidad, con	
plataforma para el pesaje de niños. [37]	
Figura 71: Especificaciones del producto Notebook HP ENVY 15-j012la. [38]	246
Figura 72: Especificaciones técnicas del BT-200 Fetal Doppler HI-bebe. [39]	248
Figura 73: Manual del usuario de la Impresora láser monocromo Samsung ML-1640 s	eries.
[40]	250
Figura 74: Hoja de Especificaciones Lámpara de Examen Green Series IV de Welch A	Allyn.
[41]	252
Figura 75: Especificaciones técnicas del Fetal Monitor BFM -700+. [42]	
Figura 76: Característica técnicas del Video Colposcopio Binocular Modelo CM-006.	[43]
	254
Figura 77: Instrucciones de uso Cargador de Pilas KH 968 TRONIC. [44]	
Figura 78: Diagrama de flujo de decisión entre PWM y MPPT. [29]	

Figura 79: Diagrama unifilar del sistema fotovoltaico para la Unidad Médica Móvil	I 276
Figura 80: Diagrama de montaje del sistema fotovoltaico para la Unidad Médica Mó	vil I.
	277
Figura 81: Campo Fotovoltaico	278
Figura 82: Vista de Explosión del Campo Fotovoltaico	279
Figura 83: Campo Fotovoltaico en la carrocería de la Unidad Médica Móvil	280

RESUMEN

El objetivo de este proyecto es el diseño de un sistema fotovoltaico en la carrocería de una Unidad Médica Móvil para suministrar energía eléctrica a equipos biomédicos en zonas alejadas de Lambayeque.

Para lograrlo, primero se diagnosticó la situación actual del suministro eléctrico en las zonas rurales de Lambayeque, con el fin de identificar cuantos centros poblados sin acceso a la energía eléctrica, existen en el departamento. Después, mediante 5 fuentes distintas se determinaron los niveles de radiación en la zona de Lambayeque, especialmente en los centros poblados escasos de energía eléctrica. Con ello se logró identificar el valor de la irradiación mínima de todos los centros poblados, esto con el fin garantizar que, en los meses siguientes de mayor irradiación solar, el sistema funcione correctamente.

Luego se procedió a identificar los equipos biomédicos de la Unidad Médica Móvil I para posteriormente calcular la demanda máxima del sistema. Para lograr el diseño del sistema fotovoltaico, se utilizaron dos metodologías de fuentes distintas, sometidas a los mismos parámetros con el fin de determinar cuál método es el más conveniente ya que ambos cumplen con los requisitos preliminares.

Se determinó que el segundo método es la mejor opción, y de ello se obtuvieron los siguientes equipos para el sistema fotovoltaico:

- 4 paneles solares de 320Wp y 24V.
- 4 baterías de 550Ah y 6V.
- 1 controlador MPPT de 60A.
- 1 inversor cargador de 800W.

Finalmente se evaluó económicamente la propuesta mediante dos herramientas financieras (VAN y TIR) con el fin de determinar la viabilidad del proyecto.

Palabras clave: Sistema Fotovoltaico, Unidad Médica Móvil, equipos Biomédicos.

ABSTRACT

The objective of this project is the design of a photovoltaic system in the body of a Mobile Medical Unit to supply electricity to biomedical equipment in remote areas of Lambayeque.

To achieve this, the current situation of the electricity supply in the rural areas of Lambayeque was first diagnosed, in order to identify how many populated centers without access to electricity exist in the department. Then, through 5 different sources, the radiation levels in the Lambayeque area were determined, especially in the populated centers without electrical energy. With this it was possible to identify the value of the minimum irradiation of all the populated centers, this in order to guarantee that, in the following months of greater solar irradiation, the system works correctly.

Then it proceeded to identify the biomedical equipment of the Mobile Medical Unit I to later calculate the maximum demand of the system. To achieve the design of the photovoltaic system, two methodologies from different sources subjected to the same parameters were used in order to determine which method is the most convenient since both meet the preliminary requirements.

It was determined that the second method is the best option, and the following equipment for the photovoltaic system was obtained:

- 4 solar panels of 320Wp and 24V.
- 4 batteries of 550Ah and 6V.
- 1 MPPT controller of 60A.
- 1 charger inverter of 800 W.

Finally, the proposal was evaluated economically by means of two financial tools (VAN and TIR) in order to determine the viability of the project.

Keywords: Photovoltaic System, Mobile Medical Unit, Biomedical equipment.

I. INTRODUCCIÓN

Las obras de infraestructura necesarias para una vida saludable, en cada ciudad, barrio o centro poblado son denominadas "Servicios Básicos". Entre estos se encuentran los servicios higiénicos, abastecimiento de agua, recolección domiciliaria de basura y de electrificación [1].

De igual manera existen "Servicios Sociales Básicos", los cuales son aquellos que se destinan a cubrir las llamadas "Necesidades Sociales Básicas" y que, incluyen a los sectores de educación básica, salud básica, abastecimiento de agua potable, entre otros [2].

Enfocando solo los servicios básicos de electrificación y salud en el Perú, se sabe que: en el último trimestre del 2017, el porcentaje de los hogares del área rural que cuentan con energía eléctrica por red pública es de 80,1%; mientras que el 76,7% de la población del país contó con algún seguro de salud [3].

Por otro lado, la humanidad está enfrentando en el siglo XXI uno de los mayores desafíos en su historia: el problema del cambio climático. Este fenómeno está asociado a la variación de las condiciones del clima provocada por las emisiones de gases nocivos (dióxido de carbono, entre otros) derivadas de las actividades humanas, la deforestación acelerada de los bosques por la tala indiscriminada, la acidificación de los mares, la reducción de la biodiversidad y la erosión de los suelos [4].

Un balance entre mitigar los efectos del cambio climático (producto de la emisión de gases nocivos) y alcanzar el 100% de la cobertura eléctrica, es la utilización de sistemas fotovoltaicos "off-grid" (no conectados al sistema interconectado) en aquellas zonas de difícil acceso para las redes convencionales [5].

En el departamento de Lambayeque, se tiene entendido que durante el 2017, el 81,7% de viviendas particulares (rural) tienen acceso a la energía eléctrica mediante red pública [6].

Esto quiere decir que existen centros poblados en zonas rurales que carecen de acceso a la red eléctrica pública. El principal motivo, es debido a que dichos centros poblados se encuentran en zonas de difícil acceso o muy alejadas. Esta dificultad genera (en su gran mayoría) la carencia de acceso a la atención médica debida, lo cual es preocupante.

Si bien es cierto, existen Unidades Médicas Móviles que por medio de campañas médicas se dirigen a las zonas rurales de difícil acceso con el fin de brindar la atención médica debida a los pobladores. Estas unidades satisfacen la demanda energética de los equipos biomédicos que albergan mediante grupos electrógenos o generadores de respaldo. Estos últimos, a la vez, utilizan balones de gas para brindar una autonomía limitada. Cuando estas horas de autonomía se terminan, existen dos opciones: la primera es reemplazar los balones de gas; y la segunda es utilizar la energía eléctrica de la red del centro poblado visitado. El problema radica en el caso de que dichos centros poblados carezcan de acceso a la energía eléctrica mediante red pública.

El presente proyecto permite satisfacer una demanda de acceso a la salud pública de todas aquellas personas que habitan en centros poblados rurales sin acceso a la energía eléctrica mediante red pública, evitando dañar el medio ambiente.

1.1. Objetivos

1.1.1. Objetivo general

- Diseñar un sistema fotovoltaico en la carrocería de una unidad médica móvil para suministrar energía eléctrica a equipos biomédicos en zonas alejadas de Lambayeque.

1.1.2. Objetivos específicos

- Realizar un diagnóstico de la situación actual de suministro de energía eléctrica en las zonas rurales de Lambayeque.
- Determinar los niveles de radiación solar en la zona de Lambayeque.
- Diseñar los elementos electromecánicos del sistema fotovoltaico, en función a la oferta de energía solar y a la demanda de la carga de los equipos biomédicos.
- Realizar una evaluación económica de la propuesta.

1.2. Formulación del problema

¿Cómo suministrar con energía eléctrica a equipos biomédicos de una Unidad Médica Móvil en zonas alejadas de Lambayeque para aumentar su autonomía?

1.3. Formulación de la hipótesis

Mediante el diseño de un sistema fotovoltaico en la carrocería de una Unidad Médica Móvil permitirá suministrar con energía eléctrica a equipos biomédicos en zonas alejadas de Lambayeque.

1.4. Viabilidad y justificación

- Social: Contribuirá a brindar una buena y completa atención médica a las personas que viven en centros poblados, asentamientos humanos y caseríos sin energía eléctrica.
- **Económico:** El costo de la tecnología solar fotovoltaica en los últimos años se ha ido abaratando, siendo una tecnología más accesible en la actualidad.
- **Tecnológico:** Se sabe que las fuentes de las energías renovables están disponibles por todo el mundo, en comparación con las fuentes convencionales (gas, carbón y petróleo) concentradas en algunos países; consecuencia de dicha ventaja es el avance tecnológico de las energías renovables cada año de manera global.
- **Ambiental:** El uso de las energías renovables (tecnologías) contribuye en gran medida con el cuidado del medio ambiente, ya que reduce en su mayoría las emisiones de gases de efecto invernadero.

II. MARCO TEÓRICO

2.1. Estado del arte

2.1.1. Productos similares existentes

- Wilson Alcívar Cuenca Benítez (2018) en su trabajo de investigación "Diseño de un sistema fotovoltaico para el suministro alternativo de energía eléctrica al interior de un vehículo tipo casa-rodante en la ruta turística Spondylus o Ruta del Sol", desarrolló una alternativa de solución al consumo de energía eléctrica que requieren los equipos en el interior de un vehículo tipo casa-rodante, el mismo que va encaminado a la actividad turística y recorrido que se ejecuta en la ruta SPONDYLUS o Ruta del Sol en la costa ecuatoriana, aprovechando la radiación solar que debido a su ubicación geográfica se hace factible su implementación.
- Jorge Luis Rodríguez Zea (2017) en su trabajo de investigación "Conversión de un automóvil de gasolina a eléctrico con sistema de recarga adicional a base de energía solar", evidencia la conversión de un vehículo a gasolina, específicamente un Volkswagen Passat 1983, a uno con funcionamiento eléctrico mediante energía solar.
- Clara Daniela Rodríguez Bravo (2016) en su trabajo de investigación "Unidad Médica Móvil desplegable para el barrio Cera ubicado en la provincia de Loja", tuvo como objetivo, aportar al mejoramiento de la calidad de vida de aquellas personas que carecen de servicios de salud, ya que existen barreras geográficas, sociales, económicas, culturales, etc., que no permiten que el acceso a este servicio sea equitativo y oportuno.

Gracias a la unidad médica móvil desplegable que se plantea, se podrá mejorar esta situación ya que esta será capaz de llegar a zonas alejadas y de difícil acceso, además podrá realizar programas de prevención, campañas de información y podrá atender situaciones de emergencia gracias a su adaptabilidad y a su fácil y rápido montaje.

Francisco Javier Sánchez Lozada (2015) en su trabajo de investigación "El diseño interior de hospitales móviles emergentes y su incidencia en la atención médica de los habitantes de las parroquias rurales del Cantón Ambato", tuvo como finalidad, determinar los requisitos necesarios para brindar una buena atención médica y aplicarlos en el diseño interior de una Unidad Móvil Emergente en las comunidades rurales del Cantón Ambato, provincia de Tungurahua.

Esta investigación utiliza las necesidades propuestas por los doctores y usuarios de la Unidad para elaborar "parámetros base" que mejoran la atención médica recibida por los habitantes de las parroquias rurales del cantón Ambato.

- Manuel Orlando Núñez Núñez y Carlos Manuel Salazar Molina (2014) en su trabajo de investigación "Diseño y construcción de un sistema eficiente de alimentación solar, mediante acumuladores de energía, para un vehículo eléctrico", plantea el diseño y construcción de un sistema fotovoltaico eficiente para movilizar un vehículo eléctrico. Dentro del diseño se utilizarán dispositivos de estado sólido, que a comparación de las que poseen partes móviles, se reduce el mantenimiento, la contaminación y el ruido.

2.1.2. Problemática actual de los productos similares existentes

- Wilson Alcívar Cuenca Benítez (2018) en su trabajo de investigación "Diseño de un sistema fotovoltaico para el suministro alternativo de energía eléctrica al interior de un vehículo tipo casa-rodante en la ruta turística Spondylus o Ruta del Sol", no realizó una evaluación de proyectos para un costo-beneficio. Con esta evaluación se podría verificar que, para este tipo de trabajos, el VAN y el TIR serán negativas, puesto que no se remunera su inversión, sino se ahorra a largo plazo.
- Jorge Luis Rodríguez Zea (2017) en su trabajo de investigación "Conversión de un automóvil de gasolina a eléctrico con sistema de recarga adicional a base de energía solar", recomienda verificar si los equipos principales a utilizar en la conversión se encuentran actualmente en el mercado. Ya que, si no es así, resulta un problema que encarece el proyecto, debido a que dichos equipos deben importados del extranjero.

2.1.3. Planteamiento del problema

Las Unidades Médicas Móviles que realizan campañas médicas en las zonas rurales de Lambayeque, utilizan grupos electrógenos o generadores de respaldo para satisfacer la demanda de energía de los equipos biomédicos que estas poseen y que son esenciales para brindar un correcto diagnóstico médico. Cada uno de estos vehículos utiliza 4 balones de gas (10 kg cada uno) para alimentar al generador de respaldo, dándole una autonomía de 12 horas ininterrumpidas. Sin embargo, la autonomía es un limitante para la Unidad Médica Móvil de visitar distintas localidades en un único trayecto sin antes, acabadas las 12 horas, cambiar los balones de gas. Otra opción es utilizar la energía eléctrica de la red del centro poblado visitado; sin embargo, se genera un problema cuando este no posee dicho servicio.

2.1.4. Requerimientos del diseño

Para el desarrollo del presente trabajo se han utilizado:

- Softwares: Microsoft Excel, RETScreen Expert, Meteonorm
- Plataformas web: Global Solar Atlas, NASA Surface Meteorology and Solar Energy
- Herramientas: Cinta métrica
- Documentos, hojas de especificaciones técnicas y catálogos

2.2. Bases Teórico-Científicas

2.2.1. Energía

En [7] se define a la energía como: "La capacidad que tienen los cuerpos para producir trabajo (trabajo mecánico, emisión de luz, generación de calor, etc)."

Una de las principales características de la energía es la posibilidad de transformarse en otras formas de energía, llámese: cinética, eléctrica, nuclear, radiante, gravitatoria, química, magnética, etc. Siempre y cuando se respete el principio de conservación de la energía. [7]

Se tiene entendido que el calor y la luz del Sol produce la formación de nubes, la evaporación de las aguas superficiales, las lluvias y el viento; así como, son base de aquellas reacciones químicas necesarias para los vegetales y animales. Esto a futuro origina los combustibles fósiles. Por ende, se entiende que toda la energía que se dispone proviene del Sol. [7]

2.2.1.1. Energías renovables

Para [7] se entiende a las energías renovables como "Aquellas que son inagotables a escala humana y que se producen de forma continua; además se renuevan continuamente en comparación con los combustibles fósiles. De estos últimos, sus reservas son limitadas o agotables en un plazo determinado."

Algunos ejemplos de energías renovables son: eólica, geotérmica hidráulica, marina, biomasa y solar. [7]

La biomasa es considerada como una fuente inagotable siempre y cuando se respeten los ciclos naturales. [8]

2.2.1.2. Tipos de energías renovables

Entre las principales energías renovables, se encuentran [8]:

2.2.1.2.1. Energía solar

El uso de dispositivos que capten la radiación solar y la transformen en otra forma de energía es necesario para aprovechar la energía solar. [8]

Las tecnologías solares se clasifican en pasivas y activas; las pasivas incluyen aquellas enmarcadas en la arquitectura bioclimática, así como el diseño de espacios mediante ventilación natural, mientras que las activas incluyen el uso de paneles fotovoltaicos y colectores solares térmicos. [4]

Entre las principales tecnologías de generación eléctrica se tienen [4]:

2.2.1.2.1.1. Tecnología solar fotovoltaica

Esta tecnología consiste en a partir de la radiación solar, obtener electricidad; dicha transformación de energía se da mediante un dispositivo semiconductor (célula fotovoltaica). [4]

2.2.1.2.1.2. Tecnología solar térmica (o termosolar)

Esta tecnología aprovecha la energía solar para producir calor, y ésta se utiliza para cocinar alimentos o calentar/hervir agua, así como para generar energía mecánica y posteriormente energía eléctrica. Un ejemplo en donde se utiliza dicha tecnología son las plantas de energía termosolar de concentración (CSP), las cuales generan calor y lo pueden almacenar antes de convertirlo en electricidad. [4]

2.2.1.2.1.3. Tecnología termosolar de concentración

Esta tecnología mediante el calentamiento de un fluido a alta temperatura en un ciclo termodinámico convencional logra producir electricidad. [4]

2.2.1.2.1.4. Tecnología eólico-solar

Esta tecnología utiliza aire calentado por el sol para accionar generadores. [4]

2.2.1.2.1.5. Tecnología solar híbrida

Esta tecnología es la combinación de la energía solar con cualquier otra, dependiendo con la tecnología con la que se combine puede ser hibridación renovable o no renovable. [4]

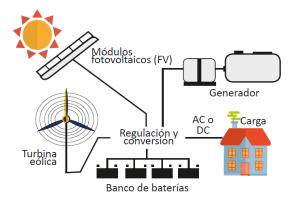


Figura 1: Sistema de energía híbrida solar eólica. [4]

2.2.1.2.2. Energía eólica

Esta energía se refiere a la transformación de la energía del viento (energía cinética) en otro tipo de energía útil para las actividades humanas. [4]

Además, ha sido utilizada desde hace muchos años ya que el viento era capturado por velas y aspas para trabajos mecánicos. [8]

Actualmente mediante aerogeneradores conectados a la redes de distribución, se utiliza le energía eólica para producir electricidad. En resumen, la energía eólica es un tipo de energía renovable que produce un impacto ambiental menor que otras fuentes de energía. [4]

En la siguiente figura, se muestra los elementos del interior de una turbina eólica [4]:

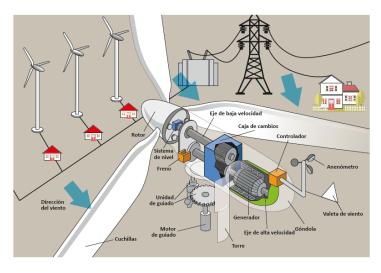


Figura 2: Interior de una turbina eólica y generación de electricidad. [4]

2.2.1.2.3. Energía geotérmica

Para esta energía, se aprovecha el calor de la Tierra (aguas subterráneas) para conseguir agua caliente, vapor o electricidad. [8]

Entre las características principales que se deben tener en cuenta a la hora de seleccionar este tipo de tecnología están: la temperatura, presión de fluido, salinidad, etc. Para la generación de electricidad con este tipo de energía, existen tres tipos de tecnologías, las cuales son: vapor "flash", vapor seco y las binarias. Entre estas, las plantas de vapor "flash" son las más usadas alrededor del mundo. Por otro lado, el proceso que utilizan las plantas de vapor seco se muestra en la siguiente figura. [4]

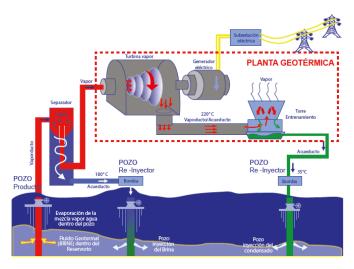


Figura 3: Proceso de generación eléctrica geotérmica. [4]

2.2.1.2.4. Energía de la biomasa

Esta energía se obtiene de la quema o el procesamiento químico de las materias orgánicas vegetales o animales para la obtención de combustibles, calor y electricidad. [8]

Existen tres factores importantes de los cuales depende la generación de energía por biomasa, estos son [4]:

- Materias primas de biomasa (varían dependiendo de la región)
- Conversión de biomasa
- Tecnologías de generación de energía

2.2.1.2.5. Energía hidráulica y minihidráulica

En el pasado, esta energía era utilizada para accionar maquinarias; en la actualidad, se utiliza para generar electricidad. Además, las tecnologías relacionadas con esta energía son una de las más desarrolladas, rentables y confiables. [8]

Uno de los ejemplos de tecnologías relacionados con esta energía son las "centrales hidráulicas"; las cuales aprovechan el caudal de los ríos para generar energía. De igual manera que las centrales tradicionales, existen centrales más pequeñas (minihidráulicas o mini hidroeléctricas) que son considerados como energía renovable debido a que no generan un impacto ambiental significativo como aquellas tradicionales. [4]

Una central minihidráulica puede aprovechar la energía de dos maneras [4]:

- Centrales de agua fluyente (aprovecha el agua del río en el momento)
- Centrales a pie de presa (mediante un embalse)

2.2.1.2.6. Energía de los océanos

Para esta energía, se aprovecha el vaivén del agua de las mareas, las corrientes marinas, así como la diferencia de temperaturas que hay entre el agua de la superficie del mar y de las profundidades. [8]

2.2.1.2.6.1. Energía mareomotriz

Esta energía aprovecha específicamente el movimiento del mar, el cual es generado por la acción de la gravedad del sol y la luna. [4]

Entre los métodos de generación se encuentran [4]:

- Presa de marea (diferencia de alturas entre marea alta y baja)
- Generador de la corriente de marea (energía cinética del agua en movimiento)
- Energía mareomotriz dinámica (energía cinética y potencial de las corrientes del mar)

2.2.1.3. Las energías renovables en el Perú

Se sabe que el Perú es un país rico en flora, fauna y climas, debido a su diversidad de ecosistemas. A esto se suma la cantidad de recursos renovables que el país posee (energía solar, eólica, geotérmica, biomasa e hidroeléctrica) como alternativas al gas natural y a las grandes hidroeléctricas. [4]

2.2.1.3.1. Potencial de las fuentes renovables en el Perú

El Estado Peruano en el año 2014, junto con la Agencia Internacional de las Energías Renovables (Irena) realizó la primera Evaluación del Estado de Preparación de las Energías Renovables (RRA). En esta se concluye que el Perú tiene un considerable potencial de energía hidroeléctrica; así como abundantes recursos energéticos (biomasa, eólica, solar, geotérmica), los cuales se muestran en la siguiente tabla [4]:

Fuente	Potencial	Aplicación
Hidroeléctrica	69 445 MW	Electricidad
Solar	Radiación media diaria: 250W/m2	Electricidad, calor
Eólica	22 450 MW	Electricidad
Geotérmica	3000 MW	Electricidad, calor
Bioenergía	177 MW (biomasa) 5151 MW (biogás)	Electricidad

Tabla 1: Potencial de energías renovables. [4]

Energía solar

Las regiones con mayor recurso solar son Arequipa, Moquegua y Tacna, en estas zonas la radiación media diaria anual es de 250 W/m². [4]

- Energía eólica

El Perú posee un potencial de 77000 MW (22000 MW explotables), que se ubica en la costa del Perú debido al anticiclón del Pacífico y la Cordillera de los Andes. [4]

- Energía geotérmica

De acuerdo con el estudio realizado por el Organismo Japonés de Cooperación Internacional (JICA), el Perú posee un potencial geotérmico de 3000 MW. Las zonas de mayor potencial son el Callejón de Huaylas, la Cadena Volcánica del Sur, La Libertad, Churín, Cajamarca, la Zona Central, Cusco y Puno. [4]

- Energía hidroeléctrica

El país posee un potencial de 69445 MW, concentrado en la Cuenca del Atlántico. [4]

- Bioenergía

El potencial de biomasa en el Perú es de 177 MW, mientras que el de biogás es de 5151 MW. [4]

2.2.1.3.2. Centrales de generación eléctrica con RER

Las principales centrales de generación con RER en el país son las siguientes [4]:

- Centrales solares
 - o Central Solar Moquegua FV (16 MW)

- o Central Majes Solar 20T (20MW)
- o Central Panamericana Solar (20 MW)
- o Central Repartición 20T (20 MW)
- o Central Tacna Solar (20 MW)
- Centrales de biomasa
 - o Central de Huaycoloro (3,41 MW)
 - o Central La Gringa V (3,2 MW)
 - o Central Paramonga (23 MW)
 - o Central Maple Etanol (37,52 MW)
- Centrales eólicas
 - o Central Eólica Marcona (32 MW)
 - o Central Eólica Talara (30,86 MW)
 - o Central Eólica Cupisnique (83,15 MW)
 - o Central Eólica Tres Hermanas (97,15 MW)
- Centrales minihidroeléctricas
 - o Central H. Runatullo III (20 MW)
 - o Central H. Rucuy (20 MW)
 - o Central H. Runatullo II (19,1 MW)
 - o Central H. Chancay (19,2 MW)
 - o Central H. Las Pizarras (18 MW)
 - o Central H. Carhuaquero (10 MW)

2.2.2. La energía del Sol

2.2.2.1. La geometría Tierra-Sol

El diámetro del Sol es de 1 391 000 km y está situado a 149 598 000 km de la Tierra. Su composición de materia gaseosa lo conforman el hidrógeno y el helio, las cuales originan permanentes reacciones de fusión nuclear. La temperatura en el núcleo es de 10 000 000 K. [9]

2.2.2.1.1. Movimientos de la Tierra

Una trayectoria elíptica es la que describe la Tierra alrededor del Sol (siendo el Sol el punto central). La distancia que existe entre estos varía $(\pm 1,69\%)$ debido a la excentricidad de la órbita terrestre (0,017). [9]

Se sabe que el eje de rotación de la Tierra está inclinado (23°27') sobre ella misma. Al ángulo formado entre el eje Tierra-Sol con el plano del Ecuador se llama "declinación α". Su valor es +23°27' en el solsticio de verano, -23°27' en el solsticio de invierno y nulo en los equinoccios. Además, es responsable de las estaciones. [9]

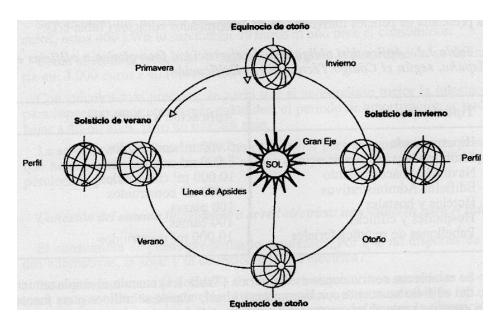


Figura 4: Movimientos de la Tierra. [9]

2.2.2.1.2. Trayectoria aparente del Sol

Sabiendo que la latitud es el ángulo de un punto cualquiera del globo con respecto al ecuador. Y que la longitud al igual que la latitud es un ángulo que tiene como referencia al meridiano de Greenwich, desplazándose al Este. Dos ángulos son aquellos que definen la posición del Sol (como se muestra en la siguiente figura), estos son [9]:

- La "altura angular h" (ángulo entre la dirección del Sol y el plano horizontal del lugar).
- El "azimut α" (ángulo entre el plano vertical que pasa por el Sol y el meridiano del lugar, contando de forma negativa hacia el Este)

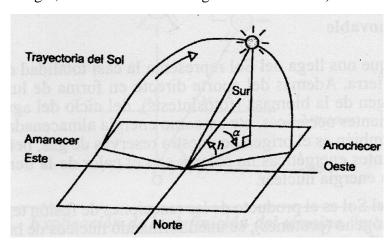


Figura 5: Definiciones de la posición del Sol (altura y azimut). [9]

En la siguiente figura se muestra las trayectorias del Sol para un lugar en específico. Con esto se puede identificar la altura y el azimut del Sol para cualquier instante del año. [9]

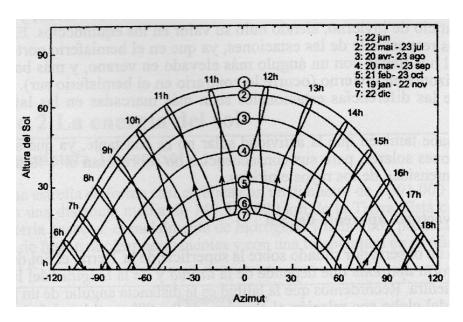


Figura 6: Trayectoria del Sol en Ginebra (lat. 46° 12' N, long. 6° 09' E). [9]

2.2.2.2. Características de las radiaciones solares

2.2.2.2.1. Radiación directa, difusa y global

Los componentes de la radiación solar son los siguientes [9]:

- La "radiación directa" es aquella radiación emitida por el Sol, que llega a la tierra sin difusión generada por la atmófera, además puede generar sombra.
- La "radiación difusa" es aquella que es difuminada por la atmósfera (aire, aerosoles, nebulosas).
- El "albedo", es aquella que es reflejada por el suelo y depende de las características meteorológicas del lugar.

Como dato adicional, la "radiación global" es la suma de todas las radiaciones antes mencionadas. Esta se muestra en la siguiente figura [9]:

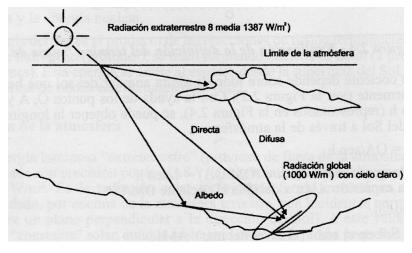


Figura 7: Componentes de las radiaciones solares que llegan al suelo. [9]

El "efecto coseno" es la diferencia que existe en medir la radiación directa en un plano perpendicular y otro no perpendicular. La intensidad de la radiación medida por el plano no perpendicular es menor debido a que tiene mayor superficie. Esto se puede representar en la siguiente figura donde se muestra la radiación directa sobre un plano horizontal (700 W/m²) y la misma radiación sobre un plano perpendicular (1000 W/m²). [9]

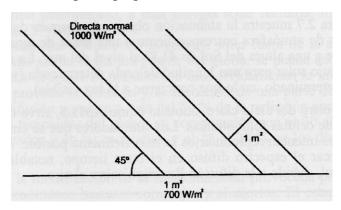


Figura 8: El efecto coseno. [9]

2.2.3. La conversión de la luz en electricidad

En 1839, Antonie Becquerel descubrió por primera vez la variación de la conductividad de un material bajo el efecto de la luz. Al principio las células se fabricaban de Selenio, luego de Silicio. La diferencia que existe entre la "fotopila" y la "pila clásica", es que la última almacena energía y se puede utilizar cuando se requiere; en cambio la primera, solo genera electricidad cuando está expuesta a la luz. [9]

2.2.3.1. La conversión fotovoltaica

Existen tres fenómenos físicos que están ligados y de los que depende la conversión de energía [9]:

- La absorción de la luz en los materiales
- La transferencia de energía de los fotones a las cargas eléctricas
- La unión de las cargas

Un punto importante por considerar es que el material que se utilizará para la conversión de la energía solar debe tener propiedades ópticas y eléctricas específicas. [9]

2.2.3.1.1. La absorción de la luz

Los fotones son "partículas" de luz que componen la misma, estos pueden penetrar y atravesar algunos materiales. Un rayo luminoso puede sufrir tres fenómenos al incidir en un sólido, estos son [9]:

- La reflexión (luz reenviada por la superficie a otra dirección)
- La transmisión (luz que atraviesa objetos)
- La absorción (luz que penetra el objeto sin salir)

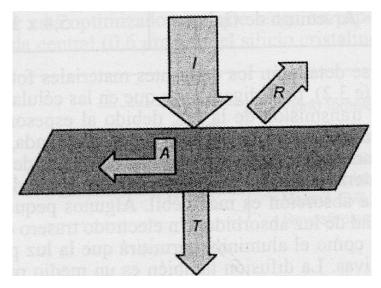


Figura 9: Reflexión, transmisión y absorción de la luz en un objeto sólido. $I(flujo\ incidente) = R\ (reflejado) + A\ (absorbido) + T\ (transmitido).$ [9]

2.2.3.1.2. Transferencia de energía desde los fotones

Los electrones contenidos en el material semiconductor son los responsables de la producción de corriente eléctrica, esto se debe a que los fotones absorbidos transfieren su energía a los electrones más alejados del núcleo. Estos electrones al liberarse de la atracción del núcleo están susceptibles a producir una corriente eléctrica. La "fotoconductividad" es el fenómeno físico característicos de los semiconductores debido a que tienen electrones "liberables"; en el caso de materiales aislantes, estos electrones están fuertemente ligados (lo cual ocasiona que no se conduzca la corriente eléctrica); mientras que, para los materiales conductores, los electrones son totalmente libres. [9]

2.2.3.1.3. Recolección de las cargas

Si no se logran sacar las cargas liberadas del material semiconductor a un circuito eléctrico cabe la posibilidad de que los electrones liberados retomen a su estado inicial, lo cual provocaría la liberación de calor en vez de energía eléctrica. Para lograr la extracción de cargas se necesita "dopar" al semiconductor. Una parte dopada de fósforo (tipo "n") pegada a una parte dopada de boro (tipo "p") conforman una fotopila de silicio donde en la frontera de ambas se crea un campo eléctrico que separa las cargas positivas y negativas. [9]

2.2.3.2. Tecnología de las células solares

El silicio es el material más empleado para la fabricación de fotopilas. Este silicio solar puede ser "cristalino" o "amorfo". Además, se puede utilizar el arseniuro de galio y capas delgadas como el telurio de cadmio (CdTe) y el cobre-indio de selenio (CIS). [9]

2.2.3.2.1. Células de silicio cristalino

Las fotopilas de este material son las más comunes. El término "cristalino" hace referencia al agrupamiento perfecto de los átomos, esto se debe porque el silicio es un cristal. Cuando

la fotopila está constituida por un cristal se denomina "monocristalino", mientras que se denomina "multicristalino" o "policristalino" cuando el silicio está compuesto por varios cristales unidos. [9]

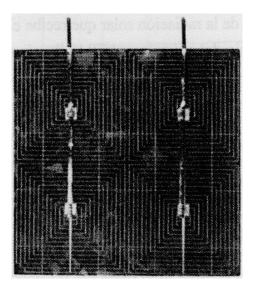


Figura 10: Célula de silicio multicristalino (Photowatt International). [9]

2.2.3.2.1.1. Células monocristalinas

El método más común para convertir el silicio puro (policristalino) a un material monocristalino, es el "Czochralski", el cual consiste en estirar las barras cilíndricas de silicio fundido y cerrarlas inmediatamente para dejarlas en finas capas u obleas. Este método tiene un rendimiento final de 15 a 20 %. En la siguiente figura se muestra la sección de una célula de silicio monocristalino. [9]

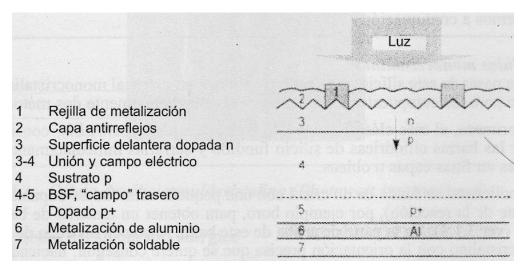


Figura 11: Composición de una célula de silicio monocristalino. [9]

Cabe resaltar que, en el mercado actual se dispone de células de silicio monocristalinos de rendimientos elevados (esto debido a que se utilizan procedimientos sofisticados). [9]

2.2.3.2.1.2. Células multicristalinas

Estás células son resultado de la búsqueda de una fabricación de cristales de silicio a un coste económico y de buena calidad. La fabricación de este material es mediante la refundición de los desechos de la fabricación de los monocristales y se realiza en un recipiente cuadrado a temperatura y atmósferas controladas. [9]

2.2.3.2.2. Células de silicio amorfo

La denominación "amorfo" hace referencia al desorden de la estructura (vidrioso). Este material tiene deformaciones y pequeñas cavidades, debido a que sus átomos solo están unidos a tres átomos en vez de cuatro, existen "uniones pendientes" que hacen a este silicio amorfo un mal semiconductor. Pero si a este material se le fabrica a partir de gas silano, se reduce la densidad de defectos y permite la recolección de cargas, así como el dopaje de este. El método más utilizado en la fabricación es el "depósito por plasma" (PECVD). En la siguiente figura se muestra la estructura del silicio amorfo. [9]

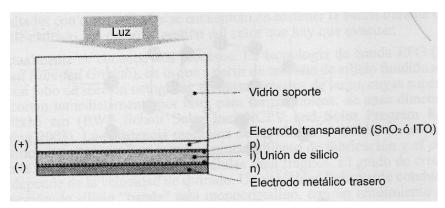


Figura 12: Estructura de una célula de silicio amorfo hidrogenado (dibujo no hecho a escala). [9]

2.2.3.2.3. Otras tecnologías

En este apartado se encuentran las películas policristalinas a base del telurio de cadmio (CaTe) y las aleaciones de cobre, indio y selenio (CIS o CIGS). [9]

2.2.4. Sistemas Fotovoltaicos (SFV)

2.2.4.1. Ventajas y desventajas de los SFV

Las ventajas que presenta la utilización de un SFV son [10]:

- No utilizan combustibles, por lo que se reduce todo gasto relacionado con este último.
- Es una energía renovable cuyo recurso es gratuito.
- Mínimo mantenimiento.
- No produce contaminación ambiental (polución).
- Incorporando más módulos, es posible aumentar la potencia instalada (modular).
- Es silenciosa (no produce contaminación sonora).

De lo contrario, las desventajas presentes de un SFV son [10]:

- Como no es un producto masivo (aún), sus costos iniciales son altos.
- Posee una dependencia externa (condición climática).
- Ya que, las células solares poseen eficiencias bajas (15-20%), los sistemas también disponen de rendimientos bajos.

2.2.4.2. Tipos de SFV

2.2.4.2.1. Off-grid

Los sistemas off-grid se desarrollan en zonas alejadas donde no se cuenta con energía convencional, este sistema debe abastecer principalmente la demanda diaria de energía requerida por los usuarios. La demanda puede ser en corriente alterna y en corriente continua y sus componentes se muestran en la siguiente figura [10]:

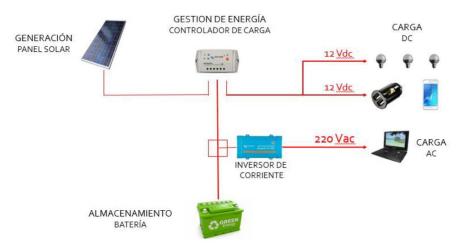


Figura 13: Componentes de un Sistema Off-grid. [10]

2.2.4.2.2. Sistemas híbridos

En los sistemas híbridos se cuenta con 2 fuentes de energía que pueden funcionar una después de otra o al mismo tiempo dependiendo del diseño y dimensionamiento realizado. [10]

Figura 14: Componentes de un Sistema Híbrido. [10]

2.2.4.2.3. On-grid

Los sistemas interconectados son aquellos que necesitan una red eléctrica existente a donde conectarse para inyectar energía directamente al consumo. [10]

Figura 15: Componentes de un Sistema On-grid. [10]

2.2.4.2.4. Sistemas de bombeo solar

Su uso es diverso en aplicaciones agrícolas y de agua potable, la energía captada por el panel se inyecta a un controlador de bomba que controla la bomba solar. [10]

Figura 16: Componentes de un Sistema de Bombeo solar. [10]

2.2.4.3. Componentes de los SFV

2.2.4.3.1. Modulo fotovoltaico

Los Módulos Fotovoltaicos o Paneles Solares, a través del efecto fotoeléctrico, generan electricidad a partir de la luz incidente en ellos y pueden clasificarse por el material de la celda fotovoltaica que lo conforma. [10]

Según las celdas fotovoltaicas pueden ser [10]:

- Cristalinas: Se puede componer de secciones de cristal de silicio en el caso de los Monocristalinos y de pequeñas partículas cristalizadas en los Policristalinos.
- Amorfas: Son aquellas donde el silicio no se ha cristalizados.
- Otras tecnologías.

Los paneles solares más usados son los cristalinos, variando la elección entre Monocristalino y Policristalino por su eficiencia, valores de voltaje y corriente del sistema, dimensiones, etc. [10]

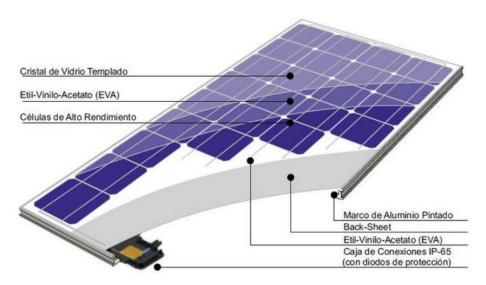


Figura 17: Composición de un Panel Solar. [10]

2.2.4.3.2. Controlador de carga o regulador de carga

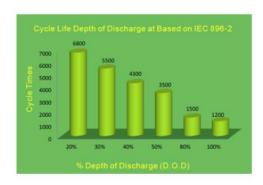
El controlador de carga o regulador electrónico se encarga de administrar la energía generada por el panel y protección automática de la batería. Este debe proteger contra "sobrecargas "o "sobre descarga", contra "cortocircuito", "sobretensiones" y "batería baja" de modo que la batería tenga un mayor tiempo de vida. [10]

El controlador debe tener señales luminosas y/o sonoras, estas deben indicar la capacidad de la batería, estado de carga, corriente de entrada, alarmas, etc. Los controladores de carga pueden ser de tipo PWM o MPPT, según esta clasificación existe una gran gama de marcas que cumplen lo requerido en R.D. Nº 003-2007-EM/DGE, R.D. Nº 203-2015-MEM/DGE. Los controladores de carga tipo MPPT tienen mayor eficiencia que los de tipo PWM, y para cada uno de ellos existe un método de dimensionamiento. [10]

Figura 18: Controlador de carga o regulador de carga tipo PWM. [10]

Figura 19: Controlador de carga o regulador de carga tipo MPPT. [10]

2.2.4.3.3. Batería o almacenamiento de energía


En el sistema fotovoltaico la unidad de almacenamiento conformado por una o varias baterías definen el voltaje del sistema que vamos a diseñar. Las baterías tienen un voltaje variable que depende de su estado de carga, su condición de trabajo o su tiempo de almacenamiento. Y tienen un voltaje nominal que puede ser 2V, 6V, 12V o 48V en corriente directa.

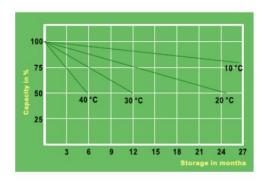

Las baterías pueden clasificarse por la composición química interna que poseen; siendo las más conocidas y usadas del mercado las baterías de tipo ACIDO, tipo GEL o Gelificadas, cristalizadas, OPz, Litio, y sus demás variantes. La selección de la batería se dará de acuerdo con el presupuesto, tiempo de vida y tipo de uso que tendrán. [10]

Figura 20: Distintos tipos de baterías. [10]

CURVAS CARACERISTICAS

CANTIDAD DE CICLOS DE VIDA VS PROFUNDIDAD DE DESCARGA CURVAS DE AUTODESCARGA MENSUAL A DIFERENTES TEMPERATURAS

Gráfico 1: Curvas características. [10]

Tabla 2: Calores de capacidad y energía por voltaje final de la celda. [10]

Constant Power Discharging Ratings - Watts Per Cell @ 20°C (68°F)										
End Point Volts/Cell	1.5hr	2hr	3hr	4hr	5hr	8hr	10hr	12hr	20hr	24hr
1.85	69.0	58.4	42.5	33.7	28.1	19.7	16.3	13.9	9.12	7.85
1.80	72.7	61.6	44.8	35.5	29.6	20.8	17.3	14.8	9.69	8.21
1.75	74.1	63.1	45.7	36.2	30.2	21.2	17.6	15.1	9.89	8.37

	Constant Current Discharging Ratings - Amperes Per Cell @ 20°C (68°F)												
End Point Volts/Cell	1.5hr	2hr	3hr	4hr	5hr	8hr	10hr	12hr	20hr	24hr	48hr	7 2hr	100hr
1.85	35.9	30.2	21.8	17.2	14.2	9.94	8.19	6.96	4.55	3.91	2.04	1.41	1.05
1.80	38.1	32.1	23.1	18.2	15.1	10.5	8.77	7.44	4.86	4.11	2.12	1.46	1.08
1.75	39.0	32.9	23.7	18.7	15.5	10.8	9.00	7.65	5.00	4.23	2.18	1.49	1.11

2.2.4.3.4. Inversor de corriente o convertidor

Los inversores de corriente son equipos electrónicos que poseen corriente continua en la entrada y corriente alterna en la salida para el uso directo de los equipos domésticos o industriales del usuario. La característica principal de estos componentes es la potencia, esta debe ser mayor a la potencia total de la carga instalada. [10]

Estos inversores pueden separarse en dos grupos [10]:

- Inversores de corriente para sistemas aislados son aquellos que transforman la energía de las baterías para producir la corriente alterna que será usada por el usuario.
- Inversores de corriente para sistemas interconectados son aquellos que transforman la energía de los paneles directamente, estos inversores deben tener que acoplarse a la red eléctrica existente en la vivienda pudiendo ser monofásico o trifásico.

Los tipos de inversores son [10]:

Inversos de corriente DC/AC

- Inversor cargador
- Inversor de interconexión

2.2.4.3.4.1. Inversor de corriente DC/AC

Estos inversores cumplen solo la función de invertir la corriente continua en corriente alterna monofásica, la potencia del inversor debe ser mayor a la de la carga instalada. Si se tiene una carga trifásica como motores o bombas es posible generar una red alterna trifásica uniendo 3 inversores del mismo tamaño y enlazando mediante algún medio de comunicación. [10]

Figura 21: Inversor de corriente DC/AC. [10]

2.2.4.3.4.2. Inversor cargador

Estos inversores aparte de poseer corriente continua en la entrada y corriente alterna en la salida, poseen una o varias entradas de corriente alterna. Esta entrada adicional cumple la función de ingresar energía hacia el sistema abasteciendo la carga y haciendo que el Inversor/Cargador cumpla la función de cargador dando energía hacia las baterías. [10]

Este tipo de inversores poseen funciones de comunicación y monitoreo remoto, son programables y se pueden colocar en paralelo o realizar conexión trifásica. [10]

Figura 22: Inversor cargador. [10]

2.2.4.3.4.3. Inversor de interconexión

Estos inversores tienen una entrada de corriente continua y la salida se debe conectan a una red existente a donde se inyecta la energía. De acuerdo con la gama del inversor puede contar con comunicación para monitoreo remoto y de acuerdo con la potencia se puede seleccionar en monofásicos o trifásicos. [10]

Figura 23: Inversor de interconexión. [10]

2.2.5. Evaluación económica de la propuesta

Dentro de los indicadores más usados para medir la conveniencia económica, se encuentran [11]:

2.2.5.1. Valor Actual Neto o Valor Presente Neto (VAN)

Este es un indicador financiero que determina si habrá ganancia; esto lo realiza midiendo los futuros flujos de los ingresos, así como de egresos del proyecto menos la inversión inicial. [11]

Este método considera una tasa de interés que puede ser [11]:

- La tasa de retorno de las inversiones alternativas.
- La tasa de interés de los préstamos.
- Combinación entre las dos anteriores (tasa de rentabilidad de las inversiones alternativas y la tasa de interés de los préstamos).

La fórmula del VAN es la siguiente [11]:

$$VAN = \sum_{n=0}^{N} \frac{I_n - E_n}{(1+i)^n}$$
 (1)

Donde [11]:

- I_n : representa los ingresos
- E_n : representa los egresos
- n: es el número de periodos (empezando desde 0)

La interpretación del VAN es la siguiente [11]:

<u>Valor</u>	<u>Significado</u>	Decisión a tomar
VAN>0	La inversión produciría ganancias	El proyecto puede aceptarse
VAN<0	La inversión produciría pérdidas	El proyecto debería rechazarse
VAN=0	La inversión no produciría ni ganancias ni pérdidas	Dado que el proyecto no agrega valor monetario, la decisión debería basarse en otros criterios, tales como la obtención de un mejor posicionamiento en el mercado, beneficios sociales, u otros factores.

Figura 24: Interpretación del VAN. [11]

2.2.5.2. Tasa Interna de Retorno o Tasa Interna de Rentabilidad (TIR)

Se define como la tasa de interés con la cual el VAN es igual a 0. [11]

A modo de interpretación, si la TIR es igual o mayor a la tasa de descuento impuesta por el inversor, es aceptable la misma. Si existen varias propuestas, aquella que ofrezca la TIR mayor, será la más conveniente. Si la TIR es igual a la tasa de descuento, la inversión es innecesaria. Pero si la TIR es menor a la tasa de descuento, el proyecto no es aconsejable, por lo que debe ser rechazado. [11]

La fórmula que rige al TIR es aquella que iguala el VAN a 0, como la siguiente:

$$VAN = -I + \sum_{i=1}^{N} \frac{Q_i}{(1 + TIR)^i} = 0$$
 (2)

Donde [11]:

- Q_i : es el flujo de caja en el periodo "i".

III.DISEÑO

3.1. Metodología

3.1.1. Instrumentación

La instrumentación que se utilizará en la presente investigación comprende:

- Tablas de datos digitales.
- Fichas Técnicas.
- Manuales de uso.

3.1.2. Métodos y técnicas

El método por utilizar es el "Análisis Documental" y la técnica será la "Búsqueda y Recopilación de información".

Además, más adelante se considerarán como "Métodos" las diferentes formas o pasos para dimensionar un sistema fotovoltaico autónomo de acuerdo con las diferentes fuentes bibliográficas consultadas.

3.1.3. Diagrama de Flujo

El diagrama de flujo a seguir se muestra en el Anexo 1.

3.2. Diseño conceptual de elementos o partes

3.2.1. Método 1

En primer lugar, se describirá el proceso general de dimensionado para después; particularizar según los tipos de instalaciones, los cuales pueden ser [12]:

- Instalación con equipos de tensión continua.
- Instalación con equipos de tensión alterna y continua.
- Instalación con equipos de tensión alterna.

3.2.1.1. El proceso general

Este proceso se simplifica en 4 pasos [12]:

- Cálculo de la potencia máxima.
- Cálculo del consumo máximo.
- Cálculo del número de paneles.
- Cálculo de la capacidad de la batería

3.2.1.1.1. Cálculo de la potencia máxima

Para poder hallar el consumo necesario del sistema, primero (considerando las horas en el día de funcionamiento de los equipos) se debe determinar la potencia total del sistema. Este término es conocido como "potencia máxima instalada" (P_{max}) y sus unidades son "vatios hora al día" (Wh/d). Para su cálculo se requiere [12]:

- La potencia de cada equipo conectado (electrodoméstico, luces, etc.), se mide en W (vatios) y se simboliza por $(P_{nombre_{equipo}})$.
- El número de equipos con características idénticas.
- Las horas estimadas que esté encendido el equipo.

El cálculo de la potencia máxima (sea CC o CA) está basado en la siguiente ecuación [12]:

$$P_{max} = \sum (Cantidad)(Horas)(P_{nombre_equipo})[Wh/d]$$
 (3)

El cálculo de la potencia máxima de la instalación, está basado en la siguiente ecuación [12]:

$$P_{MAX} = P_{DC} + \frac{P_{MAX230}}{\eta} [Wh/d]$$
 (4)

3.2.1.1.2. Cálculo del consumo máximo

Se debe tener en consideración la ecuación que vincula la corriente, la tensión y la potencia, así como la tensión del banco de baterías. Tal y como se muestra a continuación [12]:

$$P = (V)(I) \tag{5}$$

En este caso, se calcula la corriente de la instalación (I_{inst_max}) como la razón entre la potencia máxima (P_{max}) y la tensión de la batería ($V_{batería}$), tal como se muestra a continuación [12]:

$$I_{inst_max} = \frac{P_{MAX}}{V_{hateria}} \left[Ah/d \right] \tag{6}$$

El valor calculado de corriente de la instalación debe aumentar para ser aceptable. Dicho aumento es denominado "factor de seguridad" o "margen de seguridad" y tiene un valor típico de 20%. A continuación, se muestra la ecuación de la corriente máxima (I_{max}), en función de la corriente de la instalación ($I_{inst\ max}$) y del margen de seguridad [12]:

$$I_{max} = (1,2)(I_{inst\ max})[Ah/d]$$
 (7)

El siguiente paso es calcular el consumo máximo considerando las posibles pérdidas, las cuales están representadas en el cálculo de las pérdidas totales (K_T) , tal y como se indica en la siguiente ecuación [12]:

$$K_T = \left(1 - (K_B + K_C + K_R + K_X)\right) \left(1 - \frac{(K_A)(D_{aut})}{P_d}\right)$$
 (8)

Donde [12]:

- K_A : pérdidas debido a la autodescarga diaria de la batería a los 20°C (lo brinda el fabricante en las hojas de características).
- K_B : pérdidas debido al rendimiento de la batería.
- K_C : pérdidas debido al rendimiento del convertidor. (si lo hay)
- K_R : pérdidas debido al rendimiento del regulador.
- K_X : otras pérdidas no contempladas (por efecto Joule, caída de tensión, etc.).
- *D_{aut}*: días de autonomía con insolación nula o baja.
- *P_d*: profundidad de descarga de la batería (lo brinda el fabricante en las hojas de características).

Después de haber calculado las pérdidas, se debe calcular el consumo máximo (C_{max}) como el cociente entre la corriente máxima (I_{max}) y las pérdidas totales (K_T), como se muestra a continuación [12]:

$$C_{max} = \frac{I_{max}}{K_T} \left[Ah/d \right] \tag{9}$$

3.2.1.1.3. Cálculo del número de paneles

Conociendo el consumo máximo de la instalación (C_{max}) y las especificaciones del panel, es posible precisar la cantidad de módulos fotovoltaicos necesarios. Para ello se necesita determinar la energía que puede generar un panel. [12]

3.2.1.1.3.1. Energía generada por un panel

La siguiente ecuación demuestra la energía generada durante un día, por un panel solar (E_{panel}) [12]:

$$E_{Panel} = (I_{panel})(HPS)(\eta_{panel})[Ah/d]$$
(10)

Donde [12]:

- *I*_{panel}: Corriente máxima o corriente pico
- HPS: Horas de Pico Solar (horas de irradiación solar suficiente)
- η_{panel} : Rendimiento del panel (como norma general se escoge 90%)

Una vez conocidos los valores de (E_{panel}) y (C_{max}) , se puede calcular el número de ramas necesarias mediante la siguiente ecuación:

$$N\'umero_{paralelo_panel} \ge \frac{C_{max}}{E_{panel}}$$
 (11)

De igual manera se puede calcular el número módulos conectados en serie (cantidad de módulos necesarios para acoplarse a la tensión) considerando la tensión del banco de baterías ($V_{batería}$) y la tensión nominal del módulo fotovoltaico (V_{panel}), como se muestra en la siguiente ecuación [12]:

$$N\'umero_{serie_panel} \ge \frac{V_{bater\'ia}}{V_{panel}}$$
 (12)

Cabe destacar que, dependiendo de la disponibilidad y precio de los equipos; se puede elegir un valor de tensión idéntico al del panel, así como del banco de baterías. [12]

3.2.1.1.4. Cálculo de la capacidad del acumulador

La capacidad de la batería ($C_{batería}$) está en función del consumo máximo (C_{max}), los días de autonomía (D_{aut}) y la profundidad de descarga (P_d), tal y como se muestra a continuación [12]:

$$C_{bateria} \ge \frac{(C_{max})(D_{aut})}{P_d}$$
 (13)

Después de haber calculado la capacidad de la batería y sabiendo las especificaciones de la batería, se puede determinar la cifra necesaria de baterías conectadas en paralelo. Esto se obtendrá dividiendo el valor de la capacidad del banco de baterías necesaria con la capacidad nominal de cada batería según ficha técnica. Como lo muestra la siguiente ecuación [12]:

$$N\'umero_{paralelo_bater\'ia} \ge \frac{C_{bater\'ia}}{C_{nominal}}$$
 (14)

De igual manera, el número de baterías en serie está en función de la tensión nominal de cada batería y la tensión del banco de baterías. [12]

$$N\'umero_{serie_bater\'ia} \ge \frac{V_{bater\'ia}}{V_{nominal_bater\'ia}}$$
 (15)

3.2.1.2. Instalación sólo con equipos de tensión alterna

Después de haber culminado con los cálculos del proceso general, se procede a elegir el tipo de instalación (en este caso equipos de tensión alterna). Esta elección determina el tipo de regulador e inversor a elegir posteriormente.

3.2.1.2.1. Elección del regulador

Los datos por conocer para lograr determinar el regulador son [12]:

- La corriente que podrá soportar el circuito.
- La tensión de trabajo.

La corriente del campo fotovoltaico ($I_{campo_fotovoltaico}$) resulta del producto del número de ramas (serie) del campo por la corriente de cortocircuito (I_{sc}) de cada módulo, tal y como se muestra en la siguiente ecuación [12]:

$$I_{campo_fotovoltaico} = (I_{sc})(n\'umero\ de\ ramas)[A]$$
 (16)

Adicional a esto, existe un margen de seguridad que evita que el regulador trabaje a su máxima corriente. El valor de este margen de seguridad es de 10%, por lo cual [12]:

$$I_{regulador} = (1,1)(I_{campo_fotovoltaico}) [A]$$
(17)

Una vez obtenido el valor de la corriente que debe soportar el regulador ($l_{regulador}$), se debe elegir el valor inmediato superior de la máxima corriente que soporta el regulador (se especifica en las hojas de características de este). [12]

3.2.1.2.1.1. Asociación en paralelo

Mayormente cuando una instalación es pequeña, es suficiente conectar entre los paneles y las baterías, a un regulador. Mientras que, para instalaciones grandes, se debe agrupar cierta cantidad de paneles (de manera simétrica) con cada regulador. Finalmente, se conectan las salidas de estos últimos al banco de baterías (reguladores en paralelo). [12]

Se debe considerar reguladores con las mismas especificaciones, para el caso de ramas simétricas conectadas. Al dividir la corriente máxima del regulador ($I_{regulador}$) con la corriente máxima que acepta un regulador específico (I_{reg}), se obtiene la cantidad de reguladores por conectar en paralelo. Todo esto se realiza mediante la siguiente ecuación [12]:

$$n\'umero\ de\ reguladores = \frac{I_{regulador}}{I_{reg}} \tag{18}$$

Cabe resaltar que el valor que se obtiene siempre se redondea a un número entero mayor (por ejemplo, si el valor es de 1,8; quiere decir que se requieren 2 reguladores). Mientras que si se tiene un valor entre 1,1 y 1,5 existen dos caminos; uno que es aproximar a 1 (significado de elección de un regulador que tolere una corriente mayor) o se puede aproximar a 2 (significado de elección de un regulador que tolere una corriente menor). [12]

De igual manera para determinar el número de ramas por regulador, se debe dividir la cantidad de ramas con la cantidad de reguladores, como se muestra a continuación [12]:

$$Ramas \ por \ regulador = \frac{n\'{u}mero \ de \ ramas}{n\'{u}mero \ de \ reguladores} \tag{19}$$

3.2.1.2.2. Elección del convertidor. En esta sección, se seleccionará aquel inversor cuya potencia de salida (nominal) sea inmediatamente

superior al del consumo total de la instalación (es importante considerar la tensión de corriente continua). [12]

3.2.1.3. Cálculo del cableado de la instalación

En este apartado se determinará el calibre de los conductores en toda la instalación. Es importante determinarlo ya que supondría una caída de tensión elevada en el mismo, si se tratase de una mala elección; lo cual a su vez genera un aumento de corriente y por ende un incremento de temperatura. Esto último podría generar a futuro un cortocircuito (provocado previamente por el desgaste del aislante o un incendio). [12]

En primer lugar, se determinará la sección del conductor; después, se verificará en la sección la corriente admisible máxima y la canalización seleccionada. [12]

3.2.1.3.1. Cálculo de la sección

Se debe tener en cuenta la diferencia entre la tensión de un circuito de corriente continua y corriente alterna. [12]

3.2.1.3.1.1. En corriente continua

Los datos por tener en consideración son los siguientes [12]:

- La conductividad del material (k) que lo compone (cobre o aluminio).
- La caída de tensión entre sus terminales (U) en voltios.
- La corriente que atravesará el conductor (I) en amperios.
- La longitud del cable (l) en metros.

Utilizando estos datos, la sección del conductor se calcula mediante la siguiente ecuación [12]:

$$S = (2) \left(\frac{l * I}{k * II} \right) [mm^2] \tag{20}$$

Para la sección del conductor del campo generador al lugar donde se encuentra el regulador, las baterías y el inversor, se debe tener en consideración la corriente del campo fotovoltaico $(I_{campo_fotovoltaico})$. [12]

La caída de tensión (U) está en función de los equipos que se piensa interconectar, estos se mencionan a continuación [12]:

- Caída de tensión entre generador (campo fotovoltaico) y regulador/inversor: 3%
- Caída de tensión entre regulador y batería: 1%
- Caída de tensión entre inversor y batería: 1%
- Caída de tensión entre regulador e inversor: 1%
- Caída de tensión entre inversor/regulador y equipos: 3%

Cabe resaltar que los cables que estén en el exterior (desde el campo fotovoltaico hasta los equipos de control) deben estar protegidos contra la intemperie. [12]

3.2.1.3.2. Elección del cableado

Una vez obtenidos los valores de la sección del cableado y la corriente que pasará por el mismo, se seguirán los siguientes pasos [12]:

- Primer paso: elegir el tipo de instalación de acuerdo con la siguiente tabla:

Tabla 3: Tipo de Instalación. [12]

A1		Conductores aislados en tubos empotrados en paredes aislantes.
A2		Cables multiconductores en tubos empotrados en paredes aislantes.
B1	þ	Conductores aislados en tubos 1) en montaje superficial o empotrados en obra.
B2	þ	Cables multiconductores en tubos 1) en montaje superficial o empotrados en obra.
C		Cables multiconductores directamente sobre la pared 2).
E		Cables multiconductores al aire libre 3). Distancia a la pared no inferior a 0.3 D 4).
F	2000 0000	Cables unipolares en contacto mutuo 3). Distancia a la pared no inferior a D 4).

- Segundo paso: conociendo el tipo de instalación, en la siguiente tabla se determinará si es monofásica (2x) o trifásica (3x) dependiendo del número de 1 a 12; así como el tipo de aislante del cable, que puede ser "Policloruro de Vinilo" (PVC) o "Polietileno Reticulado" (XLPE).

Tabla 4: Valores según tipo de Instalación, conductores y aislamiento. [12	21	7
--	----	---

A1		PVC	PVC		XLPE	XLPE 2x						
		3x	2 <i>x</i>		3x					_		
	PVC	PVC		XLPE	XLPE							
A2	3x	2x		3x	2x							
				PVC	PVC		XLPE		XLPE			
B1				3x	2 <i>x</i>		3x		2x			
		44/15	PVC	PVC	n ellin	XLPE 3x	XLPE					
В2			3x	2 <i>x</i>		ALPE 3X	2 <i>x</i>					
					PVC		PVC	XLPE		XLPE		
С					3x		2x	3x		2x		
Call Carrier of		THE !	1000	- LAY (0.1)				PVC	XLPE		XLPE	
E						PVC 3x	v Tabe	2 <i>x</i>	3 <i>x</i>		2 <i>x</i>	
	og and	100 M	latery.	m (L)	ndei m		PVC		PVC	XLPE		XLPE
F							3x		2 <i>x</i>	3x		2 <i>x</i>
	1	2	3	4	5	6	7	8	9	10	11	12
						digi sa katang					F 100 100	

Tercer paso: en la siguiente tabla se consultarán las corrientes máximas que el cable soporta en función del número elegido del 1 al 12.

Tabla 5: Valores de intensidades máximas. [12]

mm²	1	2	3	4	5	6	7	8	9	10	11	12
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	
4	20	21	23	24	27	30	31	34	36	38	45	
6	25	27	30	32	36	37	40	44	46	49	57	
10	34	37	40	44	50	52	54	60	65	68	76	
16	45	49	54	59	66	70	73	81	87	91	105	
25	59	64	70	77	84	88	95	106	110	116	123	140
35		77	86	96	104	110	119	127	137	144	154	174
50		94	103	117	125	133	145	156	167	175	188	210
70				149	160	171	185	199	214	224	244	269
95	i			180	194	207	224	241	259	271	296	327
120				208	225	240	260	280	301	314	348	390
150		Sin we	g ab	236	260	278	299	322	343	363	404	438
185				268	297	317	341	368	391	415	464	500
240	À			315	350	374	401	435	468	490	552	590
300			estrovio	360	404	423		MATERIAL SERVICES		565	640	

3.2.2. Método 2

Para el diseño y dimensionamiento de un sistema fotovoltaico autónomo, se distinguen tres fases [13]:

- Elección del sistema
- Dimensionado básico
- Instalación eléctrica

3.2.2.1. Elección del sistema

En este apartado se determina [13]:

- Tipo: sólo fotovoltaico o híbrido; directo o con acumulación; con corriente continua y/o corriente alterna.
- Tensión: tensión nominal de los circuitos de corriente continua y/o alterna.

3.2.2.2. Dimensionado básico

Tomando en consideración los resultados de la fase anterior, así como las características del consumo y otros parámetros de diseño; se determinará los parámetros de cada subsistema de la instalación [13]:

- Subsistema de generación
- Subsistema de acumulación
- Subsistema de regulación
- Subsistema de acondicionamiento de potencia

El criterio base en este dimensionado, es realizar un balance energético entre la energía necesaria y la generada por los paneles, de manera que se garantice el consumo. Esto se logrará considerando el mes más desfavorable. [13]

Teniendo en cuenta que en todo sistema fotovoltaico existen "pérdidas en el rendimiento global" (R), la energía que se debe suministrar al grupo de bacterias (E), debe ser mayor a la consumida por la instalación (E_T) . Tal como se indica a continuación [13]:

$$E = \frac{E_T}{R} \tag{21}$$

El cálculo de las pérdidas en el rendimiento global se realiza mediante la siguiente ecuación [13]:

$$R = (1 - K_B - K_C - K_V) \left(1 - \frac{K_A * N}{P_d} \right)$$
 (22)

Donde [13]:

- K_A : coeficiente de pérdidas por autodescarga diaria de las baterías.

- K_B : coeficiente de pérdidas por rendimiento de las baterías. Es la fracción de la energía absorbida procedente de los paneles, que la batería no devuelve.
- K_C : coeficiente de pérdidas por rendimiento del inversor. Este coeficiente solo se considerará cuando el consumo se realice en alterna. Si es así, éste afectará el cálculo del consumo en alterna, ya que se tendrá que dividir entre $(1 K_C)$, que es la eficiencia del inversor.
- K_V : coeficiente de pérdidas varias. Este coeficiente considera las pérdidas por efecto Joule, etc.
- N: número de días de autonomía de la instalación.
- P_D : profundidad de descarga de las baterías.

De acuerdo con [13], el rango de valores de los coeficientes de pérdidas son los siguientes:

Coeficiente de pérdidas	Rango práctico
K_B	0,00-0,20
K_A	0,001-0,020
P_D	0,1-0,80
K_C	0,0-0,4
$K_{v_{\ell}}$	0,00-0,20

Tabla 6: Rango práctico de valores de los coeficientes de pérdidas. [13]

Considerando el coeficiente de pérdidas por rendimiento del inversor (K_C), en el consumo de energía en alterna, se tiene que [13]:

$$E_T = consumo \ en \ cc + \frac{consumo \ en \ ca}{1 - K_C}$$
 (23)

3.2.2.2.1. Subsistema de generación

A parte de las pérdidas calculadas en el apartado anterior, se debe agregar aquellas asociadas al regulador (por lo general se estima un 10%). Por ende, la energía que debe generar el campo fotovoltaico (E_a) es [13]:

$$E_g = \frac{E}{0.9} \tag{24}$$

Existe un término de gran interés conocido como el "número de horas de sol pico" (HSP), el cual es el número de horas con una irradiancia de 1000 W/m² para alcanzar e igualar la energía diaria incidente en una localidad. Este término se calcula mediante la siguiente ecuación [13]:

$$HSP = (k)(k')(k'')(H)[h]$$
 (25)

Donde [13]:

- *H*: irradiación diaria sobre horizontal.

- k: factor que tiene en cuenta los efectos atmosféricos. Los valores se encuentran entre 0,75 y 1,20.
- k': factor que tiene en cuenta la inclinación del panel fotovoltaico. Los valores están tabulados y dependen de la inclinación de los paneles, del mes y la latitud de la localidad.
- k'': factor que tiene en cuenta la desviación respecto al sur geográfico. Este valor es 1 cuando el ángulo de desviación es menor a 20°)

Los valores de k'' se calculan mediante la siguiente ecuación:

$$k'' = 1.14 - (0.0085)(\beta) \tag{26}$$

Donde [13]:

- β : ángulo de desviación, comprendido entre 20° y 70° (intervalo para la cual, la ecuación anterior es válida).

De igual forma, la ecuación 22, también puede escribirse de la siguiente manera [13]:

$$HSP = (k)(k'')(H')$$
⁽²⁷⁾

Donde [13]:

- H': es el valor de H corregido por inclinación.

En condiciones de funcionamiento reales (considerando la suciedad del módulo, las pérdidas por reflexión, entre otros), la energía en Wh que el campo fotovoltaico puede generar por cada vatio pico (E_p) es [13]:

$$E_p = (0.9)(HSP)$$
 (28)

El cálculo de la potencia pico a instalar en el campo fotovoltaico (P_p) , está en función de la energía que debe generar el campo fotovoltaico (E_g) y la energía que puede generar el campo por cada vatio pico (E_p) , tal y como se muestra en la siguiente ecuación. [13]

$$P_p = \frac{E_g}{E_p} \tag{29}$$

Para determinar el número necesario de módulos en serie (m_s) , se debe conocer la tensión nominal del sistema (V_{ns}) y la tensión del módulo elegido (V_{np}) , tal y como se muestra a continuación [13]:

$$m_{s} = \frac{V_{ns}}{V_{np}} \tag{30}$$

De igual manera, el cálculo del número de módulos en paralelo (m_p) , está en función de la potencia pico necesaria en el campo fotovoltaico (P_p) , el número de módulos en serie (m_s) y la potencia pico del módulo (P_m) . [13]

$$m_p = \frac{P_p}{(m_s)(P_m)} \tag{31}$$

Finalmente, la ecuación que determina el número total de módulos (m_t) , es la siguiente:

$$m_t = (m_s)(m_p) \tag{32}$$

3.2.2.2.2. Subsistema de acumulación

Conociendo los valores de la energía que debe recibir el banco de baterías (E), y los días de autonomía (N), se puede calcular la capacidad útil del subsistema de acumulación (C_u) [13]:

$$C_{\nu} = (E)(N) \tag{33}$$

Se tiene entendido que la capacidad nominal de la batería (C), debe ser mayor que la útil (C_u) ; por lo que se debe tener en cuenta la profundidad de descarga (P_d) propuesta [13]:

$$C = \frac{C_u}{P_d} \tag{34}$$

Cuando la temperatura media de funcionamiento es menor a 20° C, se debe corregir la capacidad nominal de la batería con un factor (k_T) , el cual se rige por medio de la siguiente ecuación [13]:

$$k_T = 1 - \frac{\Delta T}{160} \tag{35}$$

Donde [13]:

- ΔT : número de grados por debajo de los 20°C.

Con ello, la nueva capacidad nominal de la batería (C') será [13]:

$$C' = \frac{C}{k_T} \tag{36}$$

Debido a que las baterías (comercialmente hablando) se hayan en Ah, el valor anterior se dividirá entre la tensión nominal del sistema.

Para determinar el número de baterías conectadas en serie (b_s) , se debe conocer tanto la tensión nominal del sistema (V_{ns}) , como la tensión de la batería escogida (V_{nb}) . Tal y como se muestra a continuación [13]:

$$b_s = \frac{V_{ns}}{V_{nb}} \tag{37}$$

Así mismo, el número de baterías conectadas en paralelo (b_p) , está en función de la nueva capacidad nominal de la batería (C') y de la capacidad nominal de la batería elegida (C_b) [13]:

$$b_p = \frac{C'}{C_b} \tag{38}$$

Finalmente, el número total de baterías es [13]:

$$b_t = (b_s)(b_p) \tag{39}$$

3.2.2.2.3. Subsistema de regulación

La potencia demandada en corriente alterna (P_{ca}) , la potencia demandada en corriente continua (P_{cc}) , la intensidad total del consumo (I_c) y la intensidad pico generada por el campo fotovoltaico (I_g) son factores de los que depende las características del regulador.

Para calcular este último factor (I_g) , se necesita conocer la intensidad pico del módulo fotovoltaico escogido (I_p) aumentada en un 25%, como a continuación se muestra [13]:

$$I_a = (1,25)(m_p)(I_p) \tag{40}$$

La intensidad total del consumo (I_c) , está en función de, si el inversor se conecta al regulador o se conecta directamente a la batería. [13]

Para el caso donde el inversor se conecta al regulador, se utiliza la siguiente fórmula [13]:

$$I_c = \frac{P_{cc}}{V_{ns}} + \frac{P_{ca}}{V_{ns}(1 - k_c)}$$
 (41)

Por otra parte, si el inversor está conectado a la batería de manera directa, se utiliza la siguiente ecuación [13]:

$$I_c = \frac{P_{cc}}{V_{ns}} \tag{42}$$

Cabe resaltar que, para realizar la selección del regulador, se debe tener en cuenta la intensidad máxima de entrada (I_a) y salida (I_c) del mismo. [13]

Como dato adicional, el autor [13] recomienda que, en el supuesto caso donde no se disponga de un regulador capaz de soportar la corriente proveniente del campo (I_g) , se proponen dos soluciones prácticas:

- Dividir el campo fotovoltaico en dos o más "subcampos" y conectar cada uno a un regulador.
- Elegir una tensión del sistema más elevada o superior, y con ello unos paneles fotovoltaicos de igual potencia, pero de mayor tensión.

3.2.2.2.4. Subsistema de acondicionamiento de potencia

En este apartado, la incógnita más importante es la potencia de entrada al inversor (P_i) . El cual está en función de la potencia máxima demandada en corriente alterna (P_{ca}) , y la eficiencia del inversor $(1 - k_c)$ [13]:

$$P_i = \frac{P_{ca}}{1 - k_c} \tag{43}$$

3.2.2.3. Dimensionado de la sección del cableado

En este procedimiento, se utiliza la siguiente fórmula [13]:

$$S = \frac{(0,036)(I)(L)}{\Delta V}$$
 (44)

Donde [13]:

- S: sección del cable en mm²
- 0,036: factor para conductores de cobre
- I: intensidad máxima prevista en amperios
- L: longitud del cable en metros

Equipos

 ΔV : caída de tensión admisible en voltios

A su vez, la caída de tensión admisible se rige por la siguiente ecuación [13]:

$$\Delta V = (caida \ de \ tensi\'on \ en \%) \left(\frac{tensi\'on \ del \ circuito}{100}\right)$$
(45)

El autor [13], propone los siguientes valores recomendados de caída de tensión:

Circuito	Tensión nominal	Caída de tensión	Caída de tensión
Circuito	del circuito (V)	admisible (%)	admisible (V)
1	12	5	0,60
Panel-regulador	24	8	1,92
-	48	10	4,80
	12	0,5	0,06
Regulador-batería	24	0,5	0,12
	48	1,5	0,72
	12	0,5	0,06
Batería-inversor	24	1	0,24
	48	2	0,96
Iluminación	X	3	3x/100

Tabla 7: Valores recomendados para la caída de tensión. [13]

Adicional a esto, [13] recomienda lo siguiente:

- En el circuito panel-regulador, la intensidad máxima (I_{gm}) será igual al valor (I_g) calculado. También recomienda que este valor sea un 25% mayor para asegurar el buen funcionamiento, por lo que:

$$I_{am} = (1,25)(I_a) \tag{46}$$

- En el circuito regulador-batería, la corriente máxima (I_{rm}) , coincidirá con (I_{gm}) , de modo que:

$$I_{rm} = I_{am} \tag{47}$$

- En el circuito batería-inversor, la intensidad máxima (I_{bm}) , se encuentra en función de la potencia máxima en alterna (P_{ca}) , la tensión nominal del sistema (V_{ns}) y la eficiencia del inversor $(1 - k_c)$, tal y como se muestra a continuación:

$$I_{bm} = \frac{(1,25)(P_{ca})}{(V_{ns})(1 - k_c)} \tag{48}$$

- En el circuito de alimentación en continua, la intensidad máxima (I_{ccm}), está en función de la potencia máxima en continua (P_{cc}) y la tensión nominal del sistema (V_{ns}):

$$I_{ccm} = \frac{(1,25)(P_{cc})}{V_{nc}} \tag{49}$$

- Finalmente, para el circuito de alimentación en alterna, la intensidad máxima (I_{cam}) , se encuentra en función de la potencia máxima en alterna (P_{ca}) , y la tensión alterna de salida del inversor (V_{ca}) , según lo siguiente:

$$I_{cam} = \frac{(1,25)(P_{ca})}{V_{ca}} \tag{50}$$

De acuerdo con [13], para asegurar que la sección escogida sea válida, en el caso de temperatura a plena carga, en el siguiente cuadro se presenta el incremento de sección que se debe realizar en función del tipo de aislamiento y la temperatura máxima admisible:

Tabla 8: Incremento de sección en función del tipo de aislamiento y temperatura máxima admisible.

Tipo de aislamiento	Temperatura máxima admisible	Incremento de sección
Termoplástico	70°C	16%
Termoestable	90°C	24%

IV. RESULTADOS

4.1. Situación actual

4.1.1. Situación energética actual de las zonas rurales de Lambayeque

A inicios del 2015, el Ministerio de Energía y Minas publicó el Plan Energético Nacional 2014-2025 con el fin de proyectarse a futuro y definir objetivos a corto, mediano y largo plazo. Este plan se basa en algunos supuestos o hipótesis, tres para ser exactos. [5]

El primero denota que habrá un crecimiento de 4,5% (promedio anual) de la economía nacional y, en el mejor de los casos, el crecimiento será de 6,5%. Este último escenario permitirá soportar tasas altas de crecimiento con la confirmación de reservas e infraestructuras. El segundo estima que las tendencias de los precios de la energía a nivel mundial, marcarán la pauta para el crecimiento de los precios energéticos en el mercado nacional (excepto el gas). El tercero describe la existencia de recursos disponibles (hidroelectricidad, energías renovables no convencionales y gas natural) capaces de soportar el crecimiento económico. [5]

Con base en las hipótesis antes mencionadas y en la tendencia creciente de la demanda eléctrica, se concluyó que el 2014 dejó niveles de 91% (en lo que a cobertura eléctrica se refiere) en todo el país. Además, se determinó que para alcanzar valores cercanos al 100% en el ámbito antes mencionado, se requiere ampliar las redes convencionales (zonas de fácil acceso) y utilizando sistemas fotovoltaicos off-grid (zonas alejadas o de difícil acceso). [5]

La Organización Latinoamericana de Energía (OLADE) por medio del Sistema de Información Energética de Latinoamérica y El Caribe (sieLAC) juntamente con sus 27 Países Miembros de América Latina y el Caribe pone a disposición el acceso a información de manera gratuita en materia de estadísticas económico-energéticas desde 1970 hasta la actualidad. [14]

El Balance Energético resumido del Perú en el año 2016 (Anexo 2), muestra una oferta total de energía de 182 194,33 kbep (mil barriles equivalentes de petróleo). Las energías primarias en el Perú comprenden: petróleo, gas natural, carbón mineral, hidroenergía y otras primarias; como a continuación se muestra: [14]

Energías Primarias	Oferta total (kbep)	%
Petróleo	52375,62242	28,93%
Gas Natural	85132,95635	47,03%
Carbón Mineral	5802,53772	3,21%
Hidroenergía	18723,53948	10,34%
Otras primarias	18995,58195	10,49%
TOTAL	181030,2379	100%

Tabla 9: Oferta total (kbep) de las Energías Primarias en el 2016. [14]

La demanda energética de los sectores que corresponden al consumo final en el Perú se muestra a continuación:

Sectores del consumo final	Oferta Total (kbep)	%
Agro, pesca y minería	13891,97664	9,87%
Comercial, servicios, público	8920,06734	6,34%
Consumo no energético	2293,78732	1,63%
Industrial	25012,54187	17,77%
Residencial	27099,36678	19,25%
Transporte	63569,66567	45,15%
TOTAL	140787.4056	100.00%

Tabla 10: Oferta total de los sectores que conforman el consumo final en el 2016. [14]

En el año 2016, el apartado de generación eléctrica por fuente de energía estuvo dividido en 4 (Hidro, Térmica no renovable, Eólica y Solar), como se muestra a continuación. [14]

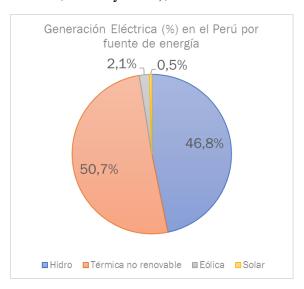


Gráfico 2: Generación Eléctrica (GWh) en el Perú por fuente de energía durante el año 2016. [14]

Siendo la fuente de energía "Térmica no renovable" la de mayor porcentaje (50,7%) en comparación con las demás durante el 2016. Mientras que la de menor porcentaje (0,5%) es la solar. [14]

Durante el 2015, el balance energético dio como resultado que la capacidad instalada total (MW) según tipo de fuente de energía, tiene a la energía "No Renovable" con el mayor porcentaje (63%); mientras que la "Renovable" posee un menor porcentaje (37%). [14]

Estos datos se pueden observar en el siguiente gráfico.

Gráfico 3: Capacidad Instalada Total (MW) en el Perú según tipo de fuente de energía en el 2015. [14]

Pero si se desea categorizar por fuente de energía, la capacidad instalada total varía de acuerdo con el siguiente gráfico.

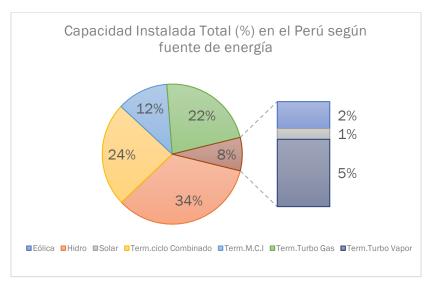


Gráfico 4: Capacidad Instalada Total (%) en el Perú según fuente de energía en el 2015. [14]

A finales del 2017, en el trimestre octubre-noviembre-diciembre (para ser más específicos), el 94,4% de los hogares tienen energía eléctrica por red pública, llegando la cobertura al 98,9% en el área urbana y el 80,1% en el área rural. Comparando con el trimestre del 2016, se evidencia que los valores se mantienen; en tanto en el área rural se incrementa la cobertura en 1,1%, tal y como se muestra a continuación [3]:

Área de residencia	Oct-Nov-Dic 2016	Oct-Nov-Dic 2017 P/	Variación absoluta (Puntos Porcentuales)	
Nacional	94,3	94,4	0,1	
Urbana	98,9	98,9	0,0	
Rural	79,0	80,1	1,1	

Tabla 11: Hogares según área de residencia, que tienen energía eléctrica por red pública. [3]

El presente año, se determinó en términos de porcentaje el acceso y uso de la electrificación rural (población rural, aislada y de frontera con cobertura de servicio eléctrico). Siendo un indicador, el porcentaje de viviendas particulares que tienen acceso a la energía eléctrica mediante red pública, según región natural y departamento durante el periodo 2011-2017, el cual se muestra en el Anexo 3. [6]

Con respecto a las regiones naturales, hubo un crecimiento hasta el 2017 (tomando como punto de referencia el año 2011) en las tres regiones. Para la región Costa, en el año 2011 se registró un porcentaje de 67,0%, aumentando dicho valor hasta 83,7% en el año 2017 [6]. En el gráfico 1 se muestra la variación del porcentaje según la región natural durante el periodo 2011-2017. [6]

Por otro lado, en el departamento de Lambayeque, de igual manera se registró la variación de los porcentajes durante el periodo 2011-2017. Registrando en el 2011 un valor de 60,9%, llegando al 2017 con un 81,7% [6]. Dicha variación se muestra en el gráfico 2.

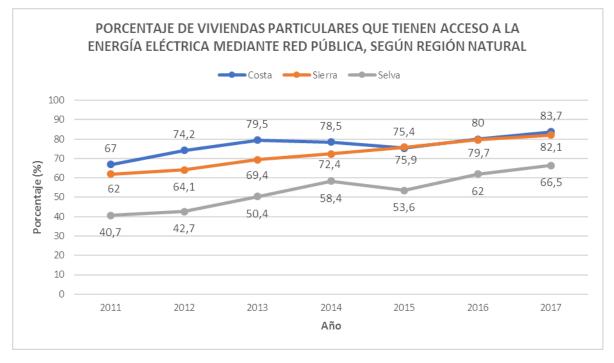


Gráfico 5: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica mediante red pública, según región natural. [6]

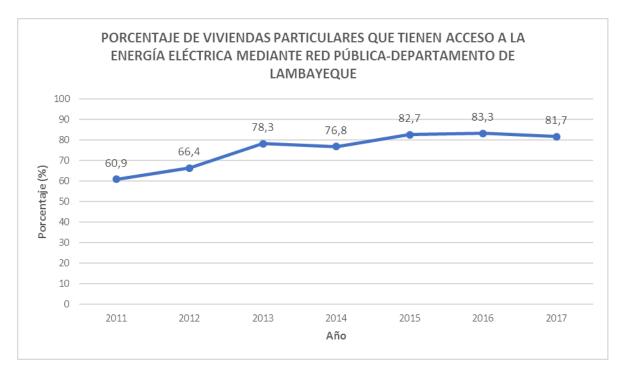


Gráfico 6: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica mediante red pública en el departamento de Lambayeque. [6]

El Ministerio de Energía y Minas (MINEM), por medio de la Dirección General de Electrificación Rural (DGER), tiene como misión mediante la ejecución de proyectos de electrificación de Centros Poblados aislados y rurales, ampliar la cobertura eléctrica del país [15]. Partiendo de esta premisa, la DGER ofrece a la población un visor de mapas de electrificación rural, como un sistema de consulta web de datos espaciales de los sistemas eléctricos rurales del país.

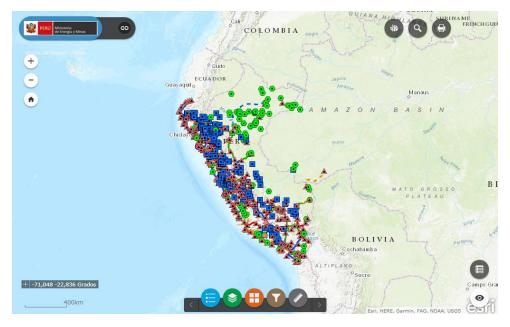


Figura 25: Visor de Mapas de Electrificación Rural-DGER. [16]

De esta plataforma se puede conocer la situación de los centros poblados, es decir: si tienen servicio, están en proceso de ejecución, están en proyecto o si no tienen ningún proyecto asociado hasta el momento. La lista de centros poblados se muestra en el Anexo 4, donde los centros poblados con mayores viviendas son Pueblo Nuevo (110 viviendas) y Muy Finca Rama Diaz (104 viviendas), ambos ubicados en el distrito de Mochumi. Mientras que el centro poblado con menos viviendas es Botijilla (2 viviendas), ubicado en el distrito de Salas [16].

El Instituto Nacional de Estadística e Informática (INEI) brinda a la población un buscador web de Centros Poblados, del cual se puede obtener información general (departamento, provincia, distrito, área, latitud y longitud) de estos últimos. [17]

Esta herramienta web en conjunto con la lista de centros poblados sin proyecto asociado obtenida del DGER, se puede obtener la latitud y longitud de cada centro poblado (si este se encuentra en la base de datos del INEI) como se muestra en la siguiente tabla.

Tabla 12: Coordenadas en Latitud y Longitud de los Centros Poblados sin proyecto asociado. [17]

CENTRO POR ARC		LONGITUD
CENTRO POBLADO	LATITUD	LONGITUD
BOTIJILLA	-6,16085	-79,5631
CHAUPIACO (HUATASHACO)	-	-
YERBA SANTA	-6,25	-79,4839
NUEVA JERUSALEN	-6,1543	-79,5415
CHILLACA	-5,97223	-79,4577
PAJA BLANCA	-5,99948	-79,3818
EL SAUCE	-6,06581	-79,3695
WALCOCHALA	-6,06319	-79,219
OXAPAMPA	-	-
LIQUE	-6,04451	-79,1905
MOLINO	-6,01658	-79,3831
PALO BLANCO	-6,0503	-79,4028
HUAMACHUCO	-6,07734	-79,1932
ARCO	-	-
CUEVA BLANCA	-6,12208	-79,376
SEÑOR DE LA HUMILDAD	-6,13007	-79,3647
SAN PEDRO SASAPE II	-	-
LOS PINOS	-6,5016	-79,9647
SAN CARLOS LAS DELICIAS	-	-
VINGUAR CHICO	-5,9746	-79,9617
EL CARRIZO	-6,55528	-79,9202
LA PAVA HUACA BLANCA TRAPICHE	-	-
PUEBLO NUEVO	-6,5618	-79,8957
HUACA DE TORO	-6,57985	-79,9288
MUY FINCA RAMA DIAZ	-6,57885	-79,8975
SAN SEBASTIAN	-6,52643	-80,0182
SAN JULIAN	-	-

4.1.2. Situación de la salud pública en la actualidad

De igual manera que en el apartado anterior, a finales del 2017, en el trimestre analizado (octubre-noviembre-diciembre); el porcentaje de la población nacional que contó con algún seguro de salud (privado o público) fue de 76,7%. De esta cifra total, el de mayor cobertura fue el "Seguro Integral de Salud" (SIS) con un 48,1%, luego se encuentra el "Seguro Social de EsSalud" con un 22,9% y finalmente con un 5,7%, se encuentra otros seguros, tal como se muestra en la siguiente tabla [3]:

Tipo de seguro de salud/Área de residencia	Oct-Nov-Dic 2016	Oct-Nov-Dic 2017 P/	Variación (Puntos Porcentuales)	
Nacional	77,1	76,7	-0,4	*
Únicamente EsSalud	23,5	22,9	-0,6	
Únicamente SIS	47,9	48,1	0,2	
Con otros seguros 1/	5,7	5,7	0,0	
Urbana	75,2	74,9	-0,3	
Únicamente EsSalud	28,7	27,9	-0,8	
Únicamente SIS	39,3	39,7	0,4	**
Con otros seguros 1/	7,2	7,2	0,0	
Rural	83,6	83,2	-0,4	
Únicamente EsSalud	6,0	5,8	-0,2	
Únicamente SIS	77,2	76,9	-0,3	
Con otros seguros 1/	0,4	0,4	0,0	

Tabla 13: Población afiliada a seguro de salud, según tipo de seguro y área de residencia. [3]

Se concluye que para el área urbana, existe un 74,9% de la población que posee un seguro de salud, donde los que tienen únicamente SIS fue de 39,7%, seguido por un 27,9% correspondiente a aquellos que tienen EsSalud y un 7,2% de aquellos que poseen otros seguros. [3]

4.2. Niveles de radiación solar

4.2.1. Atlas de Energía Solar del Perú

Se tiene entendido que la zona del territorio peruano con una disponibilidad de 6,0 a 6,5 kWh/m² es la costa sur (16° a 18° S), lugar con mayor potencial de energía solar. Seguido a esta, se encuentra la costa norte (3° a 8° S) y la sierra sobre los 2500 msnm, con una disponibilidad de 5,5 a 6,0 kWh/m² de energía solar diaria. [18]

Finalmente se encuentra el territorio de la selva y una zona del extremo norte cercano al Ecuador (0° a 2° S) con unos valores de 4,5 a 5,0 kWh/m². [18]

También se sabe que en la costa sur se encuentra la mayor variación anual (Desviación estándar) en lo que a cifras de energía solar recibida en la superficie se refiere. Seguido a esta zona, se encuentran la costa central, selva norte, costa norte y sierra sur. Por otra parte, en las

zonas de la sierra norte, sierra central, selva sur y selva central, se encuentra la menor variación anual. [18]

En el Anexo 5 se muestra la energía solar incidente diaria promedio anual (durante los años 1975-1990) del Perú dividido por departamentos. Siendo los departamentos de Tacna, Moquegua y Arequipa los que poseen mayor energía solar incidente. [18]

A nivel departamental durante el mes de febrero, la gran mayoría del territorio de Lambayeque recibe una energía solar incidente diaria de $5.5 - 6.0 \text{ kWh/m}^2$. En el mes de mayo, la energía solar disminuye a un intervalo de $5.0 - 5.5 \text{ kWh/m}^2$. En agosto, la energía solar incidente diaria en Lambayeque vuelve a aumentar a la misma cantidad del mes de febrero. Por último, en el mes de noviembre, la energía solar incidente diaria en el departamento aumenta hasta un intervalo de $6.5 - 7.0 \text{ kWh/m}^2$. [18] De una manera más gráfica los datos de energía solar incidente diaria antes mencionados se presentan en el siguiente gráfico.

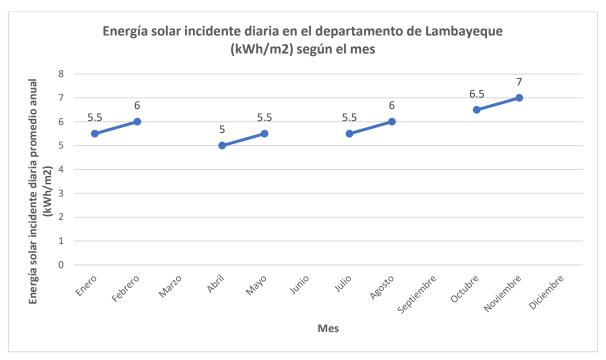


Gráfico 7: Energía solar incidente diaria en el Departamento de Lambayeque (kWh/m2) según el mes. [18]

Los valores de energía solar incidente diaria en el departamento de Lambayeque antes mencionados, se pueden observar en el Anexo 5.

Si bien es cierto que se posee la data de latitud y longitud de los centros poblados, el Atlas de Energía Solar del Perú brinda datos de energía solar de manera general (según todo el país, por departamentos, o por meses), lo cual limita la obtención de datos específicos de cada centro poblado a través del tiempo.

*Pese a esto, se puede concluir que el valor mínimo de irradiación según el "Atlas de Energía Solar del Perú" es 5,0 kWh/m².

4.2.2. Global Solar Atlas

"The World Bank" y "International Finance Corporation", colectivamente "The World Bank Group", han proporcionado el "Global Solar Atlas" además de una serie de capas de datos GIS globales, regionales y nacionales; y mapas de carteles, para apoyar la ampliación de la energía solar en los países clientes de esta. Para poder lograr este fin, "The World Bank" tiene como proveedor global de datos solares y servicios de evaluación de energía solar a Solargis. [19]

El objetivo principal de este "Global Solar Atlas" es proporcionar un acceso rápido y fácil a los datos de los recursos solares en todo el mundo. [19]

La plataforma web se puede observar en la siguiente figura:

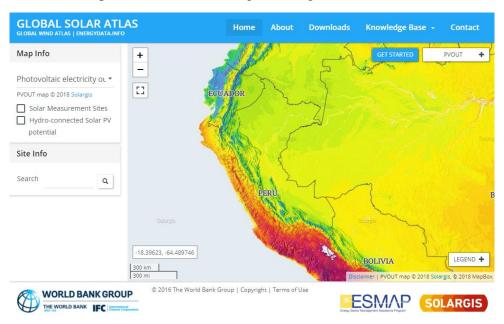


Figura 26: Plataforma web "Global Solar Atlas". [19]

"Direct Normal Irradiation", "Global Horizontal Irradiation" y "Photovoltaic Power Potential" forman parte de la data que "Global Solar Atlas" brinda al público en forma de mapas, estos mapas se muestran en el Anexo 6.

En el Anexo 7, se muestra datos obtenidos de la plataforma web "Global Solar Atlas" de acuerdo a las siguientes categorías: producción de electricidad fotovoltaica, irradiación horizontal global, irradiación normal directa, irradiación horizontal difusa, irradiación inclinada global, ángulo óptimo de módulos fotovoltaicos, temperatura del aire y elevación; de los centros poblados sin proyecto asociado según la DGER y que presentan coordenadas geográficas según el Sistema de consulta de Centros Poblados otorgado por el INEI. De las categorías antes mencionadas se tiene lo siguiente:

- Producción de electricidad fotovoltaica

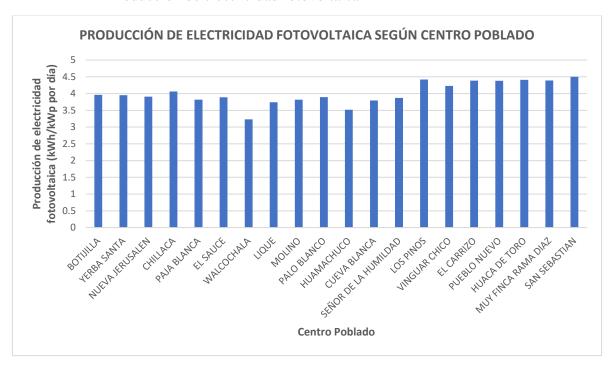


Gráfico 8: Producción de electricidad fotovoltaica según centro poblado. [19]

- Irradiación horizontal global

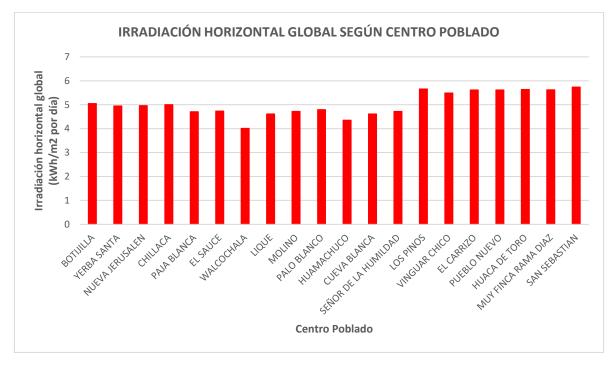


Gráfico 9: Irradiación horizontal global según centro poblado. [19]

- Irradiación normal directa

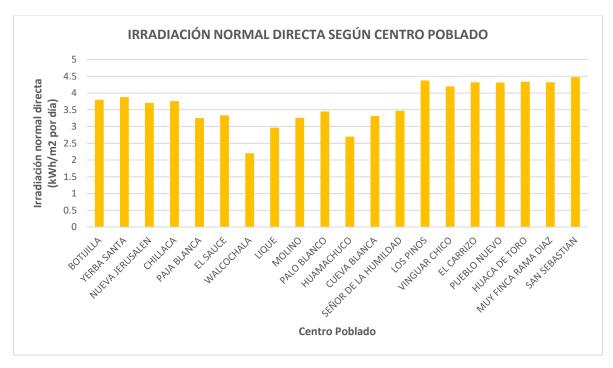


Gráfico 10: Irradiación normal directa según centro poblado. [19]

- Irradiación horizontal difusa

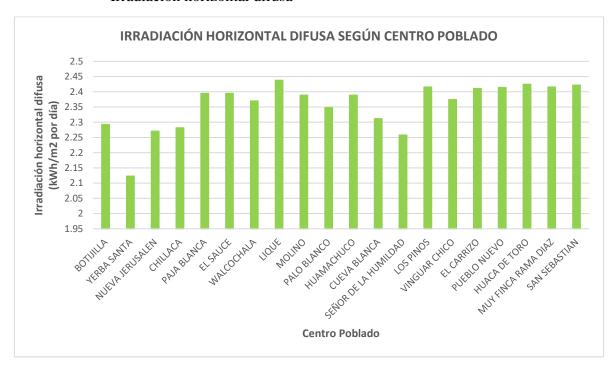


Gráfico 11: Irradiación horizontal difusa según centro poblado. [19]

- Irradiación inclinada global

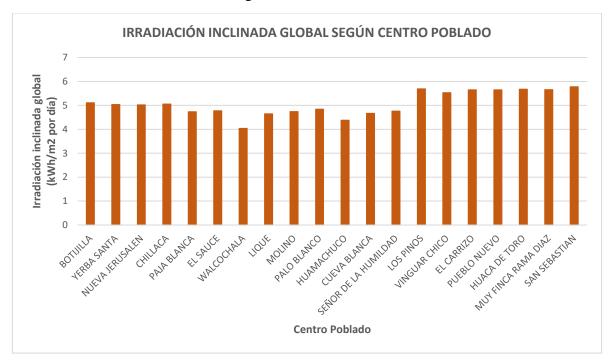


Gráfico 12: Irradiación inclinada global según centro poblado. [19]

- Temperatura del aire

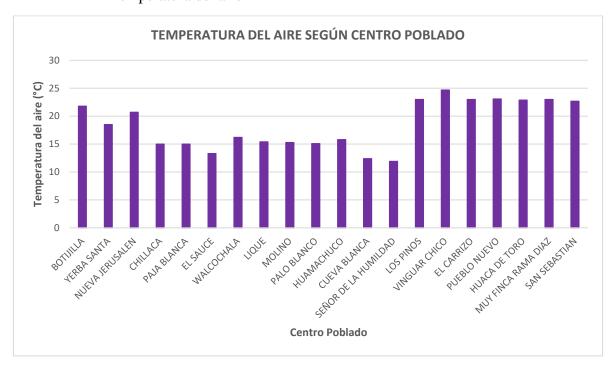


Gráfico 13: Temperatura del aire según centro poblado. [19]

Elevación

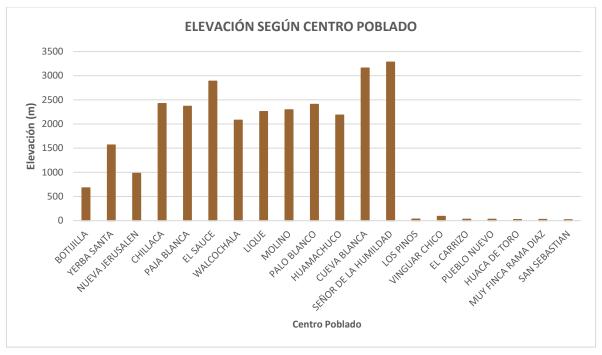


Gráfico 14: Elevación según centro poblado. [19]

De los gráficos antes mostrados se obtiene que en la categoría:

- "Producción de electricidad fotovoltaica", el centro poblado con mayor producción de electricidad (4,499 kWh/kWp por día) es "San Sebastián"; por el contrario, el centro poblado "Walcochala" posee el menor valor de producción de electricidad (3,23 kWh/kWp por día).
- "Irradiación horizontal global", el centro poblado "San Sebastian" vuelve a ser el primero (como en el punto anterior), en este caso con una irradiación horizontal global de (5,74 kWh/m² por día); por el contrario, una vez más el centro poblado "Walcochala" vuelve a ser el de menor valor de todos (4,011 kWh/m² por día).
- "Irradiación normal directa", el centro poblado con mayor valor es una vez más "San Sebastian" (4,46 kWh/m² por día); mientras que, de igual manera, "Walcochala" es el centro poblado con menor valor de todos (2,186 kWh/m² por día).
- "Irradiación horizontal difusa", el centro poblado con mayor valor es "Lique" con un valor de 2,438 kWh/m²; por el contrario, el centro poblado "Yerba Santa" posee el menor valor, el cual es de 2,123 kWh/m².

- "Irradiación inclinada global", el centro poblado "San Sebastian" posee el mayor valor de todos (5,775 kWh/m²), mientras que el centro poblado "Walcochala", el menor (4,041 kWh/m²).
- "Temperatura del aire", el centro poblado con mayor temperatura del aire es "Vinguar Chico" (24,7°C); por el contrario, el centro poblado con menor temperatura del aire es "Señor de la Humildad" (11,9 °C).
- "Elevación", el centro poblado con mayor elevación es "Señor de la Humildad" con 3281 m, mientras que el de menor elevación es "San Sebastián" con una elevación de 19 m.

*Con lo mencionado en el apartado anterior se puede concluir que los valores mínimos de irradiación según el "Global Solar Atlas" son:

Tabla 14: Valores Mínimos de Irradiación Horizontal Global, Irradiación Normal Directa, Irradiación Horizontal Difusa e Irradiación Inclinada Global. [19]

	Irradiación Horizontal Global	Irradiación Normal Directa	Irradiación Horizontal Difusa	Irradiación Inclinada Global
				(kWh/m² por día)
VALOR MÍNIMO	4,011	2,186	2,123	4,041

4.2.3. NASA Surface Meteorology and Solar Energy

La Administración Nacional de Aeronáutica y del Espacio (NASA) pone a disposición de la población a nivel mundial el "NASA Surface Meteorology and Solar Energy". Esta plataforma web brinda distintos datos meteorológicos; en este caso se obtuvo la mínima irradiación en una superficie inclinada con orientación ecuatorial, simplemente ingresando variables de latitud y longitud de acuerdo con los centros poblados mencionados en apartados anteriores.

En el Anexo 8 se muestran los datos extraídos de la NASA, sobre irradiación solar mínima incidente en una superficie inclinada de todos los centros poblados.

A continuación, se mostrará la variación de la irradiación mínima incidente en una superficie inclinada con orientación ecuatorial según el ángulo de inclinación (0°, 6°/5°, 21°/20° y 90°), de cada centro poblado según los meses del año.

- Centro Poblado Botijilla

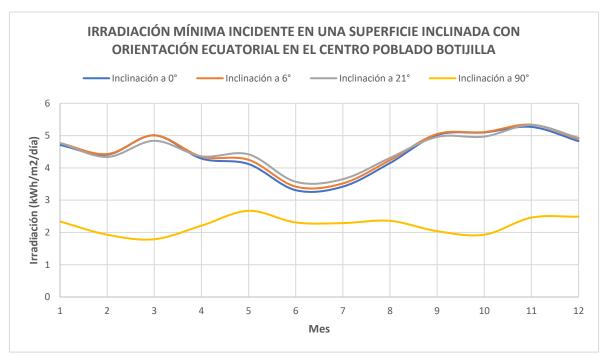


Gráfico 15: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Botijilla". [20]

- Centro Poblado Yerba Santa

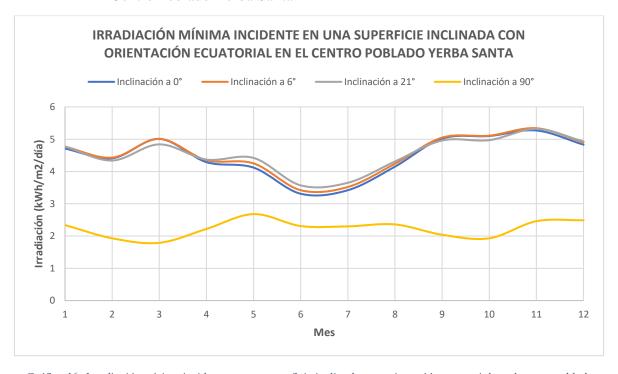


Gráfico 16: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Yerba Santa". [20]

- Centro Poblado Nueva Jerusalén

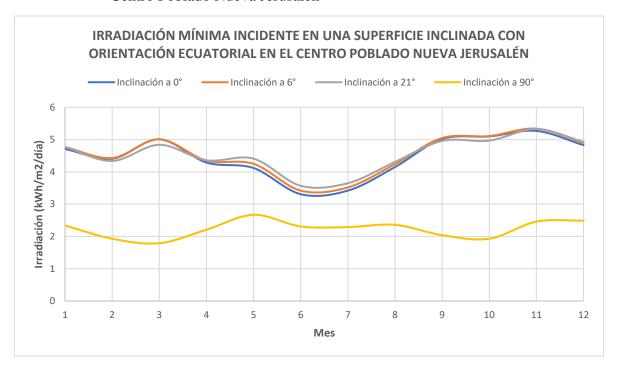


Gráfico 17: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Nueva Jerusalén". [20]

- Centro Poblado Chillaca

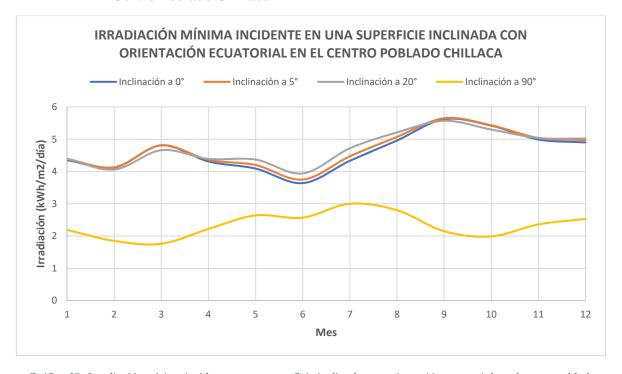


Gráfico 18: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Chillaca". [20]

- Centro Poblado Paja Blanca

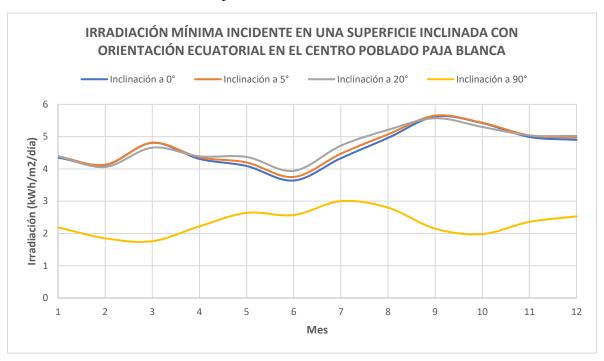


Gráfico 19: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Paja Blanca". [20]

Centro Poblado El Sauce

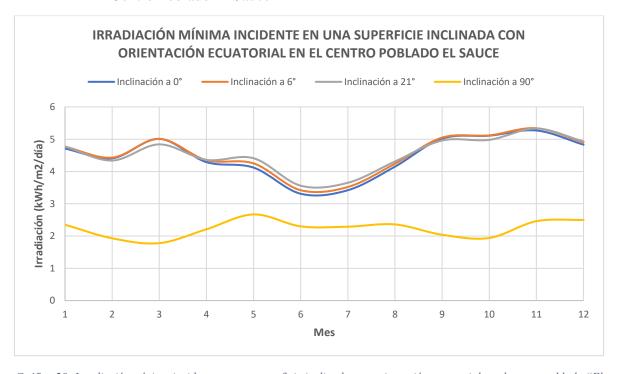


Gráfico 20: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "El Sauce". [20]

- Centro Poblado Walcochala

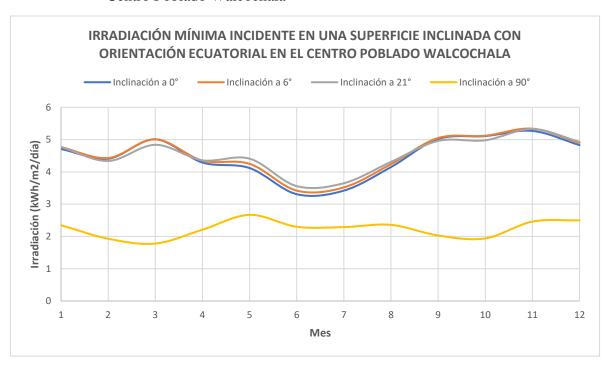


Gráfico 21: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Walcochala". [20]

- Centro Poblado Lique

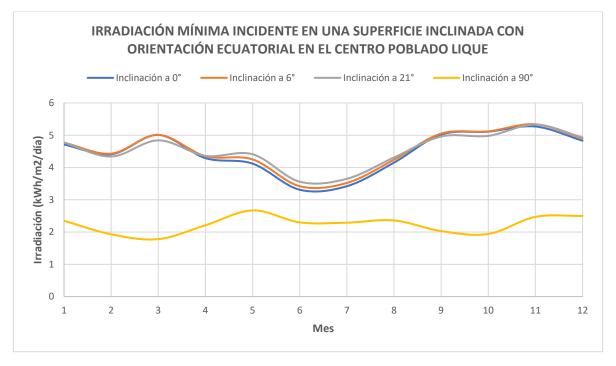


Gráfico 22: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Lique". [20]

- Centro Poblado Molino

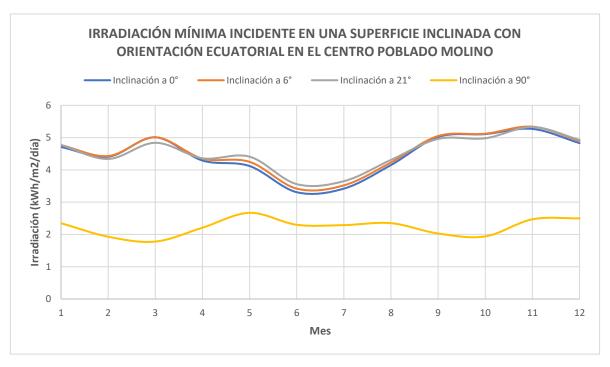


Gráfico 23: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Molino". [20]

Centro Poblado Palo Blanco

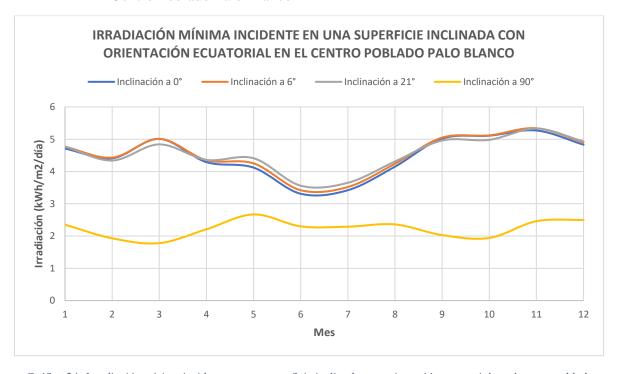


Gráfico 24: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Palo Blanco". [20]

- Centro Poblado Huamachuco

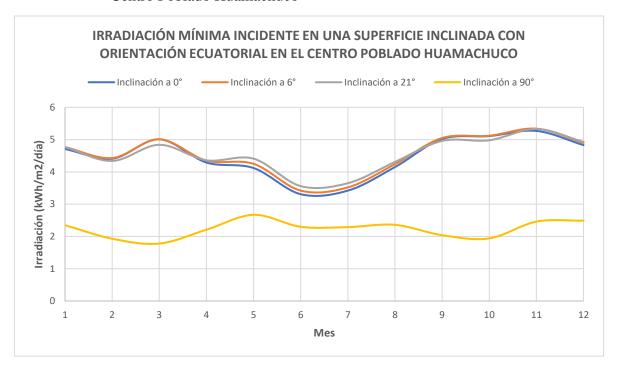


Gráfico 25: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Huamachuco". [20]

- Centro Poblado Cueva Blanca

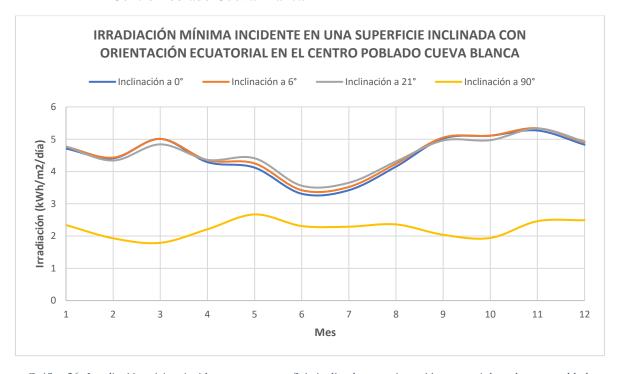


Gráfico 26: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Cueva Blanca". [20]

- Centro Poblado Señor de la Humanidad

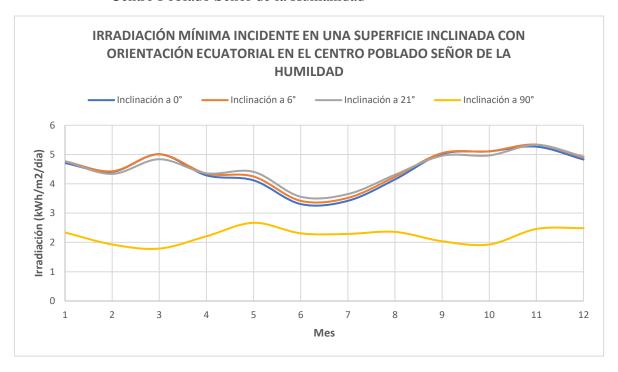


Gráfico 27: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Señor de la Humildad". [20]

Centro Poblado Los Pinos

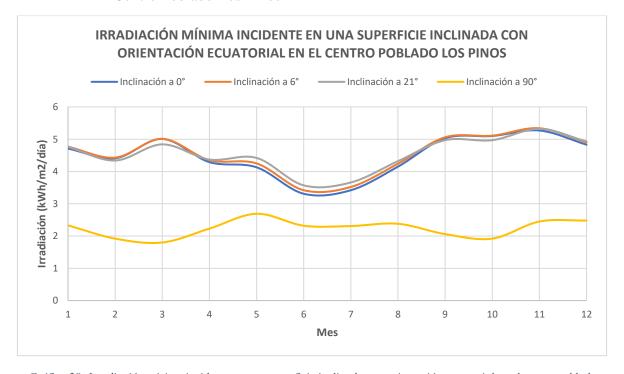


Gráfico 28: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Los Pinos". [20]

- Centro Poblado Vinguar Chico

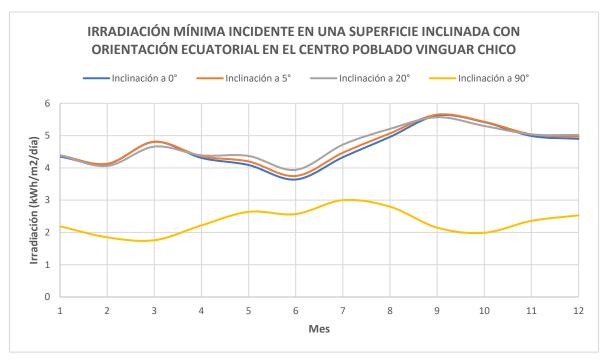


Gráfico 29: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Vinguar Chico". [20]

- Centro Poblado El Carrizo

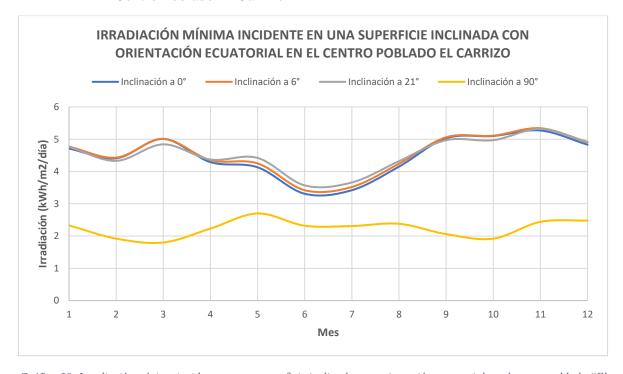


Gráfico 30: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "El Carrizo". [20]

- Centro Poblado Pueblo Nuevo

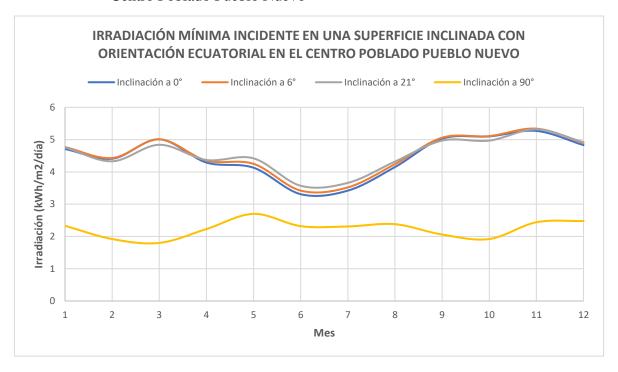


Gráfico 31: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Pueblo Nuevo". [20]

Centro Poblado Huaca de Toro

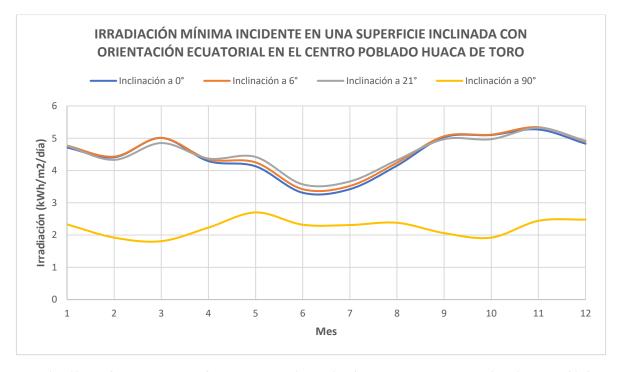


Gráfico 32: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Huaca de Toro". [20]

- Centro Poblado Muy Finca Rama Diaz

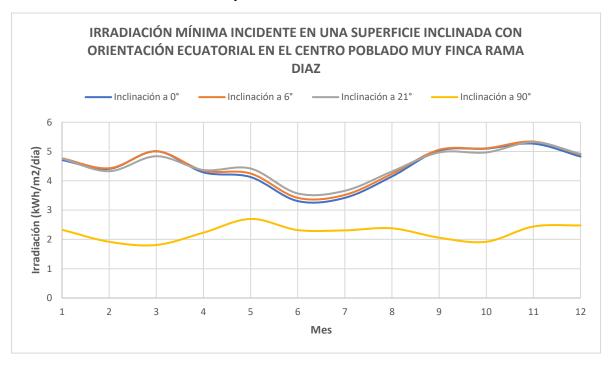


Gráfico 33: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "Muy Finca Rama Diaz". [20]

- Centro Poblado San Sebastian

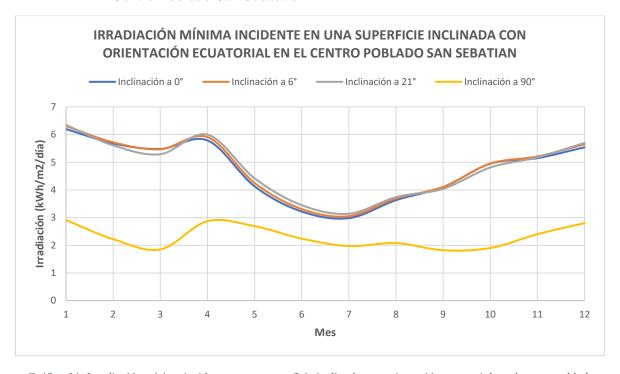


Gráfico 34: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial en el centro poblado "San Sebastian". [20]

De los gráficos antes mostrados se resume:

- Los valores de irradiación de todos los meses con inclinación a 90°, son los más bajos en comparación con los valores con inclinación a 0°, 6°/5° y 21°/20°.
- Se evidencia que los valores de irradiación con inclinación a 0°, 6°/5° y 21°/20°, presentan variaciones pequeñas.
- El mes de mayor irradiación de todos los centros poblados (excepto por los centros poblados "Chillaca", "Paja Blanca", "Vinguar Chico", y "San Sebastian") es noviembre; por el contrario, el mes de menor irradiación de todos los centros poblados (excepto por el centro poblado "San Sebastian") es junio. Cabe resaltar que esta comparación se logró con los valores de irradiación con inclinación a 0°, 6°/5° y 21°/20°, debido a que estos son muy similares (como se explicó en punto anterior).

*Además se puede concluir que el valor mínimo de la irradiación mínima según la "NASA Surface Meteorology and Solar Energy" es:

Inclinación	Irradiación Mínima (kWh/m2/día)
0°	2,98
5°	3,75
6°	3,05
20°	3,94
21°	3,14
90°	1,76

Tabla 15: Irradiación mínima incidente en una superficie inclinada con orientación ecuatorial

4.2.4. RETScreen Expert

RETScreen es un software que analiza la viabilidad de proyectos relacionados con las energías renovables, cogeneración y eficiencia energética. Como dato adicional, también permite analizar el rendimiento energético operativo. [21]

RETScreen permite a sus usuarios identificar, evaluar y optimizar rápidamente la viabilidad financiera y técnica de potenciales proyectos de energías renovables. Este software también permite determinar de manera real, el rendimiento de las instalaciones, así como detectar las oportunidades de ahorro de energía. [21]

Debido a que la mayoría de los datos obtenidos por este software no varían, se ha codificado cada centro poblado para poder ser representados con mayor facilidad. La codificación es la siguiente:

Tabla 16: Codificación de los Centros Poblados

Centro Poblado	Código
Botijilla	CP-1
Chillaca	CP-2
Cueva Blanca	CP-3
El Carrizo	CP-4
El Sauce	CP-5
Huaca de Toro	CP-6
Huamachuco	CP-7
Lique	CP-8
Los Pinos	CP-9
Molino	CP-10
Muy Finca Rama Diaz	CP-11
Nueva Jerusalén	CP-12
Paja Blanca	CP-13
Palo Blanco	CP-14
Pueblo Nuevo	CP-15
San Sebastian	CP-16
Señor de la Humidad	CP-17
Vinguar Chico	CP-18
Walcochala	CP-19
Yerba Santa	CP-20

La base de datos de la irradiación solar diaria horizontal (kWh/m2/d) según el software "RETScreen Expert" se muestra en el Anexo 9.

De acuerdo con la codificación de los centros poblados y la repetición de datos de radiación debido a la pequeña variación de valores de latitud y longitud de los antes mencionados, la irradiación según los meses del año se presenta en la siguiente tabla.

Tabla 17: Irradiación Solar diaria-horizontal según los meses de los Centros Poblados. [21]

Mes	CP-1,2,3,5,10,12,13,14,17,18	CP-4,6,9,11,15,16,20	CP-7,8,19
Enero	5,27	6,62	4,16
Febrero	5,00	6,59	3,93
Marzo	5,45	6,66	4,25
Abril	5,14	6,42	4,24
Mayo	4,98	5,40	4,31
Junio	4,89	4,21	4,22
Julio	5,02	4,01	4,31
Agosto	5,54	4,34	4,62
Septiembre	6,15	4,99	4,95
Octubre	6,08	5,54	4,94
Noviembre	6,10	5,96	5,15
Diciembre	5,67	6,34	4,63
Anual	5,44	5,59	4,48

De manera gráfica la variación de la irradiación solar de los Centros Poblados según los meses se presenta a continuación.

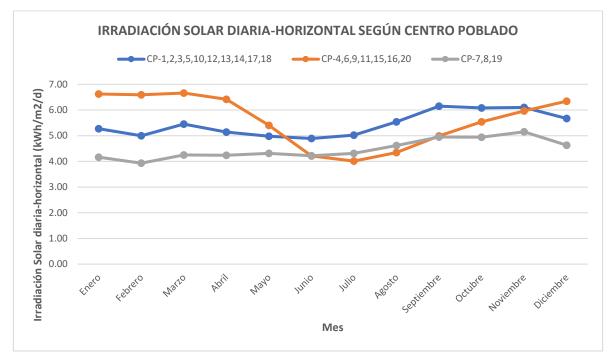


Gráfico 35: Irradiación Solar diaria-horizontal según Centro Poblado durante los meses del año. [21]

*De los datos obtenidos, se puede concluir que el valor mínimo de irradiación según "RETScreen Expert" es 3,93 kWh/m²/d.

4.2.5. Meteonorm

Es un software cuya base de datos consta de más de 8 000 estaciones meteorológicas, cinco satélites geoestacionarios y una climatología de aerosol calibrada a nivel mundial. Sobre esta base, los sofisticados modelos de interpolación, basados en más de 30 años de experiencia, brindan resultados con alta precisión en todo el mundo. Meteonorm incluye dos de los mejores modelos de minutos en el mercado para simulaciones confiables de grandes plantas fotovoltaicas o sistemas de administración de energía y batería. [22]

Meteonorm brinda datos de irradiación global diaria, temperatura diaria, irradiación, temperatura, precipitación, duración de la insolación, entre otros. En su versión gratuita el periodo de irradiación de la base de datos es 1991-2010. El interfaz del software es muy intuitivo, como se muestra a continuación. [22]

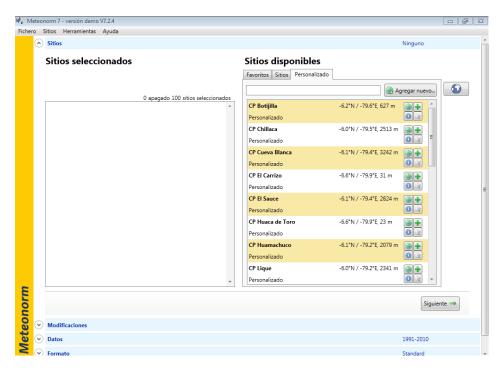


Figura 27: Interfaz del software "Meteonorm 7". [22]

En el Anexo 10 se muestra los datos obtenidos del software "Meteonorm", sobre la irradiación global de cada centro poblado según el ángulo de inclinación.

A continuación, se mostrará la variación de la irradiación global en una superficie inclinada según el ángulo de inclinación $(0^{\circ},6^{\circ}/5^{\circ},\,21^{\circ}/20^{\circ}\,y\,90^{\circ})$, de cada centro poblado según los meses del año

- Centro Poblado Botijilla

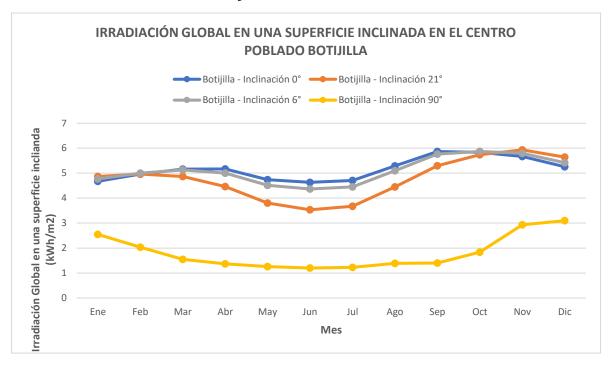


Gráfico 36: Irradiación global en una superficie inclinada en el centro poblado "Botijilla". [22]

- Centro Poblado Chillaca

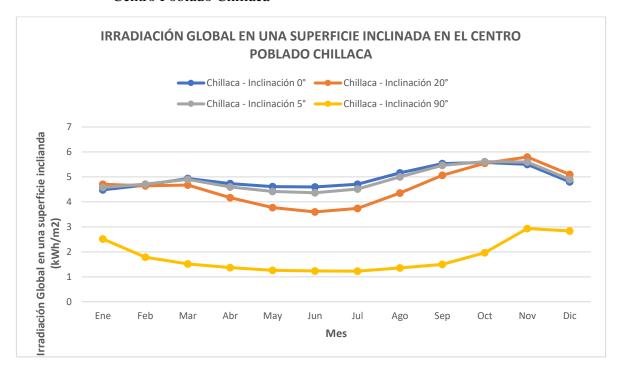


Gráfico 37: Irradiación global en una superficie inclinada en el centro poblado "Chillaca". [22]

- Centro Poblado Cueva Blanca

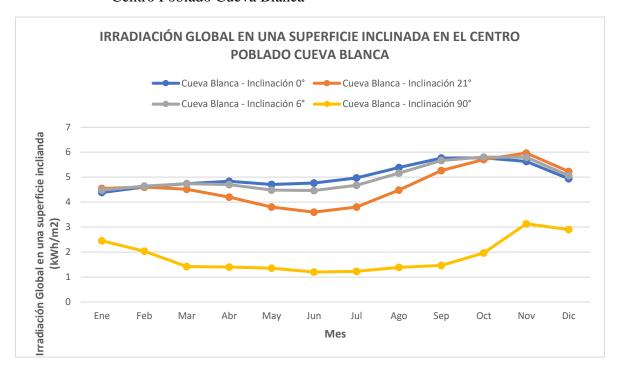


Gráfico 38: Irradiación global en una superficie inclinada en el centro poblado "Cueva Blanca". [22]

- Centro Poblado El Carrizo

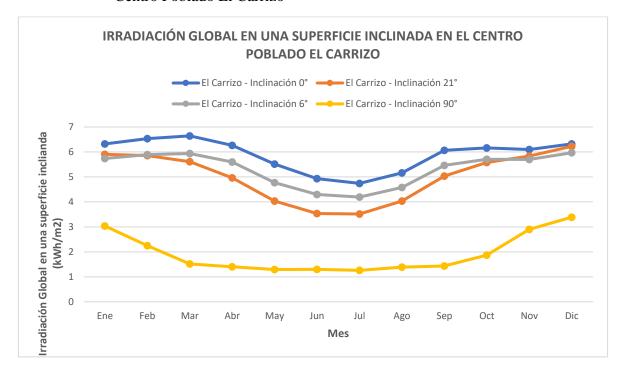


Gráfico 39: Irradiación global en una superficie inclinada en el centro poblado "El Carrizo". [22]

- Centro Poblado El Sauce

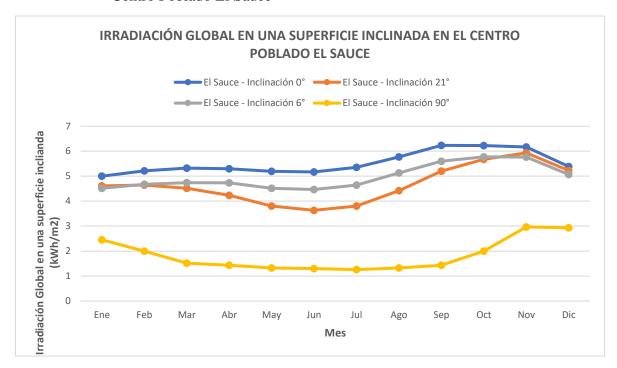


Gráfico 40: Irradiación global en una superficie inclinada en el centro poblado "El Sauce". [22]

- Centro Poblado Huaca de Toro

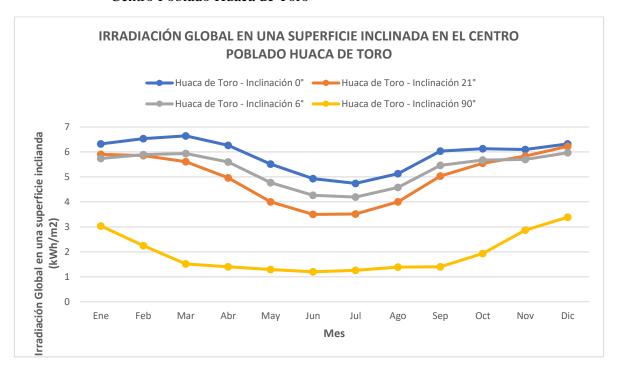


Gráfico 41: Irradiación global en una superficie inclinada en el centro poblado "Huaca de Toro". [22]

- Centro Poblado Huamachuco

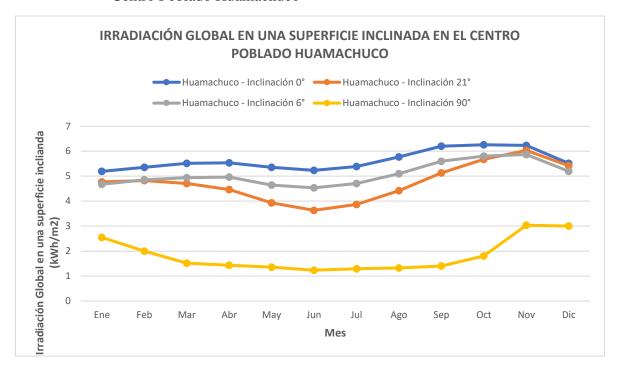


Gráfico 42: Irradiación global en una superficie inclinada en el centro poblado "Huamachuco". [22]

- Centro Poblado Lique

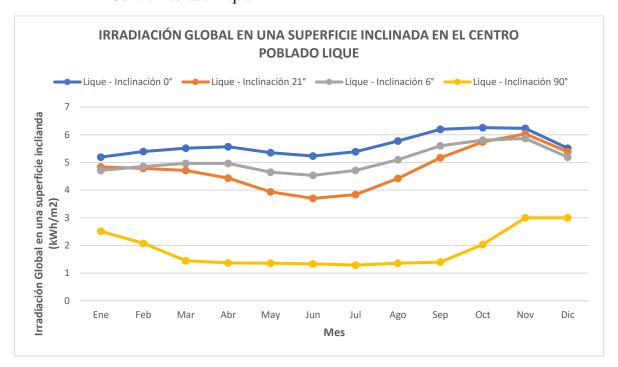


Gráfico 43: Irradiación global en una superficie inclinada en el centro poblado "Lique". [22]

- Centro Poblado Los Pinos

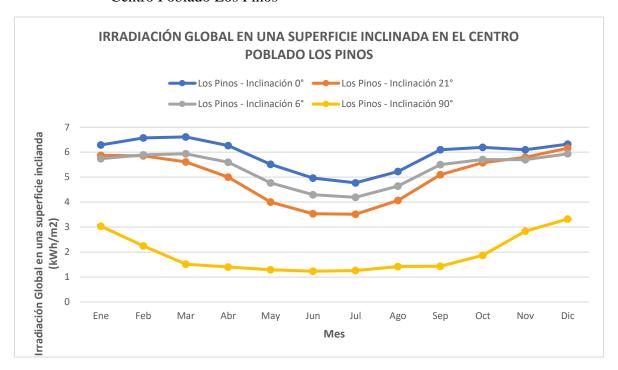


Gráfico 44: Irradiación global en una superficie inclinada en el centro poblado "Los Pinos". [22]

- Centro Poblado Molino

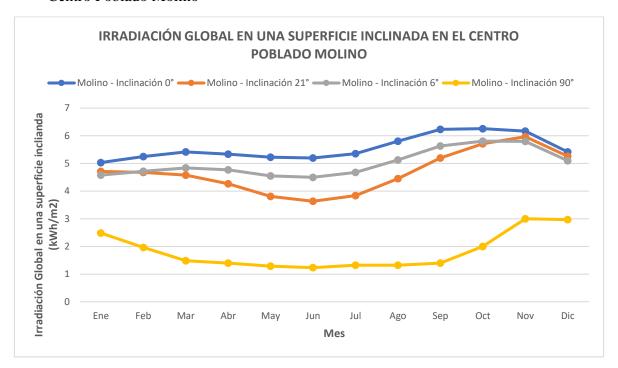


Gráfico 45: Irradiación global en una superficie inclinada en el centro poblado "Molino". [22]

- Centro Poblado Muy Finca Rama Diaz

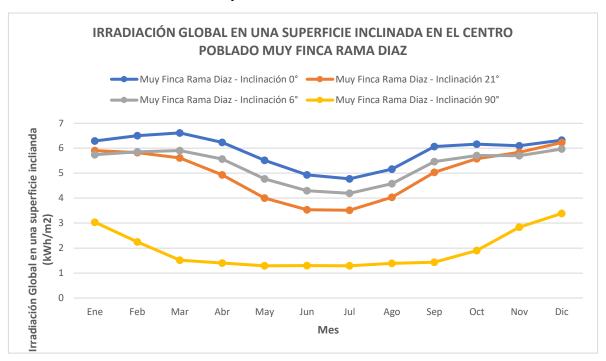


Gráfico 46: Irradiación global en una superficie inclinada en el centro poblado "Muy Finca Rama Diaz". [22]

Centro Poblado Nueva Jerusalén

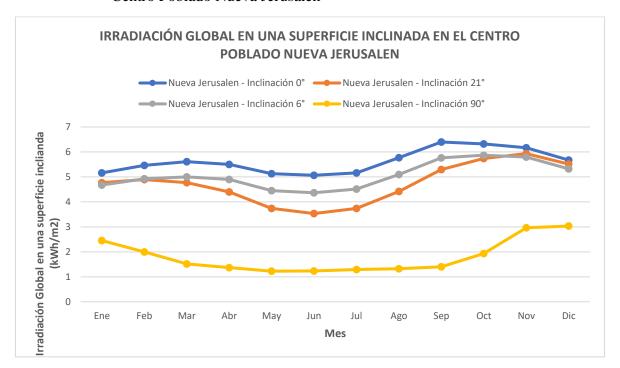


Gráfico 47: Irradiación global en una superficie inclinada en el centro poblado "Nueva Jerusalén". [22]

- Centro Poblado Paja Blanca

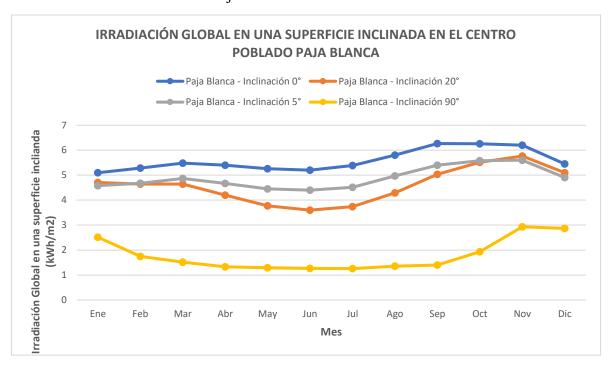


Gráfico 48: Irradiación global en una superficie inclinada en el centro poblado "Paja Blanca". [22]

- Centro Poblado Palo Blanco

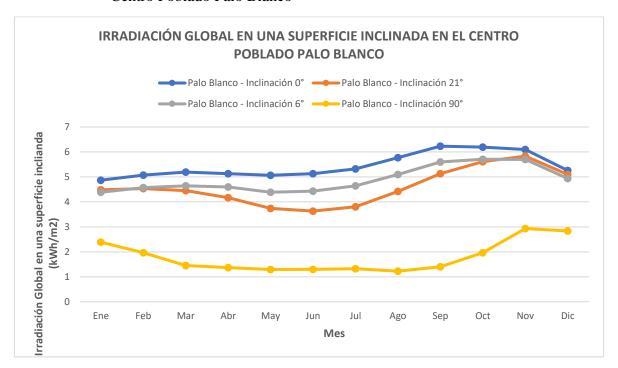


Gráfico 49: Irradiación global en una superficie inclinada en el centro poblado "Palo Blanco". [22]

- Centro Poblado Pueblo Nuevo

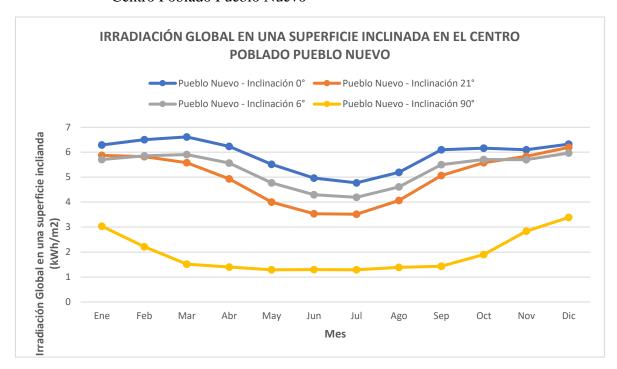


Gráfico 50: Irradiación global en una superficie inclinada en el centro poblado "Pueblo Nuevo". [22]

- Centro Poblado San Sebastian

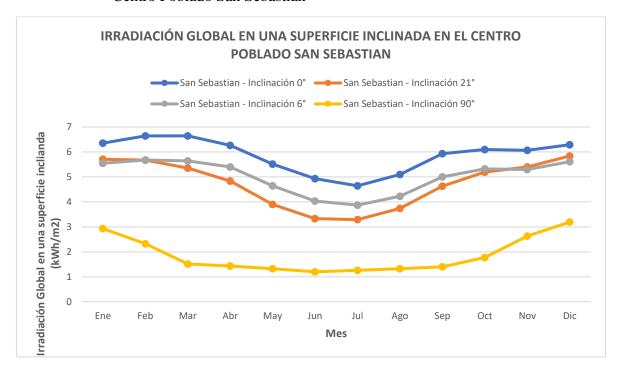


Gráfico 51: Irradiación global en una superficie inclinada en el centro poblado "San Sebastian". [22]

- Centro Poblado Señor de la Humildad

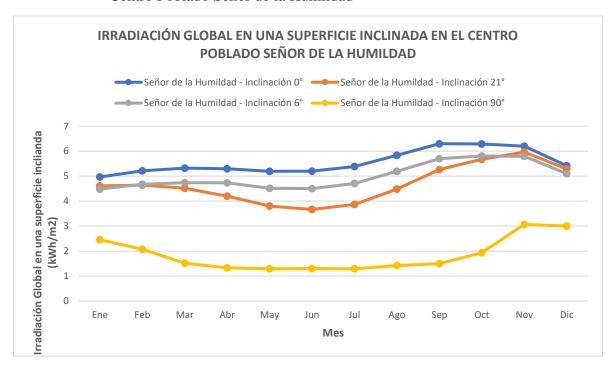


Gráfico 52: Irradiación global en una superficie inclinada en el centro poblado "Señor de la Humildad". [22]

- Centro Poblado Vinguar Chico

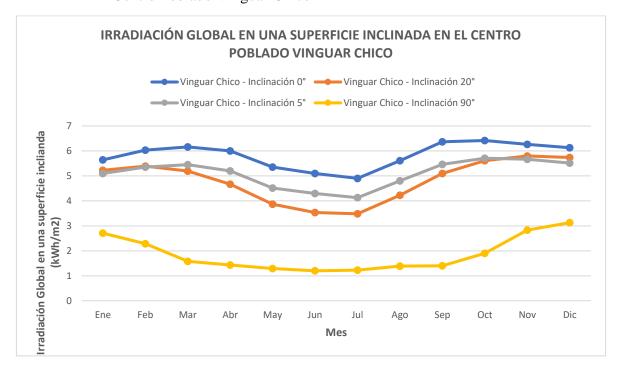


Gráfico 53: Irradiación global en una superficie inclinada en el centro poblado "Vinguar Chico". [22]

- Centro Poblado Walcochala

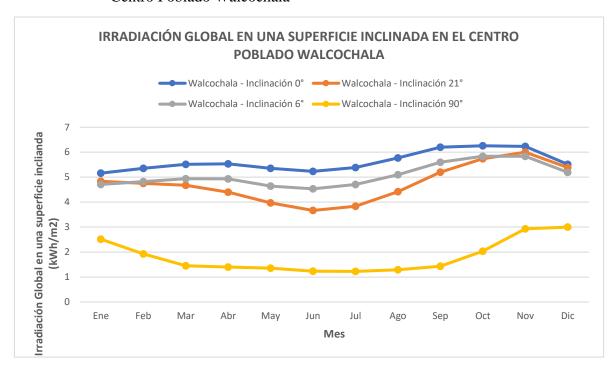


Gráfico 54: Irradiación global en una superficie inclinada en el centro poblado "Walcochala". [22]

- Centro Poblado Yerba Santa

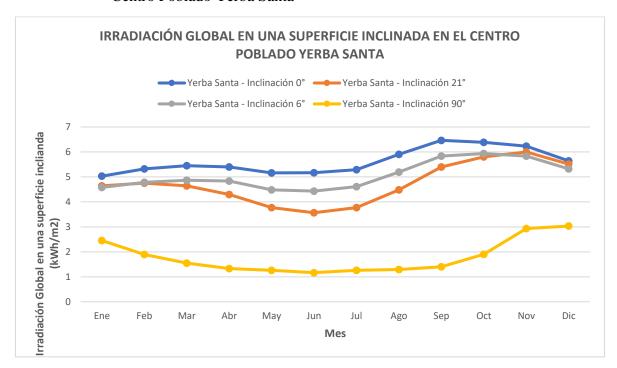


Gráfico 55: Irradiación global en una superficie inclinada en el centro poblado "Yerba Santa". [22]

*Se puede concluir que el valor mínimo de la irradiación global en una superficie inclinada según el software "Meteonorm" es:

Tabla 18: Irradiación global mínima en una superficie inclinada. [22]

Inclinación	Irradiación Mínima (kWh/m2/día)
0°	4,39
5°	4,13
6°	3,87
20°	3,48
21°	3,29
90°	1,17

Después de haber analizado los resultados de cada una de las fuentes de data sobre irradiación solar, se ha decidido comparar los resultados en un solo gráfico para cada centro poblado de manera que se tenga una visión más general.

Algunas consideraciones a tener en cuenta, para la posterior comparación son:

- Para los datos que están categorizados de acuerdo con ángulo de inclinación (0°, 5°, 6°, 20°, 21°, 90°) según la "NASA" y el software "Meteonorm"; solo serán considerados aquellos que tengan el ángulo igual a 0°.
- Los datos proporcionados por el software "RETScreen Expert" son valores promedios de acuerdo con los meses del año.
- Los valores extraídos de la plataforma web "Global Solar Atlas" son únicos para cada centro poblado, indiferentemente del mes; por ello estos serán representados como valores continuos durante todo el año.
- Debido a que el "Atlas de Energía Solar del Perú" brinda intervalos de irradiación solar de solo 4 meses del año, se utilizará un mes antes de los brindados para representar el valor menor del intervalo y el mes brindado para representar el valor mayor.

A continuación, se mostrará un gráfico de irradiación solar para cada centro poblado según la fuente y el mes, al finalizar se resumirá en un cuadro el valor mínimo de irradiación solar para cada centro poblado y con esto se obtendrá el valor mínimo de todos los centros poblados.

Se utilizará el valor mínimo para garantizar que en los meses de mayor irradiación el sistema funciones correctamente sea cual sea el centro poblado visitado.

Cabe resaltar que la data de las gráficas que serán presentadas a continuación se muestra en el Anexo 11.

- Centro Poblado Botijilla

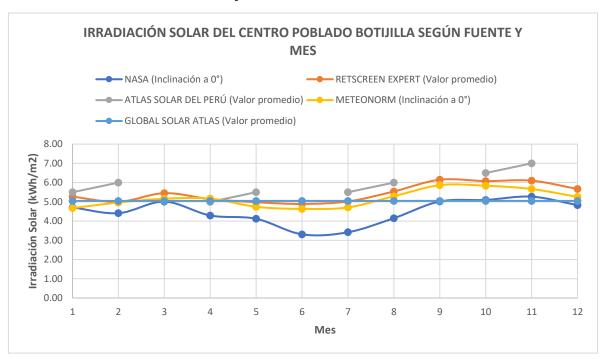


Gráfico 56: Irradiación Solar del centro poblado "Botijilla" según fuente y mes.

- Centro Poblado Chillaca

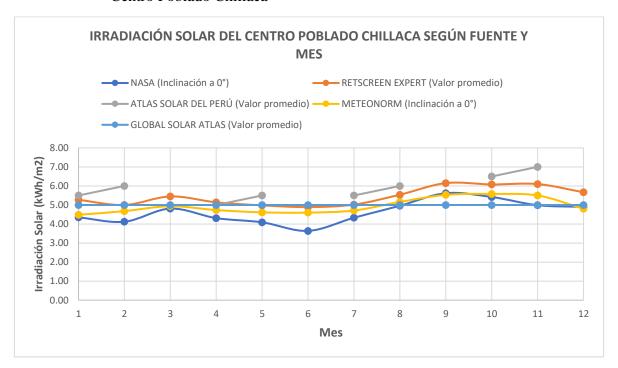


Gráfico 57: Irradiación Solar del centro poblado "Chillaca" según fuente y mes.

- Centro Poblado Cueva Blanca

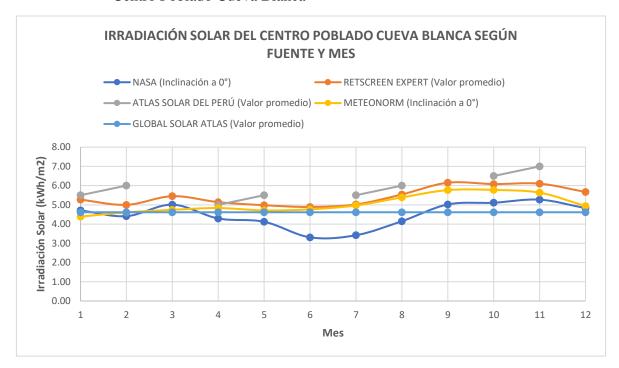


Gráfico 58: Irradiación Solar del centro poblado "Cueva Blanca" según fuente y mes.

- Centro Poblado El Carrizo

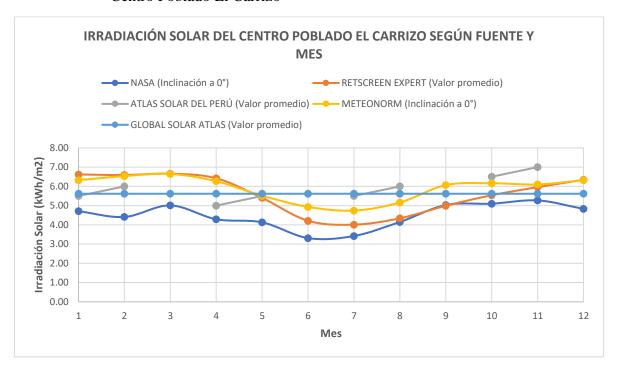


Gráfico 59: Irradiación Solar del centro poblado "El Carrizo" según fuente y mes.

- Centro Poblado El Sauce

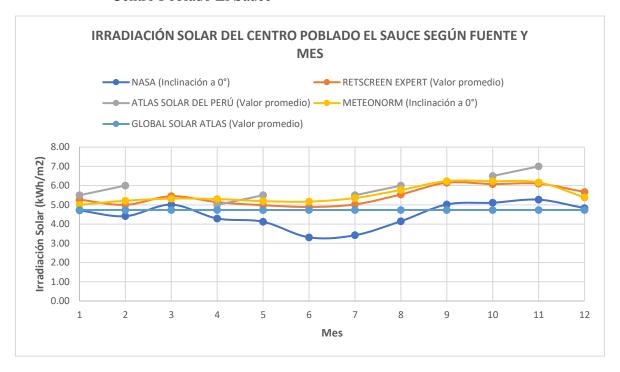


Gráfico 60: Irradiación Solar del centro poblado "El Sauce" según fuente y mes.

- Centro Poblado Huaca de Toro

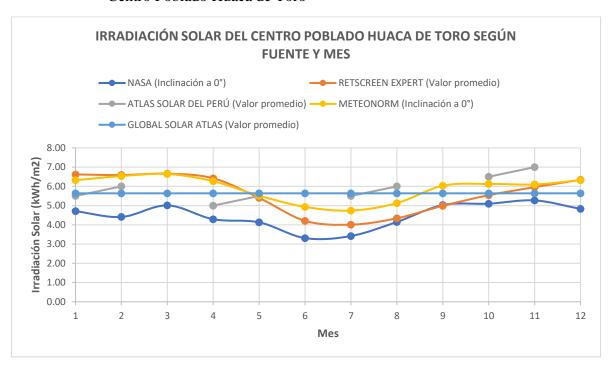


Gráfico 61: Irradiación Solar del centro poblado "Huaca de Toro" según fuente y mes.

- Centro Poblado Huamachuco

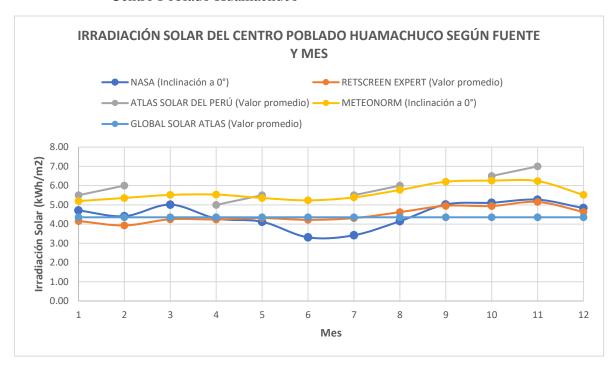


Gráfico 62: Irradiación Solar del centro poblado "Huamachuco" según fuente y mes.

- Centro Poblado Lique

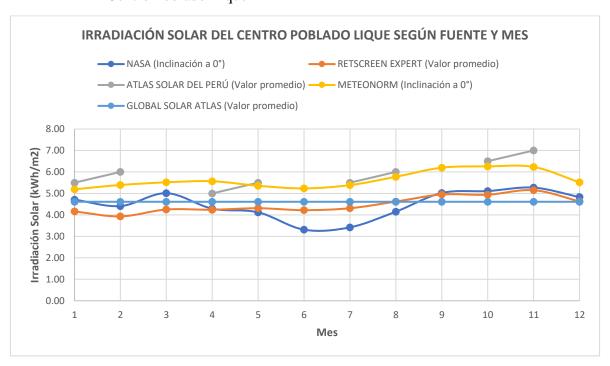


Gráfico 63: Irradiación Solar del centro poblado "Lique" según fuente y mes.

- Centro Poblado Los Pinos

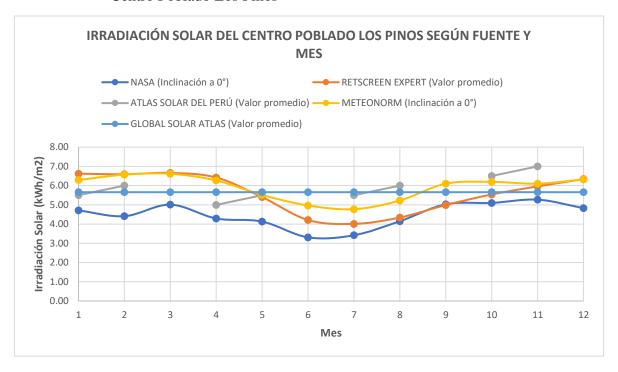


Gráfico 64: Irradiación Solar del centro poblado "Los Pinos" según fuente y mes.

- Centro Poblado Molino

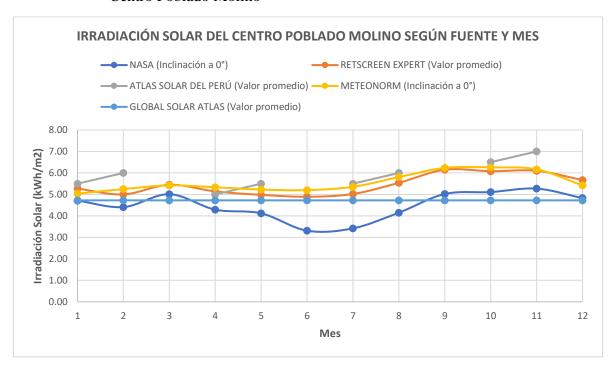


Gráfico 65: Irradiación Solar del centro poblado "Molino" según fuente y mes.

- Centro Poblado Muy Finca Rama Diaz

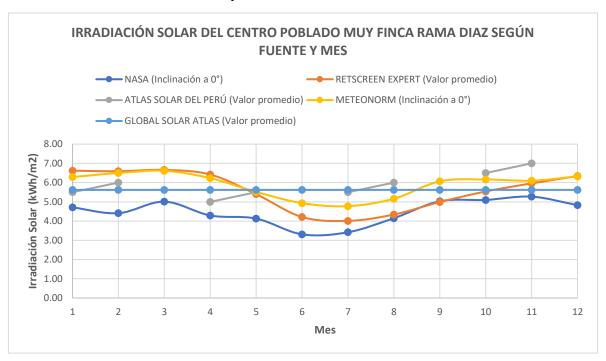


Gráfico 66: Irradiación Solar del centro poblado "Muy Finca Rama Diaz" según fuente y mes.

- Centro Poblado Nueva Jerusalén

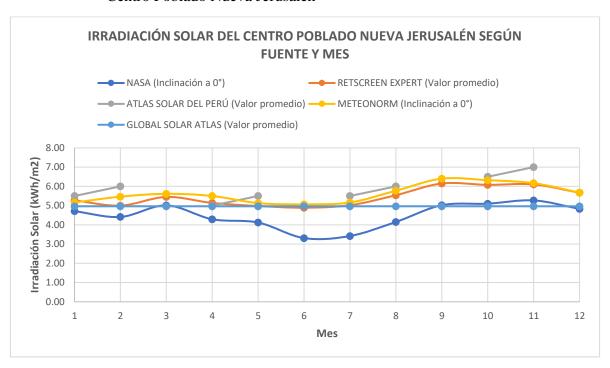


Gráfico 67: Irradiación Solar del centro poblado "Nueva Jerusalén" según fuente y mes.

- Centro Poblado Paja Blanca

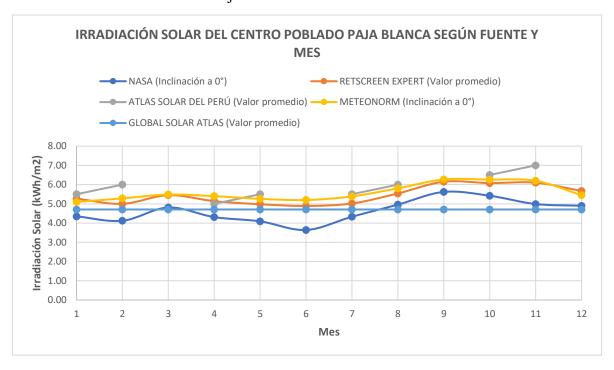


Gráfico 68: Irradiación Solar del centro poblado "Paja Blanca" según fuente y mes.

- Centro Poblado Palo Blanco

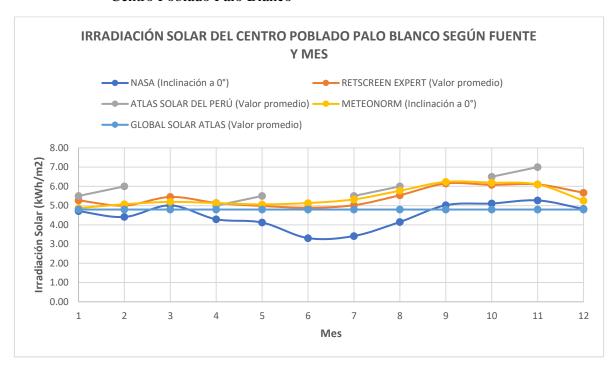


Gráfico 69: Irradiación Solar del centro poblado "Palo Blanco" según fuente y mes.

- Centro Poblado Pueblo Nuevo

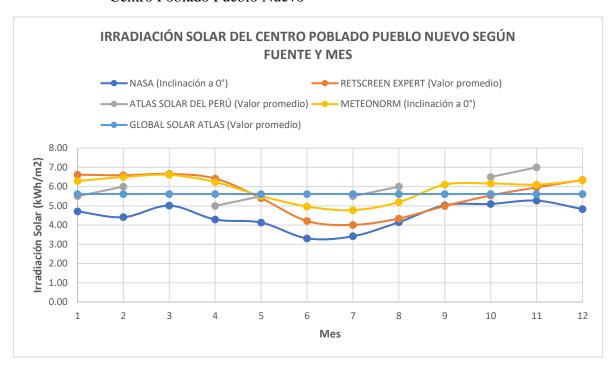


Gráfico 70: Irradiación Solar del centro poblado "Pueblo Nuevo" según fuente y mes.

- Centro Poblado San Sebastián

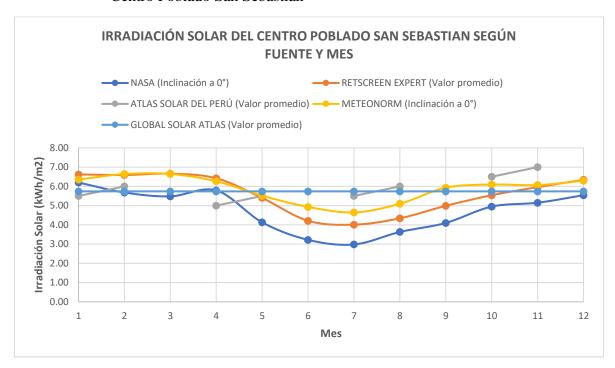


Gráfico 71: Irradiación Solar del centro poblado "San Sebastian" según fuente y mes.

- Centro Poblado Señor de la Humildad

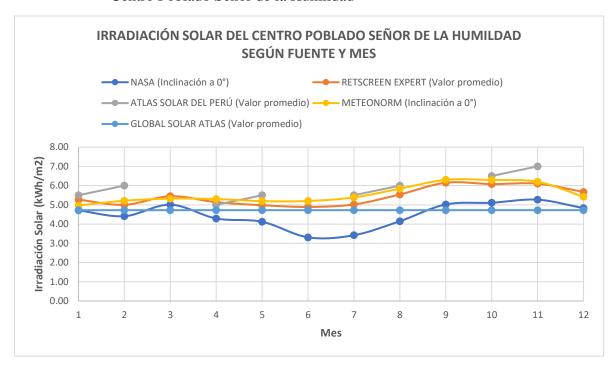


Gráfico 72: Irradiación Solar del centro poblado "Señor de la Humildad" según fuente y mes.

- Centro Poblado Vinguar Chico

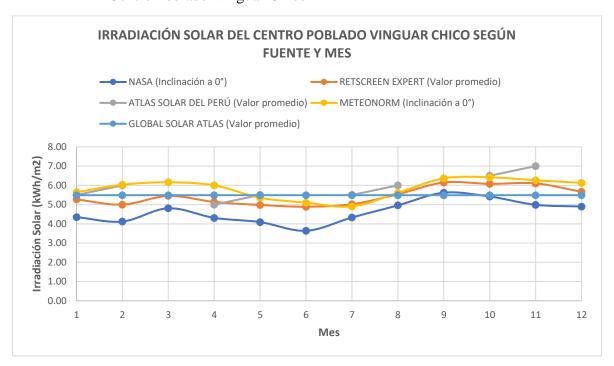


Gráfico 73: Irradiación Solar del centro poblado "Vinguar Chico" según fuente y mes.

- Centro Poblado Walcochala

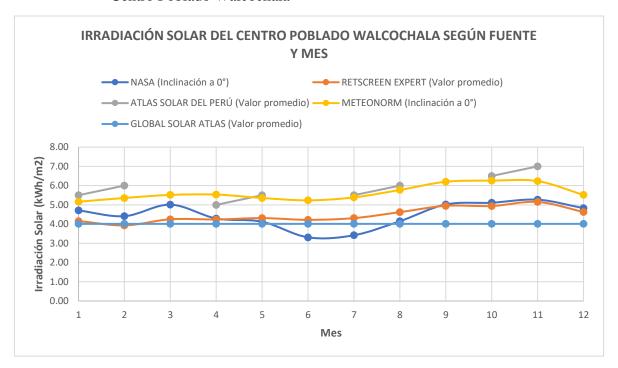


Gráfico 74: Irradiación Solar del centro poblado "Walcochala" según fuente y mes.

- Centro Poblado Yerba Santa

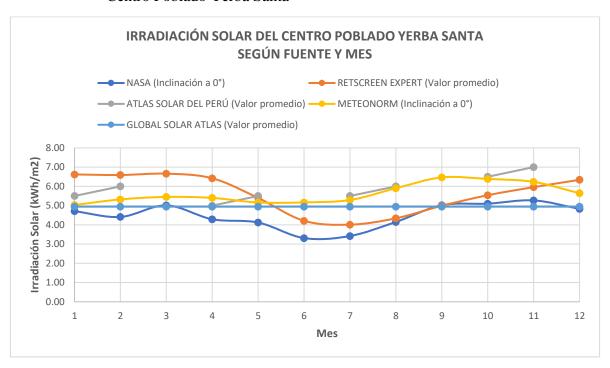


Gráfico 75: Irradiación Solar del centro poblado "Yerba Santa" según fuente y mes.

El resultado de la comparación se presenta en el siguiente cuadro:

Tabla 19: Cuadro resumen de la irradiación mínima de cada centro poblado.

Centro Poblado	Irradiación mínima (kWh/m2)
Botijilla	3.31
Chillaca	3.64
Cueva Blanca	3.31
El Carrizo	3.31
El Sauce	3.31
Huaca de Toro	3.31
Huamachuco	3.31
Lique	3.31
Los Pinos	3.31
Molino	3.31
Muy Finca Rama Diaz	3.31
Nueva Jerusalén	3.31
Paja Blanca	3.64
Palo Blanco	3.31
Pueblo Nuevo	3.31
San Sebastian	2.98
Señor de la Humidad	3.31
Vinguar Chico	3.64
Walcochala	3.31
Yerba Santa	3.31

^{*}Después de haber comparado la irradiación solar de cada centro poblado en cada mes del año, se puede concluir que el valor mínimo de irradiación solar es 2,98 kWh/m². Con este valor de irradiación se puede garantizar que, en los meses siguientes de mayor irradiación, el sistema funcionará correctamente.

4.3. Diseño del sistema fotovoltaico

4.3.1. Método 1

Este método de dimensionamiento de sistemas fotovoltaicos está basado en el desarrollado por Miguel Pareja Aparicio [12].

4.3.1.1. Determinación de las necesidades de la Unidad Médica Móvil

Antes de empezar con el dimensionamiento del sistema fotovoltaico, primero se debe identificar los Equipos Biomédicos que posee la Unidad Médica Móvil ya que representan la demanda energética por satisfacer.

4.3.1.1.1. Identificación de los Dispositivos Médicos

El "Portal de Transparencia Estándar" es un portal web que brinda toda la información pública de las entidades del Estado Peruano. En el apartado de "Acceso a la información"

mediante una solicitud web con respuesta a un correo electrónico, se pudo acceder al "Acta de Recepción y Entrega de Bienes" (que se muestra en el Anexo 12) sobre la adquisición de unidades móviles para el proyecto "MEJORAMIENTO DEL ACCESO A LOS SERVICIOS ESPECIALIZADOS DE SALUD EN GINECOLOGÍA, PEDIATRÍA E IMAGENOLOGÍA A TRAVÉS DE UNIDADES MÓVILES PARA LA POBLACIÓN DE ZONAS DISPERSAS Y EXCLUIDAS EN EL DEPARTAMENTO DE LAMBAYEQUE".

En el documento antes mencionado se detallan las características de las dos Unidades Médicas Móviles, así como las especificaciones técnicas.

A continuación, se detallará dichas especificaciones según el tipo de Unidad Médica Móvil:

- Unidad Médica Móvil I: Equipada para Ginecología, Pediatría y Farmacia

o Marca: IVECO

o Tipo: Tractor Remolcador

o Modelo: Eurocargo 180E 28 4x2

Procedencia: Europea Año de Fabricación: 2013

Tipo: Turbo Diesel Intercooler

Motor: IVECO Tector F4AEO661AC

o Garantía: 02 años

o Tarjetas de propiedad, placas, Registro SUNARP, SOAT e Instalación

Garantía: 50 meses

Las especificaciones técnicas o dispositivos médicos que presenta la Unidad Médica Móvil I, se muestran a continuación:

Tabla 20: Dispositivos médicos de la Unidad Médica Móvil I. [23]

Dispositivo Médico	Cantidad
Balanza mecánica de pie	1
Balanza Pediátrica digital	1
Bote metálico	1
Coche de curaciones	1
Computadora portátil	1
Cubeta de acero 25x14	1
Cubeta acero 32x22x6	1
Detector de latidos fetal	1
Escalinata metálica	1
Estabilizador voltaje	1
Estetoscopio Neonatal, pediátrico y adulto	1
Impresora láser	1
Lámpara cuello ganso	1
Linterna mano	1
Mesa divan examen ginecológico	1

Tabla 21: Dispositivos médicos de la Unidad Médica Móvil II. (continuación) [23]

Dispositivo Médico	Cantidad
Divans examen médico	1
Monitor fetal	1
Pantoscopio pediátrico	1
Riñonera set x 3	1
Set instrumentos partos	1
Set instrumentos ex. Gineobstetrico	1
Curaciones	1
Tambor para gasa	3
Tensiómetro aneroide pediátrico, adulto	1
Video colposcopio	1
Escritorio	1
Silla giratoria	1
Silla apilable	1

- Unidad Médica Móvil II: Equipada para Ecografía y Rayos X

o Marca: IVECO

o Tipo: Tractor Remolcador

o Tipo: Turbo Diesel

Motor: IVECO Tector F4AEO681ACModelo: Eurocargo 180E 28 4x2

Procedencia: Europea Año de Fabricación: 2013

o Garantía: 02 años

Las especificaciones técnicas o dispositivos médicos que presenta la Unidad Médica Móvil II, se muestran a continuación:

Tabla 22: Dispositivos médicos de la Unidad Médica Móvil II. [23]

Dispositivo Médico	Cantidad
Bote metálico	1
Computadora portátil	1
Ecógrafo Doppler color 4D	1
Equipo de Rayos X	1
Clasificador Equipo Biomédico	1
Escalinata de 1 paso	1
Estabilizador voltaje	1
Mandil de plomo	1
Mesa divan para examen médico	1
Negatoscopio de 02 campos de acero inoxidable	1
Números de plomo	1
UPS 1500 VA true online	1

**EN EL PRESENTE TRABAJO SOLO SE CONSIDERARÁN LOS EQUIPOS BIOMÉDICOS DE LA UNIDAD MÉDICA MÓVIL I, DEJANDO ABIERTA LA POSIBILIDAD DE UN ESTUDIO DE INVESTIGACIÓN A FUTURO BASADO EN LOS EQUIPOS BIOMÉDICOS DE LA UNIDAD MÉDICA MÓVIL II.

4.3.1.1.2. Medición del remolque de la Unidad Médica Móvil

Una vez identificada la Unidad Médica Móvil a analizar (Unidad Médica Móvil I), se procede a realizar las mediciones correspondientes del remolque, tal y como se muestran en las siguientes figuras.

Figura 28: Unidad Médica Móvil I.

Figura 29: Medición del ancho del remolque de la Unidad Médica Móvil I.

Figura 30: Medición de la longitud del remolque de la Unidad Médica Móvil I.

Los resultados de las mediciones son las siguientes:

Longitud del remolque de la Unidad Médica Móvil I:
Ancho del remolque de la Unidad Médica Móvil I:
Altura del remolque de la Unidad Médica Móvil I:
2,58 m
2,83 m

Algunos datos adicionales de la Unidad Médica Móvil I son:

- El generador que posee la Unidad Médica Móvil I funciona a gas.
- El generador a gas necesita 4 balones a gas de 10 kg cada uno.
- Los 4 balones de gas ofrecen una autonomía de 12 horas ininterrumpidas para los equipos biomédicos.

4.3.1.1.3. Identificación de los Equipos Biomédicos

Teniendo en cuenta la definición de "Equipos Biomédicos" y después de haber realizado la consulta de catálogos, fichas técnicas, páginas web, entre otros (adjuntos en el Anexo 13); se llegó a la conclusión que los Equipos Biomédicos presentes en la Unidad Médica Móvil I son:

Tabla 23: Equipos Biomédicos presentes en la Unidad Médica Móvil I.

Dispositivo Médico	Cantidad	¿Es Equipo Biomédico?
Balanza mecánica de pie	1	NO NO
Balanza Pediátrica digital	1	SI
Bote metálico	1	NO
Coche de curaciones	1	NO
Computadora portátil	1	SI
Cubeta de acero 25x14	1	NO
Cubeta acero 32x22x6	1	NO
Detector de latidos fetal	1	SI
Escalinata metálica	1	NO
Estabilizador voltaje	1	SI
Estetoscopio Neonatal, pediátrico y adulto	1	NO
Impresora láser	1	SI
Lámpara cuello ganso	1	SI
Linterna mano	1	NO
Mesa divan examen ginecológico	1	NO
Divans examen médico	1	NO
Monitor fetal	1	SI
Pantoscopio pediátrico	1	NO
Riñonera set x 3	1	NO
Set instrumentos partos	1	NO
Set instrumentos ex. Gineobstetrico	1	NO
Curaciones	1	NO
Tambor para gasa	3	NO
Tensiómetro aneroide pediátrico, adulto	1	NO
Video colposcopio	1	SI
Escritorio	1	NO
Silla giratoria	1	NO
Silla apilable	1	NO

4.3.1.2. Cálculo de la potencia máxima

Algunas consideraciones que se han tomado para determinar la potencia de los Equipos Biomédicos son:

- No se considerará a la "Linterna de mano" como un Equipo Biomédico, ni su potencia dentro del cálculo.
- Existen Equipos Biomédicos que son alimentados por baterías; éstas serán consideradas como "baterías recargables".
- Será tomado en consideración la potencia de un "Cargador de baterías" como reemplazo de la potencia de las baterías en cada Equipo Biomédico que las utilice.
- Debido a que la potencia de la "Impresora láser" es variable en función de los modos de consumo (modo de funcionamiento promedio, modo listo, modo de ahorro de energía, modo de apagado), esta será considerada con las horas de funcionamiento en un solo apartado.
- Se considerará a la potencia del "Estabilizador voltaje" como 2 W, representando la potencia del led de iluminación dentro del mismo.

Con base en las fichas técnicas, páginas web y catálogos; se ha podido determinar la potencia en Watts de cada Equipo Biomédico. A continuación, se detalla lo mencionado con anterioridad.

Equipo Biomédico	Potencia (W)
Balanza Pediátrica digital	28,6
Computadora portátil	90
Detector de latidos fetal	28,6
Estabilizador voltaje	2
Impresora láser	300
Lámpara cuello ganso	66
Monitor fetal	50
Video colposcopio	20
	585,2

Tabla 24: Potencia (W) de cada Equipo Biomédico.

Para las horas de funcionamiento de los Equipos Biomédicos, se ha considerado lo siguiente:

- La jornada laboral diaria de atención médica (utilizando los Equipos Biomédicos) es de 8 horas.
- El tiempo de duración de la consulta médica es de 30 minutos.
- Por ende, el número de pacientes atendidos al día es de 16.

A continuación, se estimará el tiempo de uso de la "Impresora láser", sabiendo lo siguiente:

Tabla 25: Ítem y especificaciones de la Impresora láser.

Ítem	Especificación		
Equipo	Impresora Láser Monocromo		
Marca	Samsung		
Modelo	ML-1640 Series		

Tabla 26: Modos de consumo de la Impresora láser.

Modo	Potencia (W)
Funcionamiento promedio	300
Listo	70
Ahorro de energía	6
Apagado	0

A partir de ello se ha considerado que, en un intervalo de tiempo de 1 hora, la variación de potencia en función de los modos de funcionamiento es la siguiente:

Gráfico 76: Variación de potencia en función de los modos durante 1 hora.

Con base en lo anterior, se ha calculado el consumo (Wh) en 8 horas de utilización de la "Impresora láser", dando como resultado lo siguiente:

Tabla 27: Cálculo del consumo (Wh) en 8 horas de la "Impresora láser".

N° minutos	Potencia (W)	Consumo (Wmin)	Consumo (Wh)
10	6	60	1
5	300	1500	25
5	70	350	5,83
10	6	60	1
10	6	60	1
5	300	1500	25
5	70	350	5,83
10	6	60	1
60		Consumo (Wh) en 1 hora	65,67
		Consumo (Wh) en 8 horas	525,33

Teniendo como dato el valor de consumo (Wh) de la "Impresora láser" por las 8 horas de utilización, se ha calculado el consumo total de la Unidad Médica Móvil I.

2806,93

Equipo Biomédico	Potencia (W)	Horas de uso al día	Consumo (Wh)
Balanza Pediátrica digital	28,6	8	228,8
Computadora portátil	90	8	720
Detector de latidos fetal	28,6	8	228,8
Estabilizador voltaje	2	8	16
Impresora láser	300	8	525,33
Lámpara cuello ganso	66	8	528
Monitor fetal	50	8	400
Video colposcopio	20	8	160

Tabla 28: Consumo total (Wh) de los Equipos Biomédicos de la Unidad Médica Móvil I.

De manera de complemento gráfico, se ha realizado una curva de carga (durante 1 hora) de los Equipos Biomédicos considerando la variación de potencia de la "Impresora láser". La base de datos utilizada en el desarrollo de la curva de carga se muestra en el Anexo 14.

585,2

Gráfico 77: Curva de carga de los Equipos Biomédicos en 1 hora.

*Del apartado anterior, se puede concluir que el valor de consumo total de la Unidad Médica Móvil I es de 2806,9333 Wh al día, o dicho de otra manera 2,807 kWh al día.

4.3.1.2.1. Factor de carga

El factor de carga se define como un indicador de la eficiencia en el consumo y es el cociente entre el consumo promedio y la máxima demanda dentro de un tiempo. [24]

$$Factor \ de \ carga = \frac{Consumo \ promedio}{M\'{a}xima \ demanda * tiempo} \tag{51}$$

Factor de carga =
$$\frac{2806,9333 Wh}{(585,2 W)(8 h)} = 0,5995$$

Factor de carga =
$$59,95\%$$

4.3.1.3. Cálculo del consumo máximo

Una vez conocido el valor del consumo total, se determinará el valor de corriente máxima de la instalación. Para ello se necesita conocer el valor de la tensión del banco de baterías, [25] establece que se debe tener presente las siguientes consideraciones:

- 12 V si la potencia es menor que 1500 W.
- 24 V o 48 V si la potencia está entre 1500 y 5000 W.
- 48 V o 120 V si la potencia es mayor de 5000 W.

En este caso, como la potencia es de 585,2 W, la tensión del banco de baterías es de 12 V.

$$V_{bateria} = 12 [V]$$

Utilizando la ecuación que se encuentra en función de la corriente, potencia y tensión; se puede determinar el valor de la corriente máxima de la instalación, mediante la siguiente ecuación:

$$I_{inst_max} = \frac{P_{MAX}}{V_{bateria}} = \frac{P_{DC} + \frac{P_{max}}{\eta}}{V_{bateria}} = \frac{0 + \frac{2806.9333}{0.9}}{12}$$

$$I_{inst_max} = 259,9012 [Ah/d]$$

Para mantener un margen aceptable, se debe aumentar el valor de la corriente máxima de la instalación, antes calculado. A este valor se le denomina "factor de seguridad" o "margen de seguridad". De acuerdo con [12] el valor típico del factor de seguridad es de 20%, por lo que:

$$I_{max} = (1,2)(I_{inst_max}) = (1,2)(259,9012)$$

 $I_{max} = 311,8815 [Ah/d]$

Como siguiente paso, se calcularán las pérdidas totales (K_T). Tomando en consideración los valores asumidos por [25], entonces:

- Pérdidas debido a la autodescarga diaria de la batería (K_A): 0,005
- Pérdidas debido al rendimiento de la batería (K_B): 0,05
- Pérdidas debido al rendimiento del convertidor (K_c): 0,05
- Pérdidas debido al rendimiento del regulador (K_R): 0,1

- Otras pérdidas no contempladas (K_X): 0,005

Además, en el presente trabajo se considerará que [25]:

- Días de autonomía (D_{aut}): 2
- Profundidad de descarga (P_d): 55%

$$K_T = \left(1 - (K_B + K_C + K_R + K_X)\right) \left(1 - \frac{(K_A)(D_{aut})}{P_d}\right)$$

$$K_T = \left(1 - (0.05 + 0.05 + 0.1 + 0.005)\right) \left(1 - \frac{(0.005)(2)}{0.55}\right)$$

$$K_T = 0.780545$$

Una vez obtenido el valor de las pérdidas totales, se puede calcular el consumo máximo mediante la siguiente ecuación:

$$C_{max} = \frac{I_{max}}{K_T} = \frac{311,8815}{0,780545}$$

 $C_{max} = 399,5688 [Ah/d]$

4.3.1.4. Cálculo del número de paneles

Con el dato de consumo máximo C_{max} , y las "características del panel fotovoltaico", se puede calcular el número de paneles necesarios. Pero para ello, primero se debe elegir el panel fotovoltaico adecuado, de la variedad existente en el mercado.

"Autosolar energía del Perú" [26], es una empresa encargada de la venta y asesoramiento en materia de energía solar fotovoltaica; que mediante su página web, brinda a sus usuarios, las características y los precios de equipos para sistemas solares fotovoltaicos.

La base de datos de los paneles fotovoltaicos se muestra en el Anexo 15. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de panel fotovoltaico.

Para el desarrollo de la matriz de decisión se ha utilizado el software Microsoft Excel, donde los datos de las dimensiones del remolque de la Unidad Médica Móvil I, potencia máxima y consumo máximo son las siguientes:

Tabla 29: Dimensiones del remolque, cálculo de la potencia máxima y cálculo del consumo máximo en Excel.

DIMENSIONES DEL REMOLQUE DE LA UNIDAD MÉDICA MÓVIL			
LONGITUD	11	m	
ANCHO	2.58	m	
CÁLCULO DE LA POTENCIA MÁXIM	IA		
		ı	
CONSUMO EN CC	0	Wh	
CONSUMO EN CA	2806.93333	Wh	
POTENCIA DEMANDADA EN CC	0	W	
POTENCIA DEMANDADA EN CA	585.2	W	
CÁLCULO DEL CONSUMO MÁXIM	0		
		٠	
TENSIÓN DE LA BATERÍA (V _{BATERÍA})	12	V	
TENSIÓN CA (V _{CA})	220	V	
CORRIENTE MÁX. DE LA INSTALACIÓN (I _{INST_MAX})	259.9012	Ah/d	
IRRADIACIÓN SOLAR MÍNIMA (Rβ)	2980	Wh/m ²	
POTENCIA DE IRRADIACIÓN INCIDENTE (I _β)	1000	W/m ²	
HORAS DE PICO SOLAR (HPS $_{\beta}$)	2.98	h	
FACTOR DE SEGURIDAD	1.2		
CORRIENTE MÁXIMA (I _{MAX})	311.8815	1	
PÉRDIDAS DEBIDO A LA AUTODESCARGA DE LA BATERÍA (KA)	0.005		
PÉRDIDAS DEBIDO AL RENDIMIENTO DE LA BATERÍA (K _B)	0.05		
PÉRDIDAS DEBIDO AL RENDIMIENTO DEL CONVERTIDOR (Kc)	0.05		
PÉRDIDAS DEBIDO AL RENDIMIENTO DEL REGULADOR (KR)	0.1		
OTRAS PÉRDIDAS NO CONTEMPLADAS (K _x)	0.005		
DÍAS DE AUTONOMÍA (D _{AUT})	2	dia (s)	
PROFUNDIDAD DE DESCARGA (PD)	0.55	%	
PÉRDIDAS TOTALES (K _T)	0.7805455		
CONSUMO MÁXIMO (C _{MAX})	399.5686	Ah/d	

Con los valores de las dimensiones del remolque, la potencia máxima, el consumo máximo y la base de datos de los paneles fotovoltaicos; se estableció una tabla con los posibles escenarios utilizando cada uno de los paneles fotovoltaicos de la base de datos.

Tabla 30: Posibles escenarios utilizando cada panel fotovoltaico de la base de datos.

ESPECIFICACIÓN / ITEM	#SERIE_PANEL	#paralelo_panel	TOTAL DE MÓDULOS	ÁREA m²	PRECIO TOTAL S/
RED SOLAR RED165-36M	1	18	18	18.13968	15171.48
WAAREE WS-200/12V	1	14	14	20.6514	9749.88
YINGLI SOLAR YL145P-17B	1	19	19	18.9924	11957.27
SHINE SOLAR SHS150-36P	1	18	18	17.8488	10944.54
TAI ENERGY TAI 150Wp-156-36P	1	23	23	22.9908	13154.39
YINGLI SOLAR YL120P-17B	1	23	23	17.9124	11979.09
YINGLI SOLAR YL100P-17B	1	26	26	20.2488	11284.78
TAI ENERGY TAI 100Wp-156-36P	1	27	27	18.6327	10294.83
SHINE SOLAR SHS75-36P	1	36	36	18.8136	13464.72
TAI ENERGY TAI 80Wp-156-36P	1	33	33	22.7733	10065.99
YINGLI SOLAR YL70P-17B	1	39	39	19.8198	11002.29
YINGLI SOLAR YL320P-35B	1	18	18	34.99776	21605.04
TAI ENERGY TAI 300Wp-156-72P	1	20	20	38.80704	22877.4
CSUN CSUN 320-72P	1	17	17	32.91948	15430.73
YINGLI SOLAR YL200P-35B	1	28	28	37.0062	24505.04
WAAREE WS-200/24V	1	27	27	39.8277	20307.24

Los criterios utilizados son los siguientes:

- Total de módulos: debido a que se posee el limitante de las dimensiones del remolque, es conveniente que el número de módulos sea el mínimo.
- **Área:** debido a que se posee el limitante de las dimensiones del remolque, es conveniente que el área sea mínima.
- Precio total: es conveniente que el precio sea mínimo.

Los datos según los criterios son los siguientes:

Tabla 31: Datos según criterios de selección del panel fotovoltaico.

DATO / CRITERIO	TOTAL DE MÓDULOS	ÁREA	PRECIO TOTAL
MIN	14	17.8488	9749.88
MAX	39	39.8277	24505.04
DIF	25	21.9789	14755.16
APROX. DIF	40	40	24510
CANTIDAD DE INTERVALOS	5	5	5
INCREMENTO	8	8	4902

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 32: Intervalos y ponderaciones según criterios de selección del panel fotovoltaico.

N° INTERVALO / CRITERIO	TOTAL DE MÓDULOS	ÁREA	PRECIO TOTAL	PONDERACIÓN
1	[0,8)	[0,8)	[0,4902)	5
2	[8,16)	[8,16)	[4902,9804)	4
3	[16,24)	[16,24)	[9804,14706)	3
4	[24,32)	[24,32)	[14706,19608)	2
5	[32,40)	[32,40)	[19608,24510)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 33: Matriz de decisión del panel fotovoltaico.

ESPECIFICACIÓN / CRITERIO	TOTAL DE MÓDULOS	ÁREA m²	PRECIO TOTAL S/	PONDERACIÓN TOTAL
RED SOLAR RED165-36M	3	3	2	18
WAAREE WS-200/12V	4	3	4	48
YINGLI SOLAR YL145P-17B	3	3	3	27
SHINE SOLAR SHS150-36P	3	3	3	27
TAI ENERGY TAI 150Wp-156-36P	3	3	3	27
YINGLI SOLAR YL120P-17B	3	3	3	27
YINGLI SOLAR YL100P-17B	2	3	3	18
TAI ENERGY TAI 100Wp-156-36P	2	3	3	18
SHINE SOLAR SHS75-36P	1	3	3	9
TAI ENERGY TAI 80Wp-156-36P	1	3	3	9
YINGLI SOLAR YL70P-17B	1	3	3	9
YINGLI SOLAR YL320P-35B	3	1	1	3
TAI ENERGY TAI 300Wp-156-72P	3	1	1	3
CSUN CSUN 320-72P	3	1	2	6
YINGLI SOLAR YL200P-35B	2	1	1	2
WAAREE WS-200/24V	2	1	1	2

 $Como\ resultado,\ se\ determin\'o\ que\ el\ panel\ ``WAARE|WS-200/12\ V"\ es\ la\ mejor\ opci\'on,\ por\ lo\ que\ a\ continuaci\'on\ se\ muestran\ sus\ caracter\'isticas.$

Figura 31: Panel fotovoltaico WAARE/WS-200/12 V. [26]

Tabla 34: Características del panel fotovoltaico WAARE/WS-200/12 V. [26]

CÁLCULO DEL NÚMERO DE PANELES						
		1				
MODELO	WAAREE WS-200/12V					
TIPO DE CELDA		POLICRISTALINA				
POT. NOM (P _{MPP})		200	W			
TENSIÓN MÁX. (V _{MPP})		17,97	V			
CORRIENTE MÁX (I _{MPP})		11,13	Α			
TENSIÓN EN VACÍO (Voc)		22,97	V			
CORRIENTE CORTOCIRCUIT	O (I _{sc})	11,64	Α			
TENSIÓN NOMINAL		12	V			
TENSIÓN MÁX. DEL SISTEM	IA	1000	V			

Con las características del panel, a continuación, se calcula la energía generada por el mismo.

$$E_{Panel} = (I_{panel})(HPS)(\eta_{panel}) = (11,13)(2,98)(0,9)$$

$$E_{Panel} = 29,85066 \, Ah/d$$

Luego, se calcula el número de ramas necesarias en paralelo:

$$N\'umero_{paralelo_panel} \ge \frac{C_{max}}{E_{panel}} = \frac{399,5688}{29,85066} = 13,3856$$

$$N\'umero_{paralelo_panel} = 14$$

De igual forma, se calcula el número de módulos conectados en serie:

$$N\'umero_{serie_panel} \ge rac{V_{bater\'ia}}{V_{panel}} = rac{12}{12} = 1$$
 $N\'umero_{serie_panel} = 1$

Siendo un total de 14 módulos necesarios para abastecer la demanda de la Unidad Médica Móvil I.

Otro dato importante por conocer es el número de paneles que se pueden colocar encima del remolque de la Unidad Médica Móvil I, para tenerlo en consideración con respecto al número de paneles necesarios para abastecer la demanda. Las dimensiones del panel fotovoltaico elegido se muestran en la siguiente figura:

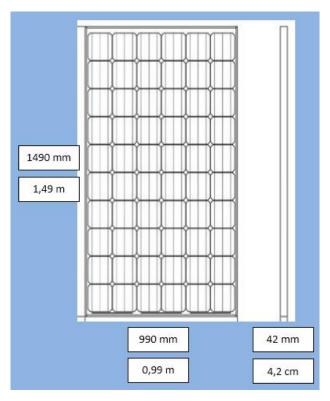


Figura 32: Dimensiones del panel fotovoltaico WAARE/WS-200/12 V. [26]

Longitud del panel: 1,49 m
Ancho del panel: 0,99 m
Profundidad: 4,2 cm

Considerando las medidas del remolque de la Unidad Médica Móvil I, se calculan el número máximo de paneles encima del remolque a lo largo y ancho.

- Opción 1:

$$N\'umero_{m\'ax_panel_remolque_longitud} < \frac{Longitud\ del\ remolque}{Longitud\ del\ panel} = \frac{11}{1,49} = 7,3825$$

$$N$$
úmero_{máx_panel_remolque_longitud} = 7

$$N\'umero_{m\'ax_panel_remolque_ancho} < \frac{Ancho\ del\ remolque}{Ancho\ del\ panel} = \frac{2,58}{0,99} = 2,6060$$

$$N$$
úmero_{máx panel remolgue ancho} = 2

Por lo tanto, el número máximo de paneles encima del remolque es de 14.

$$N\'umero_{m\'ax_panel_remolque} \ge N\'umero_{total_paneles}$$

$$14 paneles \ge 14 paneles$$

- Opción 2:

$$N\'umero_{m\'ax_panel_remolque_longitud} < \frac{Longitud\ del\ remolque}{Ancho\ del\ panel} = \frac{11}{0,99} = 11,1111$$

Número_{máx_panel_remolque_longitud} = 11

$$N$$
úmero_{máx_panel_remolque_ancho} $< \frac{Ancho del remolque}{Longitud del panel} = \frac{2,58}{1,49} = 1,7315$

$$N\'umero_{m\'ax_panel_remolque_ancho} = 1$$

Por lo tanto, el número máximo de paneles encima del remolque es de 11.

$$N\'umero_{m\'ax_panel_remolque} \ge N\'umero_{total_paneles}$$

$$11 \ paneles \ge 14 \ paneles \ (incorrecto)$$

El resultado de la opción 2 reafirma que el número de paneles necesarios para abastecer la demanda de los equipos biomédicos obtenidos en la opción 1 es correcto.

4.3.1.5. Cálculo de la capacidad del acumulador

Los datos para tener en cuenta son: el consumo máximo C_{max} , los días de autonomía D_{aut} y la profundidad de descarga P_d .

La capacidad de la batería es la siguiente:

$$C_{bateria} \ge \frac{(C_{max})(D_{aut})}{P_d} = \frac{(399,5688)(2)}{0,55} = 1452,9774$$

$$C_{bateria} = 1453 Ah$$

Con el dato de la capacidad del banco de las baterías y las "características de la batería" se puede calcular el número de baterías en serie y en paralelo, necesarias. Pero para ello (igual que en el apartado anterior), primero se debe elegir la batería adecuada, de la variedad que existe en el mercado.

La base de datos de las baterías de acuerdo con [26], se muestra en el Anexo 16. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de batería.

Con el valor de la capacidad de la batería, la tensión del banco de baterías, la capacidad y el voltaje nominal de cada una de las baterías en la base de datos, se estableció una tabla con los posibles escenarios.

Tabla 35: Posibles escenarios utilizando cada batería de la base de datos.

ESPECIFICACIÓN	#paralelo_batería	# _{SERIE_BATERÍA}	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/
VISION 6FM60D-X	25	1	25	600	220564.2	22734
VISION 6FM230-X	7	1	7	508.2	198769.48	14913.92
KAISE KBFS122500	6	1	6	360	135475.2	8336.64
UPOWER UP-TFS250-12	6	1	6	343.8	133200	7918.44
UPOWER SP 250	6	1	6	357	206085.264	8046.18
UPOWER UP7.2-12	202	1	202	464.6	185375.905	12249.28
KAISE KB1290	182	1	182	455	167915.02	11205.74
LIVEN LV 17-12 VRLA	86	1	86	430	200163.194	13769.46
VICTRON ENERGY BAT412600080	23	1	23	552	231485.34	25915.48
ULTRACELL UC86-12	17	1	17	379.1	153858.432	9132.06
ULTRACELL UC115-12	13	1	13	395.2	157340.04	9000.42
VICTRON ENERGY BAT412121080	12	1	12	456	196563.84	21633.36
ULTRACELL UC138-12	11	1	11	413.6	179610.75	9394.44
ULTRACELL UC172-12	9	1	9	391.5	178092	9036.54
ME MEBA12-220	7	1	7	448	209008.8	10831.45
ULTRACELL UC230-12	7	1	7	430.5	191177.28	9687.44
KAISE KBAS122500	6	1	6	344.4	163866.24	8046.18
KAISE KBL122000	8	1	8	472.8	216667.584	10413.92
NARADA 12NDF100	15	1	15	495	176289.75	12793.35
NARADA 12HTB150	10	1	10	560	211575	12239.6
RITAR RA12-75	20	1	20	470	206518	11963.8
RITAR RA12-100	15	1	15	450	187865.28	10939.65
RITAR RA12-150	10	1	10	445	197064	10898.6
RITAR RA12-200	8	1	8	480	223499.52	11144.48
ME MEBG12-100	15	1	15	442.5	183679.65	12955.35
ME MEBG12-150	10	1	10	425	198294.8	11929
ULTRACELL UCG98-12	15	1	15	400.5	162302.4	10884.45
ULTRACELL UCG115-12	13	1	13	403	156386.464	9551.1
ULTRACELL UCG172-12	9	1	9	391.5	178092	9586.26
ME MEBG12-220	7	1	7	483	209008.8	12803
ULTRACELL UCG230-12	7	1	7	427	191177.28	10318.91
ULTRACELL UCG288-12	6	1	6	420	184662.72	10682.58
ULTRACELL UFTG115-12T	13	1	13	455	160574.7	9313.59
NARADA AG12V100F	15	1	15	495	176289.75	13844.7
RITAR DG12-65	23	1	23	483	244671.7	17527.84
RITAR DG12-75	20	1	20	470	185426.8	16388.8
RITAR DG12-100	15	1	15	450	181941.6	14995.8
RITAR DG12-150	10	1	10	445	197885.1	15159.7
RITAR DC12-200	8	1	8	480	219490.56	16052
RITAR DC12-260	6	1	6	444	183955.2	15241.68
UPOWER UP-GC2TOP	6	2	12	332.4	156462.192	7126.2
ROLLS S-290	7	2	14	434	183109.374	13741.84

Tabla 36: Posibles escenarios utilizando cada batería de la base de datos. (continuación)

ESPECIFICACIÓN	#paralelo_batería	#SERIE_BATERÍA	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/
UPOWER UP-GC16-6RE	3	2	6	312	146772.9	9882.96
FORMULA STAR FS 260 SOLAR	6	1	6	384	207589.536	6573.54
UPOWER SPO70	21	1	21	312.9	168976.5	6258
UPOWER SPO85	18	1	18	324	166383	6850.08
UPOWER SPO120	13	1	13	352.3	180521.25	7350.2
UPOWER SPO160	9	1	9	337.5	194592.699	7024.41
UPOWER SPO250	6	1	6	348	206085.264	6130.44
UPOWER UP-GC12TOP	6	1	6	318	159884.94	8727.3
UPOWER UP-GC42-2RE	1	6	6	312	146772.9	8727.3
GNB ENERSOL T 760	2	6	12	372	166195.248	11163.12
GNB ENERSOL T 880	2	6	12	456	181898.736	11825.64
GNB ENERSOL T 1250	2	6	12	633.6	253596.048	13245.24

Los criterios utilizados son los siguientes:

- **Total de baterías:** es conveniente que el número de baterías sea el mínimo, ya que trae consigo los siguientes criterios.
- **Peso total:** es conveniente que el peso total de las baterías sea mínimo, debido a que se le estaría agregando un peso extra al manejado normalmente por la Unidad Médica Móvil.
- Volumen total: es conveniente que el volumen total de las baterías sea mínimo, ya que dependiendo del número total de baterías el volumen total aumentará y por ende, ocupará un espacio determinado en la Unidad Médica Móvil
- **Precio total:** es conveniente que el precio sea mínimo.

Los datos según los criterios son los siguientes:

Tabla 37: Datos según criterios de selección de la batería.

DATO / CRITERIO	TOTAL DE BATERÍAS		VOLUMEN TOTAL	PRECIO TOTAL
MIN	6	312	133200	6130.44
MAX	202	633.6	253596.048	25915.48
DIF	196	321.6	120396.048	19785.04
APROX. DIF	207	639	253602	25920
CANTIDAD DE INTERVALOS	9	9	9	9
INCREMENTO	23	71	28178	2880

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 38: Intervalos y ponderaciones según criterios de selección de la batería.

N° INTERVALO / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL	VOLUMEN TOTAL	PRECIO TOTAL	PONDERACIÓN
1	[0,23)	[0,71)	[0,28178)	[0,2880)	9
2	[23,46)	[71,142)	[28178,56356)	[2880,5760)	8
3	[46,69)	[142,213)	[56356,84534)	[5760,8640)	7
4	[69,92)	[213,284)	[84534,112712)	[8640,11520)	6
5	[92,115)	[284,355)	[112712,140890)	[11520,14400)	5
6	[115,138)	[355,426)	[140890,169068)	[14400,17280)	4
7	[138,161)	[426,497)	[169068,197246)	[17280,20160)	3
8	[161,184)	[497,568)	[197246,225424)	[20160,23040)	2
9	[184,207)	[568,639)	[225424,253602)	[23040,25920)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 39: Matriz de decisión de la batería.

ESPECIFICACIÓN / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/	PONDERACIÓN TOTAL
VISION 6FM60D-X	8	1	2	2	32
VISION 6FM230-X	9	2	2	4	144
KAISE KBFS122500	9	4	5	7	1260
UPOWER UP-TFS250-12	9	5	5	7	1575
UPOWER SP 250	9	4	2	7	504
UPOWER UP7.2-12	1	3	3	5	45
KAISE KB1290	2	3	4	6	144
LIVEN LV 17-12 VRLA	6	3	2	5	180
VICTRON ENERGY BAT412600080	8	2	1	1	16
ULTRACELL UC86-12	9	4	4	6	864
ULTRACELL UC115-12	9	4	4	6	864
VICTRON ENERGY BAT412121080	9	3	3	2	162
ULTRACELL UC138-12	9	4	3	6	648
ULTRACELL UC172-12	9	4	3	6	648
ME MEBA12-220	9	3	2	6	324
ULTRACELL UC230-12	9	3	3	6	486
KAISE KBAS122500	9	5	4	7	1260
KAISE KBL122000	9	3	2	6	324
NARADA 12NDF100	9	3	3	5	405
NARADA 12HTB150	9	2	2	5	180
RITAR RA12-75	9	3	2	5	270
RITAR RA12-100	9	3	3	6	486
RITAR RA12-150	9	3	3	6	486
RITAR RA12-200	9	3	2	6	324
ME MEBG12-100	9	3	3	5	405

Tabla 40: Matriz de decisión de la batería. (continuación)

ESPECIFICACIÓN / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/	PONDERACIÓN TOTAL
ME MEBG12-150	9	4	2	5	360
ULTRACELL UCG98-12	9	4	4	6	864
ULTRACELL UCG115-12	9	4	4	6	864
ULTRACELL UCG172-12	9	4	3	6	648
ME MEBG12-220	9	3	2	5	270
ULTRACELL UCG230-12	9	3	3	6	486
ULTRACELL UCG288-12	9	4	3	6	648
ULTRACELL UFTG115-12T	9	3	4	6	648
NARADA AG12V100F	9	3	3	5	405
RITAR DG12-65	8	3	1	3	72
RITAR DG12-75	9	3	3	4	324
RITAR DG12-100	9	3	3	4	324
RITAR DG12-150	9	3	2	4	216
RITAR DC12-200	9	3	2	4	216
RITAR DC12-260	9	3	3	4	324
UPOWER UP-GC2TOP	9	5	4	7	1260
ROLLS S-290	9	3	3	5	405
UPOWER UP-GC16-6RE	9	5	4	6	1080
FORMULA STAR FS 260 SOLAR	9	4	2	7	504
UPOWER SPO70	9	5	4	7	1260
UPOWER SPO85	9	5	4	7	1260
UPOWER SPO120	9	5	3	7	945
UPOWER SPO160	9	5	3	7	945
UPOWER SPO250	9	5	2	7	630
UPOWER UP-GC12TOP	9	5	4	6	1080
UPOWER UP-GC42-2RE	9	5	4	6	1080
GNB ENERSOL T 760	9	4	4	6	864
GNB ENERSOL T 880	9	3	3	5	405
GNB ENERSOL T 1250	9	1	1	5	45

Como resultado, se determinó que la batería "UPOWER|UP-TFS250-12" es la mejor opción, por lo que a continuación se muestran sus características.

Figura 33: Batería UPOWER/UP-TFS250-12. [26]

Tabla 41: Características de la batería UPOWER/UP-TFS250-12. [26]

CÁLCULO DEL ACUMULADOR-BATERÍA				
CAPACIDAD DE LA BATERÍA (C _{BATERÍA})	1453	Ah		
MODELO	UPOWER UP-TFS250-12			
TIPO DE BATERÍA	AGM			
TENSIÓN NOMINAL DE LA BATERÍA (V _{NOMINAL_BATERÍA})	12	V		
CAPACIDAD NOMINAL DE LA BATERÍA (C _{NOMINAL})	250	Ah		

Con las características de la batería, a continuación, se calcula el número de baterías necesarias conectadas en paralelo (o ramas).

$$N\'umero_{paralelo_bater\'ia} \ge \frac{C_{bater\'ia}}{C_{nominal}} = \frac{1453}{250} = 5.812$$

$$N\'umero_{paralelo_bater\'ia} = 6$$

De igual manera, se calcula el número de baterías en serie.

$$N\'umero_{serie_bater\'ia} \geq \frac{V_{bater\'ia}}{V_{nominal_{bater\'ia}}} = \frac{12}{12} = 1$$

$$N$$
ú $mero_{serie_bater$ ía} = 1

Siendo un total de 6 baterías necesarias para abastecer la demanda de la Unidad Médica Móvil I.

4.3.1.6. Elección del regulador

Para la elección del regulador, se procede a analizar los dos tipos de reguladores que destacan en el mercado, el regulador de carga MPPT y el regulador de carga PWM.

El autor [27], establece las principales diferencias entre los reguladores MPPT y PWM:

Tabla 42: Diferencias entre reguladores MPPT y PWM. [27]

Regulador MPPT	Regulador PWM			
Este tipo de reguladores maximiza su corriente de salida directo a las baterías. Pueden adaptar la entrada fotovoltaica a la tensión del banco de baterías. Como su nombre lo dice, permiten que los paneles alcancen su punto de máxima potencia.	Este tipo de reguladores solo pueden ser utilizados si la tensión de las baterías y los paneles solares son iguales.			
Son mucho más caros que los reguladores PWM.	Su precio es menor en comparación con los reguladores MPPT.			
Se dimensionan en función de la tensión de las baterías y la potencia fotovoltaica.	Se dimensionan dependiendo de la intensidad máxima del campo fotovoltaico y la tensión de las baterías.			
Si se supera la tensión de entrada fotovoltaica máxima, este tipo de reguladores se averían.	Se averían al superar su intensidad nominal			
Estos reguladores trabajan con paneles solares conectados a la red, así como paneles de 36 y 72 células.	Sólo pueden trabajar con paneles de 36 y 72 células; o dicho de otro modo, con módulos FV de 12 y 24V.			

Así mismo, [28] define que pese a que el regulador PWM cuesta menos (en comparación con el MPPT), el regulador MPPT permite producir más energía sacándole el máximo provecho a un panel fotovoltaico de tensión mayor al de las baterías.

A continuación, se muestra una tabla con el tipo de regulador a utilizar en función del número de celdas del panel FV, y de la tensión del banco de baterías. [28]

Tabla 43: Tipo de regulador en función del número de celdas del panel FV y la tensión del banco de baterías. [28]

Paneles + Baterías	Tipo de Regulador
Paneles 36 celdas + 12V baterías	MPPT
Paneles 48 celdas + 12V/24V baterías	MPPT
Paneles 54 celdas + 12V/24V baterías	MPPT
Paneles 72 celdas + 12V/24V baterías	MPPT
Paneles 144 celdas + 48V baterías	MPPT
Paneles 30 celdas + 12V baterías	PWM
Paneles 60 celdas + 24V baterías	PWM
Paneles 120 celdas + 48V baterías	PWM

El autor [29], presenta un cuadro comparativo con los pros y contras del regulador PWM y MPPT.

	PWM	MPPT			
	1/3 - 1/2 el costo de un controlador MPPT.	La mayor eficiencia de carga (especialmente en climas fríos)			
Pros	Mayor vida útil esperada debido a menos componentes electrónicos y menos estrés térmico.				
	Tamaño más pequeño	Posibilidad de sobredimensionar la matriz para asegurar una carga suficiente en los meses de invierno.			
Contras	Las matrices fotovoltaicas y los bancos de baterías deben dimensionarse más cuidadosamente y pueden requerir más experiencia en diseño.	·			
	No se puede utilizar de manera eficiente con paneles de 60 celdas.	Menor tiempo de vida esperado debido a más componentes electrónicos y mayor estrés térmico.			

Tabla 44: Pros y contras de los controladores PWM y MPPT. [29]

Finalmente, [29] presenta a modelo de guía, un diagrama de flujo para realizar la elección del tipo de regulador de carga, el cual se muestra en el Anexo 17.

Con todo lo antes mencionado, se determina que la mejor opción de regulador es un MPPT.

Se procede a calcular la corriente del campo fotovoltaico ($I_{campo\ fotovoltaico}$):

$$I_{campo_{fotovoltaico}} = (I_{sc}) (n\'umero de ramas)$$
 $I_{campo_{fotovoltaico}} = (11,64)(14)$
 $I_{campo_{fotovoltaico}} = 162,96 A$

Adicional a esto, se considera el margen de seguridad por lo que el valor de la corriente del regulador es:

$$I_{regulador} = (1,1) \left(I_{campo_{fotovoltaico}} \right)$$

$$I_{regulador} = (1,1)(162,96)$$

$$I_{regulador} = 179,256 A$$

Con los datos antes mencionados y los datos de corriente máxima de los reguladores, se puede calcular el número de reguladores a utilizar. Pero para ello (igual que en el apartado anterior), primero se debe elegir el regulador adecuado, de la variedad que existe en el mercado.

La base de datos de los reguladores de acuerdo con [25], se muestra en el Anexo 18. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de batería.

Con el valor de la corriente máxima de salida/corriente de carga nominal en la base de datos, se estableció una tabla con los posibles escenarios.

Tabla 45: Posibles escenarios utilizando cada regulador de la base de datos.

ESPECIFICACIÓN	TENSIÓN DE LA BATERÍA V	CORRIENTE MÁXIMA A	CORRIENTE DE CARGA NOMINAL A	TIPO	#REGULADORES	PRECIO TOTAL S/
VICTRON ENERGY MPPT MPPT 150/85	12/24/48	-	85	MPPT	3	10863.39
VICTRON ENERGY MPPT MPPT 150/70	12/24/48	-	70	MPPT	3	10599.93
VICTRON ENERGY MPPT MPPT 150/100	12/24/48	-	100	MPPT	2	7012.08
FLEXMAX MPPT FM80-150VDC	12/24/36/48/60	80	-	MPPT	3	8791.2
FLEXMAX MPPT FM60-150VDC	12/24/36/48/60	60	-	MPPT	3	7748.19
VICTRON ENERGY MPPT MPPT 150/60	12/24/48	-	60	MPPT	3	8850
VICTRON ENERGY MPPT MPPT 150/45	12/24/48	-	45	MPPT	4	8132.6
SOLAR SYSTEM MPPT PC16-6015A	12/24/36/48	60	-	MPPT	3	6328.68
MORNINGSTAR MPPT SUNSAVERMPPT 15	12/24	15	-	MPPT	12	16836.72
VICTRON ENERGY MPPT MPPT 100/50	12/24	-	50	MPPT	4	5421.64
VICTRON ENERGY MPPT MPPT 150/35	12/24/36/48	-	35	MPPT	6	8132.46
VICTRON ENERGY MPPT MPPT 100/30	12/24	30	-	MPPT	6	5421.72
SOLAR SYSTEM MPPT PC16-3015A	12/24	30	-	MPPT	6	5805.6
VICTRON ENERGY MPPT MPPT 100/20	12/24	-	20	MPPT	9	6842.07
SOLAR SYSTEM MPPT PC16-2015A	12/24	20	-	MPPT	9	5841
VICTRON ENERGY MPPT MPPT 100/15	12/24	-	15	MPPT	12	5900.76
VICTRON ENERGY MPPT MPPT 75/15	12/24	-	15	MPPT	12	5682.24
VICTRON ENERGY MPPT MPPT 75/10	12/24	-	10	MPPT	18	7284.06
ATERSA PWM LEO10 35A	12/24/48	35	35	PWM	6	4409.16
XANTREX PWM C60	12/24	85	60	PWM	3	1871.34
VICTRON ENERGY PWM PWM-PRO 12/24-30	12/24	-	30	PWM	6	3252
XANTREX PWM C40	12/24/48	85	40	PWM	3	1489.56
SOLAR SYSTEM PWM PC1500B-6048D	48	-	60	PWM	3	1239
VICTRON ENERGY PWM PWM-PRO 12/24-20	12/24	-	20	PWM	9	3220.38
SOLAR SYSTEM PWM PC1500B-50-60	12/24	-	60	PWM	3	1062
SOLAR SYSTEM PWM PC1500B-6048D 50A	48	-	50	PWM	4	1368.8
SOLAR SYSTEM PWM PC1500B-50-60 50A	12/24	-	50	PWM	4	1132.8
ATERSA PWM MINO V2 12/24V 30	12/24	-	21	PWM	9	2433.78
SOLAR SYSTEM PWM PC1500B-30-40 40A	12/24	-	40	PWM	5	1239
VICTRON ENERGY PWM PWM-PRO 12/24-10	12/24	-	10	PWM	18	3476.7
ATERSA PWM MINO V2 12/24V 15	12/24	-	12	PWM	15	2655
SOLAR SYSTEM PWM PC1500B-30-40 30A	12/24	-	30	PWM	6	991.2

Los reguladores que poseen casilleros en rojo son aquellos que no cumplen con los requisitos impuestos con anterioridad. Los reguladores de 48V debido a que no cumplen con el voltaje del sistema, y los reguladores PWM debido a que no coinciden con la elección anterior de controladores MPPT.

Los criterios utilizados como primera instancia son los siguientes:

- **Tipo:** está en función de la elección entre MPPT o PWM, después de haber identificado ventajas y desventajas.

- **Total de reguladores:** es conveniente que el número de reguladores sea mínimo. De este valor elegido, se tendrá repercusiones en el posible aumento del número de paneles fotovoltaicos.
- **Precio total:** es conveniente que el precio sea mínimo.

La ponderación del primer criterio se toma de manera independiente debido a que solo existen dos opciones (MPPT y PWM), por lo que no hay intervalos de ponderación.

Tabla 46: Ponderación según tipo de regulador.

TIPO	PONDERACIÓN
MPPT	1
PWM	0

Los datos según los criterios restantes son los siguientes:

Tabla 47: Datos según criterios de selección del regulador.

DATO / CRITERIO	#REGULADORES	PRECIO TOTAL
MIN	2	991,2
MAX	18	16836,72
DIF	16	15845,52
APROX. DIF	21	16842
CANTIDAD DE INTERVALOS	7	7
INCREMENTO	3	2406

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 48: Intervalos y ponderaciones según criterios de selección del regulador.

N° INTERVALO / CRITERIO	#REGULADORES	PRECIO TOTAL	PONDERACIÓN
1	[0,3)	[0,2406)	7
2	[3,6)	[2406,4812)	6
3	[6,9)	[4812,7218)	5
4	[9,12)	[7218,9624)	4
5	[12,15)	[9624,12030)	3
6	[15,18)	[12030,14436)	2
7	[18,21)	[14436,16842)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 49: Matriz de decisión del regulador.

ESPECIFICACIÓN / CRITERIO	TENSIÓN DE LA BATERÍA V	TIPO	#REGULADORES	PRECIO TOTAL S/	PONDERACIÓN TOTAL
VICTRON ENERGY MPPT MPPT 150/85	1	1	6	3	18
VICTRON ENERGY MPPT MPPT 150/70	1	1	6	3	18
VICTRON ENERGY MPPT MPPT 150/100	1	1	7	5	35
FLEXMAX MPPT FM80-150VDC	1	1	6	4	24
FLEXMAX MPPT FM60-150VDC	1	1	6	4	24
VICTRON ENERGY MPPT MPPT 150/60	1	1	6	4	24
VICTRON ENERGY MPPT MPPT 150/45	1	1	6	4	24
SOLAR SYSTEM MPPT PC16-6015A	1	1	6	5	30
MORNINGSTAR MPPT SUNSAVERMPPT 15	1	1	3	1	3
VICTRON ENERGY MPPT MPPT 100/50	1	1	6	5	30
VICTRON ENERGY MPPT MPPT 150/35	1	1	5	4	20
VICTRON ENERGY MPPT MPPT 100/30	1	1	5	5	25
SOLAR SYSTEM MPPT PC16-3015A	1	1	5	5	25
VICTRON ENERGY MPPT MPPT 100/20	1	1	4	5	20
SOLAR SYSTEM MPPT PC16-2015A	1	1	4	5	20
VICTRON ENERGY MPPT MPPT 100/15	1	1	3	5	15
VICTRON ENERGY MPPT MPPT 75/15	1	1	3	5	15
VICTRON ENERGY MPPT MPPT 75/10	1	1	1	4	4
ATERSA PWM LEO10 35A	1	0	5	6	0
XANTREX PWM C60	1	0	6	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-30	1	0	5	6	0
XANTREX PWM C40	1	0	6	7	0
SOLAR SYSTEM PWM PC1500B-6048D	0	0	6	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-20	1	0	4	6	0
SOLAR SYSTEM PWM PC1500B-50-60	1	0	6	7	0
SOLAR SYSTEM PWM PC1500B-6048D 50A	0	0	6	7	0
SOLAR SYSTEM PWM PC1500B-50-60 50A	1	0	6	7	0
ATERSA PWM MINO V2 12/24V 30	1	0	4	6	0
SOLAR SYSTEM PWM PC1500B-30-40 40A	1	0	6	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-10	1	0	1	6	0
ATERSA PWM MINO V2 12/24V 15	1	0	2	6	0
SOLAR SYSTEM PWM PC1500B-30-40 30A	1	0	5	7	0

Teniendo en cuenta que para conectar los módulos fotovoltaicos al regulador existen dos opciones:

- Elegir un regulador que soporte la corriente de todo el campo fotovoltaico.
- Dividir el campo fotovoltaico en "subcampos", siempre y cuando sean ramas simétricas. Luego se seleccione el regulador de acuerdo con la corriente de cada subcampo.

En primera instancia, la primera opción no es posible debido a que ningún controlador cumple con la corriente del regulador ($I_{regulador}$), por lo que la segunda opción sería la única por escoger. Otros datos importantes que se deben considerar son: el número de módulos necesarios para abastecer los equipos biomédicos (14) y el número máximo de módulos en la carrocería (14).

Con lo antes mencionado se reafirma la selección de la primera opción, "VICTRON ENERGY|MPPT|MPPT 150/100"; con este regulador se necesitarán un total de 2 reguladores.

Figura 34: Regulador VICTRON ENERGY/MPPT/MPPT 150/100. [26]

Tabla 50: Características del regulador VICTRON ENERGY/MPPT/MPPT 150/100. [26]

MODELO	VICTRON ENERGY MPPT MPPT 150/100	
TENSIÓN DE LA BATERÍA	12/24/48	V
CORRIENTE MÁXIMA	-	Α
CORRIENTE DE CARGA	100	^
NOMINAL	100	A

Con las características del regulador, a continuación, se procede a recalcular la corriente del campo fotovoltaico y por ende la corriente del regulador.

El nuevo valor de la corriente del campo fotovoltaico ($I_{campo_fotovoltaico}$) es:

$$I_{campo_{fotovoltaico}} = (I_{sc}) (n\'umero de ramas)$$
 $I_{campo_{fotovoltaico}} = (11,64)(14)$
 $I_{campo_{fotovoltaico}} = 162,96 A$

Adicional a esto, se considera el margen de seguridad por lo que el nuevo valor de la corriente del regulador es:

$$I_{regulador} = (1,1) \left(I_{campo_{fotovoltaico}} \right)$$

$$I_{regulador} = (1,1)(162,96)$$

$$I_{regulador} = 179,256 A$$

Con estos nuevos valores, se procede a calcular el número de reguladores necesarios.

número de reguladores =
$$\frac{I_{regulador}}{I_{reg}}$$

$$n\'umero\ de\ reguladores = \frac{179,256}{100}$$

número de reguladores = $1,79256 \approx 2$

Por lo tanto, el número de reguladores es de 2. Además, el número de paneles conectados a cada regulador es de 7.

4.3.1.7. Elección del convertidor

Para la elección del convertidor, se detallan los requerimientos a tener:

- Tensión de entrada (V_{CC}): debe coincidir con la tensión del sistema. En este caso es de 12 V.
- Tensión de salida (V_{AC}): debe coincidir con la tensión de consumo de los equipos. En este caso es de 220 V.
- Frecuencia: debe coincidir con la frecuencia requerido por los equipos. En este caso es de 60 Hz.
- Potencia de salida: debe ser mayor a la potencia demandada por los equipos. En este caso debe ser superior a 585,5 W.

La base de datos de los inversores (convertidores), de acuerdo con [25], se muestra en el Anexo 19. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de batería. Con todo lo mencionado anteriormente, se estableció una tabla con los posibles escenarios.

ESPECIFICACIÓN	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
VICTRON ENERGY C12/3000/120	12	230	50	2400	6472.55
VICTRON ENERGY C12/2000	12	230	50/60	1600	5065.36
VICTRON ENERGY C12/1600	12	230	50/60	1300	4372.37
VICTRON ENERGY 12/1200	12	120/230	50/60	1000	2936.17
XANTREX PROwatt SW 2000i	12	230	50	2000	2622.22
ATERSA QUADRO 1000VA 12V	12	230	-	1400	1966.67
XANTREX PROwatt SW 1400i	12	230	50	1400	1899.47
VICTRON ENERGY 12/800	12	110/230	50/60	700	1404.7
XANTREX PROwatt SW 700i	12	230	50	700	1137.39
MUST SOLAR EP20-800	12	220/230/240	50/60	800	983.33
VICTRON ENERGY 12/500	12	120/230	50/60	400	813.33
MUST SOLAR EP20-600	12	220/230/240	50/60	600	663.75
VICTRON ENERGY 12/375	12	120/230	50/60	300	558.6
MUST SOLAR EP20-300	12	220/230/240	50/60	300	531
VICTRON ENERGY 12/250	12	120/230	50/60	200	435.37

Tabla 51: Posibles escenarios utilizando cada convertidor de la base de datos.

Tabla 52: Posibles escenarios utilizando cada convertidor de la base de datos. (continuación)

ESPECIFICACIÓN	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
VICTRON ENERGY EASY SOLAR 24/3000/70-50	24	230	50	2400	11175.12
VICTRON ENERGY 24/5000/120	24	230	50	4000	10397.4
VICTRON ENERGY 24/3000/70	24	230	50	2400	8454.2
VICTRON ENERGY C24/2000/50	24	230	50	1600	5673.57
ATERSA QUADRO 5000VA MPPT 80A	24	230	-	5000	5149.1
VICTRON ENERGY INV-CARG C24/1600/40	24	230	50	1300	4210.76
VICTRON ENERGY C24/1600/40	24	230	50	1300	3908.75
ATERSA QUADRO 3000VA 24V MPPT 60A	24	230	-	3000	3218.18
VICTRON ENERGY 24/1200	24	120/230	50/60	1000	2936.17
MUST SOLAR PV18-3024 HM	24	220/240	50/60	2400	2865.71
ATERSA QUADRO 3000VA 24V PWM 50A	24	230	-	3000	2242
VICTRON ENERGY 24/800	24	120/230	50/60	650	1404.7
VICTRON ENERGY 24/500	24	120/230	50/60	400	813.24
VICTRON ENERGY 24/375	24	120/230	50/60	300	558.6
VICTRON ENERGY 24/250	24	120/230	50/60	200	435.37

Después de haber aplicado los requerimientos (como formato condicional en el software Microsoft Excel) a la tabla de posibles escenarios, se llega a la conclusión que solo un convertidor cumple con todos los requisitos, este es el siguiente:

Tabla 53: Selección del convertidor.

ESPECIFICACIÓN	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
MUST SOLAR EP20-800	12	220/230/240	50/60	800	983,33

Habiendo cumplido con todos los requisitos propuestos inicialmente, el último criterio que determinaría la elección del convertidor es el precio. Mediante este criterio se determina que el convertidor elegido es el "MUST SOLAR|EP20-800", por lo que a continuación se muestran sus características.

Figura 35: Convertidor MUST SOLAR/EP20-800. [26]

Tabla 54: Características del convertidor MUST SOLAR/EP20-800. [26]

MODELO	MUST SOLAR EP20-800	
TENSIÓN DE ENTRADA VCC	12	V
TENSIÓN DE SALIDA VAC	220/230/240	V
FRECUENCIA	50/60	Hz
POTENCIA DE SALIDA	800	W

4.3.2. Método 2

Para este método, se utilizarán los datos preliminares calculados en el método 1 como:

- Dimensiones del remolque de la Unidad Médica Móvil I.
- La potencia máxima de los equipos biomédicos en la Unidad Médica Móvil I (585,2 W).
- El consumo total de los equipos biomédicos en la Unidad Médica Móvil I (2806,933333 Wh).

**LOS VALORES ESTABLECIDOS TALES COMO: COEFICIENTES DE PÉRDIDAS, NÚMERO DE DÍAS DE AUTONOMÍA, PROFUNDIDAD DE DESCARGA, IRRADIACIÓN DIARIA SOLAR, ENTRE OTROS; SERÁN CONSIDERADOS DE IGUAL MANERA QUE EN EL MÉTODO ANTERIOR (MÉTODO 1). ESTO CON EL FIN DE QUE AL FINALIZAR AMBOS MÉTODOS Y TENER CADA UNO UN SISTEMA CON SUS EQUIPOS, SEA POSIBLE COMPARARLOS IMPARCIALMENTE DEBIDO A QUE AMBOS POSEEN LOS MISMOS VALORES.

4.3.2.1. Elección del sistema

En este apartado se determina las características generales del sistema, tales como:

- Fotovoltaico o híbrido: Fotovoltaico
- Directo o con acumulación: Con acumulación
- Con corriente continua y/o corriente alterna: Con corriente continua y corriente alterna
- Tensión nominal del circuito de corriente continua: 12 V
- Tensión nominal del circuito de corriente alterna: 220 V

4.3.2.2. Dimensionado básico

Considerando los valores propuestos por [13], (mostrados en la Tabla 6) el cálculo de las pérdidas en el rendimiento global es el siguiente:

- Coeficiente de pérdidas por autodescarga diaria de las baterías (K_A) : 0,005
- Coeficiente de pérdidas por rendimiento de las baterías (K_B) : 0,05
- Coeficiente de pérdidas por rendimiento del inversor (K_c) : 0,05
- Coeficiente de pérdidas varias (K_V) : 0,005
- Número de días de autonomía de la instalación (N): 2
- Profundidad de descarga de las baterías (P_D) : 55%

$$R = (1 - K_B - K_C - K_V) \left(1 - \frac{K_A * N}{P_d} \right)$$

$$R = (1 - 0.05 - 0.05 - 0.005) \left(1 - \frac{(0.005)(2)}{0.55} \right)$$

$$R = 0.878727$$

Una vez calculado las pérdidas en el rendimiento global (R), se procede a calcular la energía que será consumida por la instalación (E_T) , mediante la siguiente ecuación:

$$E_T = consumo \ en \ cc + {consumo \ en \ ca \over 1 - K_C}$$

$$E_T = 0 + {2806,9333 \over 1 - 0,05}$$

$$E_T = 2954,6666 \ [Wh]$$

Con ambos datos calculados, el valor de la energía que se debe suministrar al grupo de baterías (E), es el siguiente:

$$E = \frac{E_T}{R}$$

$$E = \frac{2954,666}{0,878727}$$

$$E = 3362,4387 [Wh]$$

4.3.2.2.1. Subsistema de generación

Considerando que las pérdidas relacionadas al regulador son de un 10%, el valor de la energía que debe generar el campo fotovoltaico (E_q) es:

$$E_g = \frac{E}{0.9}$$

$$E_g = \frac{3362,439}{0.9}$$

$$E_g = 3736,0430 [Wh]$$

Para poder determinar el valor del número de horas sol pico (HSP), se considera lo siguiente:

- El valor de la irradiación diaria sobre horizontal corregido por inclinación a 0° (H') es de 2,98 kWh/m².
- El valor del factor de efectos atmosféricos (k), es de 1,15 (asumido por [13] en un ejemplo).
- El valor del ángulo de desviación (β), es de 0 (asumido por [13] en un ejemplo); por lo tanto, el valor del factor que tiene en cuenta la desviación respecto al sur geográfico (k'') es de 1.

Con los datos antes mencionados, el valor del número de horas sol pico (HSP) es el siguiente:

$$HSP = (k)(k'')(H')$$

$$HSP = (1,15)(1)(2,98)$$

$$HSP = 3,427 [h]$$

Considerando que existen pérdidas debido a la suciedad en el módulo, pérdidas por reflexión, etc; el valor de la energía que puede generar el campo fotovoltaico por cada vatio pico (E_p) es el siguiente:

$$E_p = (0.9)(HSP)$$

 $E_p = (0.9)(3.427)$
 $E_p = 3.0843 \left[\frac{Wh}{Wp} \right]$

El valor de la potencia pico a instalar en el campo fotovoltaico (P_p) , está en función de la energía que genera el campo (E_g) y la energía que genera el campo por cada vatio pico (E_p) , por lo que:

$$P_p = \frac{E_g}{E_n}$$

$$P_p = \frac{3736,0430}{3,0843}$$

$$P_p = 1211,309891 [Wp]$$

En esta parte, al igual que en el método 1, se procede a realizar la matriz de decisión utilizando el software Microsoft Excel, donde los datos de las dimensiones del remolque de la Unidad Médica Móvil, datos preliminares, elección del sistema y dimensionado básico son los siguientes:

Tabla 55: Dimensiones del remolque, datos preliminares, elección del sistema y dimensionado básico en Excel.

DIMENSIONES DEL REMOLQUE DE LA UNIDAD MÉD	DICA MÓVIL						
LONGITUD ANCHO	11 2,58	m m					
DATOS PRELIMINARES							
CONSUMO EN CC CONSUMO EN CA POTENCIA DEMANDADA EN CC POTENCIA DEMANDADA EN CA	0 2806,933333 0 585,2	Wh Wh W					
ELECCIÓN DEL SISTEMA							
FOTOVOLTAICO O HÍBRIDO DIRECTO O CON ACUMULACIÓN CORRIENTE CONTINUA Y/O CORRIENTE ALTERNA TENSIÓN EN CA TENSIÓN EN CC	FOTOVOLTAICO ACUMULACIÓN CC Y CA 220 12	V V					
DIMENSIONADO BÁSICO							
COEFICIENTE DE PÉRDIDAS POR AUTODESCARGA DE LAS BATERÍAS (KA) COEFICIENTE DE PÉRDIDAS POR RENDIMIENTO DE LAS BATERÍAS (KB) COEFICIENTE DE PÉRDIDAS POR RENDIMIENTO DEL INVERSOR (KC) COEFICIENTE DE PÉRDIDAS VARIAS (KV) NÚMERO DE DÍAS DE AUTONOMÍA DE LA INSTALACIÓN (N) PROFUNDIDAD DE DESCARGA DE LAS BATERÍAS (PD)	0,005 0,05 0,05 0,005 2 0,55	dia (s) %					
PÉRDIDAS EN EL RENDIMIENTO GLOBAL (R)	0,878727273						
CONSUMO EN CC CONSUMO EN CA (1-K _C)	0 2806,933333 0,95	Wh Wh					
ENERGÍA CONSUMIDA POR LA INSTALACIÓN (E _T)	2954,666666	Wh					
ENERGÍA CONSUMIDA POR LA INSTALACIÓN (ET) PÉRDIDAS EN EL RENDIMIENTO GLOBAL (R)	2954,666666 0,878727273	Wh					
ENERGÍA POR SUMINISTRAR A LAS BATERÍAS (E)	3362,438788	Wh					

Con los valores de las dimensiones del remolque, datos preliminares, elección del sistema y dimensionado básico; se estableció una tabla con los posibles escenarios utilizando cada uno de los paneles fotovoltaicos de la base de datos.

Tabla 56: Posibles escenarios utilizando cada panel fotovoltaico de la base de datos.

ESPECIFICACIÓN / ITEM	#SERIE_PANEL	#PARALELO_PANEL	TOTAL DE MÓDULOS	ÁREA m²	PRECIO TOTAL S/
RED SOLAR RED165-36M	1	8	8	8,06208	6795,204749
WAAREE WS-200/12V	1	7	7	10,3257	7191,023994
YINGLI SOLAR YL145P-17B	1	9	9	8,9964	5661,704412
SHINE SOLAR SHS150-36P	1	9	9	8,9244	5426,302932
TAI ENERGY TAI 150Wp-156-36P	1	9	9	8,9964	5145,311052
YINGLI SOLAR YL120P-17B	1	11	11	8,5668	4461,846444
YINGLI SOLAR YL100P-17B	1	13	13	10,1244	4394,293332
TAI ENERGY TAI 100Wp-156-36P	1	13	13	8,9713	3420,666977
SHINE SOLAR SHS75-36P	1	17	17	8,8842	3322,868484
TAI ENERGY TAI 80Wp-156-36P	1	16	16	11,0416	3368,019248
YINGLI SOLAR YL70P-17B	1	18	18	9,1476	2580,629436
YINGLI SOLAR YL320P-35B	1	4	4	7,77728	9334,913638
TAI ENERGY TAI 300Wp-156-72P	1	5	5	9,70176	11097,55221
CSUN CSUN 320-72P	1	4	4	7,74576	7030,748894
YINGLI SOLAR YL200P-35B	1	7	7	9,25155	8096,771529
WAAREE WS-200/24V	1	7	7	10,3257	7766,165484

Los criterios (al igual que en el método 1) son los siguientes:

- **Total de módulos:** debido a que se posee el limitante de las dimensiones del remolque, es conveniente que el número de módulos sea el mínimo.
- **Área:** debido a que se posee el limitante de las dimensiones del remolque, es conveniente que el área sea mínima.
- **Precio total:** es conveniente que el precio sea mínimo.

Los datos según los criterios son los siguientes:

Tabla 57: Datos según criterios de selección del panel fotovoltaico.

DATO / CRITERIO	TOTAL DE MÓDULOS	ÁREA	PRECIO TOTAL
MIN	4	7,74576	2580,629436
MAX	18	11,0416	11097,55221
DIF	14	3,29584	8516,922775
APROX. DIF	21	14	11102
CANTIDAD DE INTERVALOS	7	7	7
INCREMENTO	3	2	1586

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 58: Intervalos y ponderaciones según criterios de selección del panel fotovoltaico.

N° INTERVALO / CRITERIO	TOTAL DE MÓDULOS	ÁREA	PRECIO TOTAL	PONDERACIÓN
1	[0,3)	[0,2)	[0,1586)	7
2	[3,6)	[2,4)	[1586,3172)	6
3	[6,9)	[4,6)	[3172,4758)	5
4	[9,12)	[6,8)	[4758,6344)	4
5	[12,15)	[8,10)	[6344,7930)	3
6	[15,18)	[10,12)	[7930,9516)	2
7	[18,21)	[12,14)	[9516,11102)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 59: Matriz de decisión del panel fotovoltaico.

ESPECIFICACIÓN / ITEM	TOTAL DE MÓDULOS	ÁREA m²	PRECIO TOTAL S/	PONDERACIÓN TOTAL
RED SOLAR RED165-36M	5	3	3	45
WAAREE WS-200/12V	5	2	3	30
YINGLI SOLAR YL145P-17B	4	3	4	48
SHINE SOLAR SHS150-36P	4	3	4	48
TAI ENERGY TAI 150Wp-156-36P	4	3	4	48
YINGLI SOLAR YL120P-17B	4	3	5	60
YINGLI SOLAR YL100P-17B	3	2	5	30
TAI ENERGY TAI 100Wp-156-36P	3	3	5	45
SHINE SOLAR SHS75-36P	2	3	5	30
TAI ENERGY TAI 80Wp-156-36P	2	2	5	20
YINGLI SOLAR YL70P-17B	1	3	6	18
YINGLI SOLAR YL320P-35B	6	4	2	48
TAI ENERGY TAI 300Wp-156-72P	6	3	1	18
CSUN CSUN 320-72P	6	4	3	72
YINGLI SOLAR YL200P-35B	5	3	2	30
WAAREE WS-200/24V	5	2	3	30

Como resultado, se determinó que el panel "CSUN|CSUN 320-72P" es la mejor opción, por lo que a continuación se muestran sus características.

Figura 36: Panel fotovoltaico CSUN/CSUN 320-72P. [26]

Tabla 60: Características del panel fotovoltaico CSUN/CSUN 320-72P. [26]

SUBSISTEMA DE GENERACIÓN						
MODELO DE PANEL CSUN CSUN 32	<mark>20-72P</mark>					
TIPO DE CELDA	POLICRISTALINA					
POT. NOM (P _{MPP})	320 W					
TENSIÓN MÁX. (V _{MPP})	36,2 V					
CORRIENTE MÁX (I _{MPP})	8,84 A					
TENSIÓN EN VACÍO (Voc)	45 V					
CORRIENTE CORTOCIRCUITO (Isc)	9,17 A					
TENSIÓN NOMINAL	24 V					
TENSIÓN MÁX. DEL SISTEMA	1000 V					

Conociendo las características del panel fotovoltaico elegido, se procede a calcular el número necesario de módulos en serie (m_s) en función de la tensión nominal del sistema (V_{ns}) y la tensión del módulo elegido (V_{np}) :

$$m_s = \frac{V_{ns}}{V_{np}}$$

$$m_s = \frac{12}{24} = 0.5$$

$$m_s = 1$$

De igual forma, se calcula el número de paneles fotovoltaicos en paralelo (m_p) , conociendo los valores de la potencia pico necesaria en el campo fotovoltaico (P_p) , el número de módulos en serie (m_s) y la potencia pico del módulo (P_m) :

$$m_p = \frac{P_p}{(m_s)(P_m)}$$

$$m_p = \frac{1211,31018}{(1)(320)} = 3,785344$$

$$m_p = 4$$

Finalmente, el número total de módulos (m_t) , el siguiente:

$$m_t = (m_s)(m_p)$$

$$m_t = (1)(4)$$

$$m_t = 4$$

Siendo un total de 4 módulos necesarios para abastecer la demanda de la Unidad Médica Móvil I.

De igual manera que en el método 1, se calculará el número máximo de paneles que se pueden colocar encima del remolque de la Unidad Médica Móvil I. Las dimensiones del panel fotovoltaico elegido se muestran en la siguiente figura:

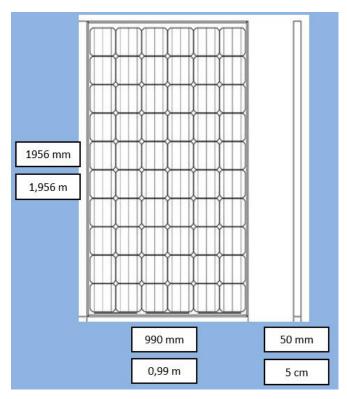


Figura 37: Dimensiones del panel fotovoltaico CSUN/CSUN 320-72P. [26]

Longitud del panel: 1,956 m
Ancho del panel: 0,99 m
Profundidad: 5 cm

Considerando las medidas del remolque de la Unidad Médica Móvil I, se calculan el número máximo de paneles encima del remolque a lo largo y ancho.

- Opción 1:

$$N\'umero_{m\'ax_panel_remolque_longitud} < \frac{Longitud~del~remolque}{Longitud~del~panel} = \frac{11}{1,956} = 5,62372$$

 $N\'umero_{m\'ax_panel_remolque_longitud} = 5$

$$N\'umero_{m\'ax_panel_remolque_ancho} < \frac{Ancho\ del\ remolque}{Ancho\ del\ panel} = \frac{2,58}{0,99} = 2,606060$$

 $N\'umero_{m\'ax_panel_remolque_ancho} = 2$

Por lo tanto, el número máximo de paneles encima del remolque es de 10.

$$N\'umero_{m\'ax_panel_remolque} \ge N\'umero_{total_paneles}$$

 $10 \ paneles \ge 4 \ paneles$

- Opción 2:

$$N\'umero_{m\'ax_panel_remolque_longitud} < \frac{Longitud\ del\ remolque}{Ancho\ del\ panel} = \frac{11}{0.99} = 11,1111$$

 $N\'umero_{m\'ax_panel_remolque_longitud} = 11$

$$N\'umero_{m\'ax_panel_remolque_ancho} < \frac{Ancho \ del \ remolque}{Longitud \ del \ panel} = \frac{2,58}{1,956} = 1,3190$$

$$N\'umero_{m\'ax_panel_remolque_ancho} = 1$$

Por lo tanto, el número máximo de paneles encima del remolque es de 11.

$$N\'umero_{m\'ax_panel_remolque} \ge N\'umero_{total_paneles}$$

$$11 \ paneles \ge 4 \ paneles$$

El resultado de la opción 1 reafirma que el número de paneles necesarios para abastecer la demanda de los equipos biomédicos obtenidos en la opción 2 es correcto, debido a que alberga una mayor cantidad de paneles.

4.3.2.2.2. Subsistema de acumulación. Como ya se conocen los valores de la energía que debe recibir el banco de baterías (E), y los días de autonomía (N), se procede a calcular la capacidad útil del subsistema de acumulación (C_n) :

$$C_u = (E)(N)$$
 $C_u = (3362,439)(2)$
 $C_u = 6724,8775 [Wh]$

Teniendo en cuenta la profundidad de descarga (P_d) y la capacidad nominal útil de la batería (C_u) , el valor de la capacidad nominal de la batería (C) es:

$$C = \frac{C_u}{P_d}$$

$$C = \frac{6724,8775}{0,55}$$

$$C = 12227,05014 [Wh]$$

Para el factor de corrección debido a la temperatura media de funcionamiento, se considerará lo siguiente:

- El número de grados (ΔT) mínimo de todos los centros poblados será reconocido como la temperatura del aire del centro poblado "Señor de la Humildad", el cual se muestra en el Gráfico 13 y es de un valor de 11,5°C.
- Se asumirá un margen de variación, del cual se utilizará un valor de 10°C en vez del valor de 11,5°C.

Con lo anterior, se tiene que:

$$k_T = 1 - \frac{\Delta T}{160}$$
 $k_T = 1 - \frac{10}{160}$
 $k_T = 0.9375$

Por ello, el valor de la nueva capacidad nominal de la batería (C') es:

$$C' = \frac{C}{k_T}$$

$$C' = \frac{12227,05014}{0,9375}$$

$$C' = 13042,18682 [Wh]$$

Debido a que las baterías (comercialmente hablando) se hayan en Ah, el valor anterior se dividirá entre la tensión nominal del sistema.

$$C' = \frac{13042,18682}{12}$$

C' = 1086,8489 [Ah]

Con este último dato y con las "características de la batería" se puede calcular el número de baterías en serie y en paralelo, necesarias. Pero para ello (igual que en el apartado anterior), primero se debe elegir la batería adecuada, de la variedad que existe en el mercado.

Con el valor de la capacidad de la batería, la tensión del banco de baterías, la capacidad y el voltaje nominal de cada una de las baterías en la base de datos, se estableció una tabla con los posibles escenarios.

Tabla 61: Posibles escenarios utilizando cada batería de la base de datos.

ESPECIFICACIÓN	#paralelo_batería	#SERIE_BATERÍA	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/
VISION 6FM60D-X	19	1	19	456	167,628,792	17277,84
VISION 6FM230-X	5	1	5	363	141978,2	10652,8
KAISE KBFS122500	5	1	5	300	112896	6947,2
UPOWER UP-TFS250-12	5	1	5	286,5	111000	6598,7
UPOWER SP 250	5	1	5	297,5	171737,72	6705,15
UPOWER UP7.2-12	151	1	151	347,3	1,385,730,775	9156,64
KAISE KB1290	136	1	136	340	125474,96	8373,52
LIVEN LV 17-12 VRLA	64	1	64	320	148,958,656	10247,04
VICTRON ENERGY BAT412600080	17	1	17	408	171097,86	19154,92
ULTRACELL UC86-12	13	1	13	289,9	117,656,448	6983,34
ULTRACELL UC115-12	10	1	10	304	121030,8	6923,4
VICTRON ENERGY BAT412121080	9	1	9	342	147422,88	16225,02
ULTRACELL UC138-12	8	1	8	300,8	130626	6832,32
ULTRACELL UC172-12	7	1	7	304,5	138516	7028,42
ME MEBA12-220	5	1	5	320	149292	7736,75
ULTRACELL UC230-12	5	1	5	307,5	136555,2	6919,6
KAISE KBAS122500	5	1	5	287	136555,2	6705,15
KAISE KBL122000	6	1	6	354,6	162,500,688	7810,44
NARADA 12NDF100	11	1	11	363	129279,15	9381,79
NARADA 12HTB150	8	1	8	448	169260	9791,68
RITAR RA12-75	15	1	15	352,5	154888,5	8972,85
RITAR RA12-100	11	1	11	330	137,767,872	8022,41
RITAR RA12-150	8	1	8	356	157651,2	8718,88
RITAR RA12-200	6	1	6	360	167624,64	8358,36
ME MEBG12-100	11	1	11	324,5	134698,41	9500,59
ME MEBG12-150	8	1	8	340	158635,84	9543,2
ULTRACELL UCG98-12	12	1	12	320,4	129841,92	8707,56
ULTRACELL UCG115-12	10	1	10	310	120297,28	7347
ULTRACELL UCG172-12	7	1	7	304,5	138516	7455,98
ME MEBG12-220	5	1	5	345	149292	9145
ULTRACELL UCG230-12	5	1	5	305	136555,2	7370,65
ULTRACELL UCG288-12	4	1	4	280	123108,48	7121,72

Tabla 62: Posibles escenarios utilizando cada batería de la base de datos (continuación).

ESPECIFICACIÓN	#PARALELO_BATERÍA	# _{SERIE_BATERÍA}	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm3	PRECIO TOTAL S/
ULTRACELL UFTG115-12T	10	1	10	350	123519	7164,3
NARADA AG12V100F	11	1	11	363	129279,15	10152,78
RITAR DG12-65	17	1	17	357	180844,3	12955,36
RITAR DG12-75	15	1	15	352,5	139070,1	12291,6
RITAR DG12-100	11	1	11	330	133423,84	10996,92
RITAR DG12-150	8	1	8	356	158308,08	12127,76
RITAR DC12-200	6	1	6	360	164617,92	12039
RITAR DC12-260	5	1	5	370	153296	12701,4
UPOWER UP-GC2TOP	5	2	10	277	130385,16	5938,5
ROLLS S-290	5	2	10	310	130792,41	9815,6
UPOWER UP-GC16-6RE	2	2	4	208	97848,6	6588,64
FORMULA STAR FS 260 SOLAR	5	1	5	320	172991,28	5477,95
UPOWER SPO70	16	1	16	238,4	128744	4768
UPOWER SPO85	13	1	13	234	120165,5	4947,28
UPOWER SPO120	10	1	10	271	138862,5	5654
UPOWER SPO160	7	1	7	262,5	151,349,877	5463,43
UPOWER SPO250	5	1	5	290	171737,72	5108,7
UPOWER UP-GC12TOP	5	1	5	265	133237,45	7272,75
UPOWER UP-GC42-2RE	1	6	6	312	146772,9	8727,3
GNB ENERSOL T 760	2	6	12	372	166,195,248	11163,12
GNB ENERSOL T 880	2	6	12	456	181,898,736	11825,64
GNB ENERSOL T 1250	1	6	6	316,8	126,798,024	6622,62

Los criterios utilizados son los siguientes:

- **Total de baterías:** es conveniente que el número de baterías sea el mínimo, ya que trae consigo los siguientes criterios.
- **Peso total:** es conveniente que el peso total de las baterías sea mínimo, debido a que se le estaría agregando un peso extra al manejado normalmente por la Unidad Médica Móvil.
- Volumen total: es conveniente que el volumen total de las baterías sea mínimo, ya que dependiendo del número total de baterías el volumen total aumentará y por ende, ocupará un espacio determinado en la Unidad Médica Móvil
- **Precio total:** es conveniente que el precio sea mínimo.

Los datos según los criterios son los siguientes:

Tabla 63: Datos según criterios de selección de la batería.

DATO / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL	VOLUMEN TOTAL	PRECIO TOTAL
MIN	4	208	97848,6	4768
MAX	151	456	181898,736	19154,92
DIF	147	248	84050,136	14386,92

Tabla 64: Datos según criterios de selección de la batería. (continuación)

DATO / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL	VOLUMEN TOTAL	PRECIO TOTAL
APROX. DIF	154	462	181902	19159
CANTIDAD DE INTERVALOS	7	7	7	7
INCREMENTO	22	66	25986	2737

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 65: Intervalos y ponderaciones según criterios de selección de la batería.

N° INTERVALO / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL	VOLUMEN TOTAL	PRECIO TOTAL	PONDERACIÓN
1	[0,22)	[0,66)	[0,25986)	[0,2737)	7
2	[22,44)	[66,132)	[25986,51972)	[2737,5474)	6
3	[44,66)	[132,198)	[51972,77958)	[5474,8211)	5
4	[66,88)	[198,264)	[77958,103944)	[8211,10948)	4
5	[88,110)	[264,330)	[103944,129930)	[10948,13685)	3
6	[110,132)	[330,396)	[129930,155916)	[13685,16422)	2
7	[132,154)	[396,462)	[155916,181902)	[16422,19159)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 66: Matriz de decisión de la batería.

ESPECIFICACIÓN / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm³	PRECIO TOTAL S/	PONDERACIÓN TOTAL
VISION 6FM60D-X	7	1	1	1	7
VISION 6FM230-X	7	2	2	4	112
KAISE KBFS122500	7	3	3	5	315
UPOWER UP-TFS250-12	7	3	3	5	315
UPOWER SP 250	7	3	1	5	105
UPOWER UP7.2-12	1	2	2	4	16
KAISE KB1290	1	2	3	4	24
LIVEN LV 17-12 VRLA	5	3	2	4	120
VICTRON ENERGY BAT412600080	7	1	1	1	7
ULTRACELL UC86-12	7	3	3	5	315
ULTRACELL UC115-12	7	3	3	5	315
VICTRON ENERGY BAT412121080	7	2	2	2	56
ULTRACELL UC138-12	7	3	2	5	210
ULTRACELL UC172-12	7	3	2	5	210
ME MEBA12-220	7	3	2	5	210
ULTRACELL UC230-12	7	3	2	5	210
KAISE KBAS122500	7	3	2	5	210
KAISE KBL122000	7	2	1	5	70
NARADA 12NDF100	7	2	3	4	168

Tabla 67: Matriz de decisión de la batería. (continuación)

ESPECIFICACIÓN / CRITERIO	TOTAL DE BATERÍAS	PESO TOTAL kg	VOLUMEN TOTAL cm ³	PRECIO TOTAL S/	PONDERACIÓN TOTAL
NARADA 12HTB150	7	1	1	4	28
RITAR RA12-75	7	2	2	4	112
RITAR RA12-100	7	2	2	5	140
RITAR RA12-150	7	2	1	4	56
RITAR RA12-200	7	2	1	4	56
ME MEBG12-100	7	3	2	4	168
ME MEBG12-150	7	2	1	4	56
ULTRACELL UCG98-12	7	3	3	4	252
ULTRACELL UCG115-12	7	3	3	5	315
ULTRACELL UCG172-12	7	3	2	5	210
ME MEBG12-220	7	2	2	4	112
ULTRACELL UCG230-12	7	3	2	5	210
ULTRACELL UCG288-12	7	3	3	5	315
ULTRACELL UFTG115-12T	7	2	3	5	210
NARADA AG12V100F	7	2	3	4	168
RITAR DG12-65	7	2	1	3	42
RITAR DG12-75	7	2	2	3	84
RITAR DG12-100	7	2	2	3	84
RITAR DG12-150	7	2	1	3	42
RITAR DC12-200	7	2	1	3	42
RITAR DC12-260	7	2	2	3	84
UPOWER UP-GC2TOP	7	3	2	5	210
ROLLS S-290	7	3	2	4	168
UPOWER UP-GC16-6RE	7	4	4	5	560
FORMULA STAR FS 260 SOLAR	7	3	1	5	105
UPOWER SPO70	7	4	3	6	504
UPOWER SPO85	7	4	3	6	504
UPOWER SPO120	7	3	2	5	210
UPOWER SPO160	7	4	2	6	336
UPOWER SPO250	7	3	1	6	126
UPOWER UP-GC12TOP	7	3	2	5	210
UPOWER UP-GC42-2RE	7	3	2	4	168
GNB ENERSOL T 760	7	2	1	3	42
GNB ENERSOL T 880	7	1	1	3	21
GNB ENERSOL T 1250	7	3	3	5	315

Como resultado, se determinó que la batería "UPOWER|UP-GC16-6RE" es la mejor opción, por lo que a continuación se muestran sus características.

Figura 38: Batería UPOWER/UP-GC16-6RE. [26]

Tabla 68: Características de la batería UPOWER/UP-GC16-6RE. [26]

MODELO	UPOWER UP-GC16-6RE		
TIPO DE BATERÍA		PLOMO ÁCIDO ABIERTO	
TENSIÓN NOMINAL DE LA B	ATERÍA (V _{NOMINAL_BATERÍA})	6	V
CAPACIDAD NOMINAL DE L	A BATERÍA (C _{NOMINAL})	550	Ah

Con las características de la batería, a continuación, se calcula el número de baterías conectadas en serie (b_s) , el cual depende de la tensión nominal del sistema (V_{ns}) y de la tensión de la batería escogida (V_{nb}) .

$$b_s = \frac{V_{ns}}{V_{nb}}$$

$$b_s = \frac{12}{6} = 2$$

$$b_s = 2$$

De igual manera, conociendo la nueva capacidad nominal de la batería (C') y de la capacidad nominal de la batería elegida (C_b), se procede a calcular el número de baterías conectadas en paralelo (b_p):

$$b_p = \frac{C'}{C_b}$$

$$b_p = \frac{1086,8489}{550} = 1,976$$

$$b_{p} = 2$$

Finalmente, el número total de baterías es:

$$b_t = (b_s)(b_p)$$
$$b_t = (2)(2)$$
$$b_t = 4$$

4.3.2.2.3. Subsistema de regulación

Se procede a calcular la intensidad pico generada por el campo fotovoltaico (I_g) :

$$I_g = (1,25)(m_p)(I_p)$$

 $I_g = (1,25)(4)(8,84)$
 $I_g = 44,2 A$

De igual manera, considerando la condición de que el inversor se conecta al regulador, se calcula la intensidad total del consumo (I_c) :

$$I_c = \frac{P_{cc}}{V_{ns}} + \frac{P_{ca}}{V_{ns}(1 - k_c)}$$

$$I_c = \frac{0}{12} + \frac{585,2}{12(1 - 0,05)}$$

$$I_c = 51,333 A$$

Al igual que en el Método 1, se determina que la mejor opción de regulador es un MPPT.

Con los datos antes mencionados y los datos de corriente máxima de los reguladores, se puede calcular el número de reguladores a utilizar. Pero para ello (igual que en el apartado anterior), primero se debe elegir el regulador adecuado, de la variedad que existe en el mercado.

La base de datos de las baterías de acuerdo con [25], se muestra en el Anexo 18. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de batería.

Con el valor de la corriente máxima de salida/corriente de carga nominal en la base de datos, se estableció una tabla con los posibles escenarios.

Tabla 69: Posibles escenarios utilizando cada regulador de la base de datos.

ESPECIFICACIÓN	TENSIÓN DE LA BATERÍA V	CORRIENTE MÁXIMA A	CORRIENTE DE CARGA NOMINAL A	TIPO	#reguladores	PRECIO TOTAL S/
VICTRON ENERGY MPPT MPPT 150/85	12/24/48	-	85	MPPT	1	3621,13
VICTRON ENERGY MPPT MPPT 150/70	12/24/48	-	70	MPPT	1	3533,31
VICTRON ENERGY MPPT MPPT 150/100	12/24/48	-	100	MPPT	1	3506,04
FLEXMAX MPPT FM80-150VDC	12/24/36/48/60	80	-	MPPT	1	2930,4
FLEXMAX MPPT FM60-150VDC	12/24/36/48/60	60	-	MPPT	1	2582,73
VICTRON ENERGY MPPT MPPT 150/60	12/24/48	-	60	MPPT	1	2950
VICTRON ENERGY MPPT MPPT 150/45	12/24/48	-	45	MPPT	2	4066,3
SOLAR SYSTEM MPPT PC16-6015A	12/24/36/48	60	-	MPPT	1	2109,56
MORNINGSTAR MPPT SUNSAVERMPPT 15	12/24	15	-	MPPT	4	5612,24
VICTRON ENERGY MPPT MPPT 100/50	12/24	-	50	MPPT	2	2710,82
VICTRON ENERGY MPPT MPPT 150/35	12/24/36/48	-	35	MPPT	2	2710,82
VICTRON ENERGY MPPT MPPT 100/30	12/24	30	-	MPPT	2	1807,24
SOLAR SYSTEM MPPT PC16-3015A	12/24	30	-	MPPT	2	1935,2
VICTRON ENERGY MPPT MPPT 100/20	12/24	-	20	MPPT	3	2280,69
SOLAR SYSTEM MPPT PC16-2015A	12/24	20	-	MPPT	3	1947
VICTRON ENERGY MPPT MPPT 100/15	12/24	-	15	MPPT	4	1966,92
VICTRON ENERGY MPPT MPPT 75/15	12/24	-	15	MPPT	4	1894,08
VICTRON ENERGY MPPT MPPT 75/10	12/24	-	10	MPPT	6	2428,02
ATERSA PWM LEO10 35A	12/24/48	35	35	PWM	2	1469,72
XANTREX PWM C60	12/24	85	60	PWM	1	623,78
VICTRON ENERGY PWM PWM-PRO 12/24-30	12/24	-	30	PWM	2	1084
XANTREX PWM C40	12/24/48	85	40	PWM	1	496,52
SOLAR SYSTEM PWM PC1500B-6048D	48	-	60	PWM	1	413
VICTRON ENERGY PWM PWM-PRO 12/24-20	12/24	-	20	PWM	3	1073,46
SOLAR SYSTEM PWM PC1500B-50-60	12/24	-	60	PWM	1	354
SOLAR SYSTEM PWM PC1500B-6048D 50A	48	-	50	PWM	2	684,4
SOLAR SYSTEM PWM PC1500B-50-60 50A	12/24	-	50	PWM	2	566,4
ATERSA PWM MINO V2 12/24V 30	12/24	-	21	PWM	3	811,26
SOLAR SYSTEM PWM PC1500B-30-40 40A	12/24	-	40	PWM	2	495,6
VICTRON ENERGY PWM PWM-PRO 12/24-10	12/24	-	10	PWM	6	1158,9
ATERSA PWM MINO V2 12/24V 15	12/24	-	12	PWM	5	885
SOLAR SYSTEM PWM PC1500B-30-40 30A	12/24	-	30	PWM	2	330,4

Los reguladores que poseen casilleros en rojo son aquellos que no cumplen con los requisitos impuestos con anterioridad. Los reguladores de 48V debido a que no cumplen con el voltaje del sistema, y los reguladores PWM debido a que no coinciden con la elección anterior de controladores MPPT.

Los criterios utilizados como primera instancia son los siguientes:

- **Tipo:** está en función de la elección entre MPPT o PWM, después de haber identificado ventajas y desventajas.
- **Total de reguladores:** es conveniente que el número de reguladores sea mínimo. De este valor elegido, se tendrá repercusiones en el posible aumento del número de paneles fotovoltaicos.
- **Precio total:** es conveniente que el precio sea mínimo.

La ponderación del primer criterio se toma de manera independiente debido a que solo existen dos opciones (MPPT y PWM), por lo que no hay intervalos de ponderación.

Tabla 70: Ponderación según tipo de regulador.

TIPO	PONDERACIÓN
MPPT	1
PWM	0

Los datos según los criterios restantes son los siguientes:

Tabla 71: Datos según criterios de selección del regulador.

DATO / CRITERIO	#REGULADORES	PRECIO TOTAL
MIN	1	330,4
MAX	6	5612,24
DIF	5	5281,84
APROX. DIF	7	5614
CANTIDAD DE INTERVALOS	7	7
INCREMENTO	1	802

Los intervalos y las ponderaciones según los criterios son los siguientes:

Tabla 72: Intervalos y ponderaciones según criterios de selección del regulador.

N° INTERVALO / CRITERIO	#REGULADORES	PRECIO TOTAL	PONDERACIÓN
1	[0,1)	[0,802)	7
2	[1,2)	[802,1604)	6
3	[2,3)	[1604,2406)	5
4	[3,4)	[2406,3208)	4
5	[4,5)	[3208,4010)	3
6	[5,6)	[4010,4812)	2
7	[6,7)	[4812,5614)	1

Una vez definidos los intervalos y ponderaciones se realiza la matriz de decisión.

Tabla 73: Matriz de decisión del regulador.

ESPECIFICACIÓN / CRITERIO	TIPO	# _{REGULADORES}	PRECIO TOTAL S/	PONDERACIÓN TOTAL
VICTRON ENERGY MPPT MPPT 150/85	1	6	3	18
VICTRON ENERGY MPPT MPPT 150/70	1	6	3	18
VICTRON ENERGY MPPT MPPT 150/100	1	6	3	18
FLEXMAX MPPT FM80-150VDC	1	6	4	24
FLEXMAX MPPT FM60-150VDC	1	6	4	24
VICTRON ENERGY MPPT MPPT 150/60	1	6	4	24
VICTRON ENERGY MPPT MPPT 150/45	1	5	2	10

Tabla 74: Matriz de decisión del regulador. (continuación)

ESPECIFICACIÓN / CRITERIO	TIPO	#REGULADORES	PRECIO TOTAL S/	PONDERACIÓN TOTAL
SOLAR SYSTEM MPPT PC16-6015A	1	6	5	30
MORNINGSTAR MPPT SUNSAVERMPPT 15	1	3	1	3
VICTRON ENERGY MPPT MPPT 100/50	1	5	4	20
VICTRON ENERGY MPPT MPPT 150/35	1	5	4	20
VICTRON ENERGY MPPT MPPT 100/30	1	5	5	25
SOLAR SYSTEM MPPT PC16-3015A	1	5	5	25
VICTRON ENERGY MPPT MPPT 100/20	1	4	5	20
SOLAR SYSTEM MPPT PC16-2015A	1	4	5	20
VICTRON ENERGY MPPT MPPT 100/15	1	3	5	15
VICTRON ENERGY MPPT MPPT 75/15	1	3	5	15
VICTRON ENERGY MPPT MPPT 75/10	1	1	4	4
ATERSA PWM LEO10 35A	0	5	6	0
XANTREX PWM C60	0	6	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-30	0	5	6	0
XANTREX PWM C40	0	6	7	0
SOLAR SYSTEM PWM PC1500B-6048D	0	6	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-20	0	4	6	0
SOLAR SYSTEM PWM PC1500B-50-60	0	6	7	0
SOLAR SYSTEM PWM PC1500B-6048D 50A	0	5	7	0
SOLAR SYSTEM PWM PC1500B-50-60 50A	0	5	7	0
ATERSA PWM MINO V2 12/24V 30	0	4	6	0
SOLAR SYSTEM PWM PC1500B-30-40 40A	0	5	7	0
VICTRON ENERGY PWM PWM-PRO 12/24-10	0	1	6	0
ATERSA PWM MINO V2 12/24V 15	0	2	6	0
SOLAR SYSTEM PWM PC1500B-30-40 30A	0	5	7	0

Como resultado, se determinó que el regulador "SOLAR SYSTEM|MPPT|PC16-6015A" es la mejor opción. Así como en el Método 1, se considera que para conectar los módulos fotovoltaicos al regulador existen dos opciones:

- Elegir un regulador que soporte la corriente de todo el campo fotovoltaico.
- Dividir el campo fotovoltaico en "subcampos", siempre y cuando sean ramas simétricas. Luego se seleccione el regulador de acuerdo con la corriente de cada subcampo.

Este regulador cumple con la primera opción, por lo cual no requiere otro análisis para su elección. Las características de este regulador se presentan a continuación:

Figura 39: Regulador SOLAR SYSTEM/MPPT/PC16-6015A.

Tabla 75: Características del regulador SOLAR SYSTEM/MPPT/PC16-6015A.

MODELO	SOLAR SYSTEM MPPT PC16-6015A		
TENSIÓN DE LA BATERÍA		12/24/36/48	V
CORRIENTE MÁXIMA		60	Α
CORRIENTE DE CARGA NOMINA	AL	-	Α

Una vez elegido el regulador, se comprueba que cumpla con los siguientes requisitos:

- Debe soportar la corriente pico generada por el campo fotovoltaico (I_g) :

$$I_{REGULADOR_ELEGIDO} > I_g$$

$$60 A > 44,2 A$$

Se demuestra que si cumple con la primera condición.

- Debe soportar la intensidad total del consumo (l_c) :

$$I_{REGULADOR_ELEGIDO} > I_g$$

 $60 A > 51,333 A$

Se demuestra que si cumple con la segunda condición.

Ahora, se confirma el número de reguladores totales mediante la siguiente ecuación:

$$n\'umero\ de\ reguladores = \frac{I_{regulador_max}}{I_{reg}}$$

$$n\'umero\ de\ reguladores = \frac{51,333}{60}$$

número de reguladores =
$$0.8555 \approx 1$$

Por lo tanto, el número de reguladores es de 1. Además, el número de paneles conectados al regulador es de 4.

4.3.2.2.4. Subsistema de acondicionamiento de potencia

En primer lugar, se calculará potencia de entrada al inversor (P_i) la cual se rige mediante la siguiente ecuación:

$$P_{i} = \frac{P_{ca}}{1 - k_{c}}$$

$$P_{i} = \frac{585,2}{1 - 0,05}$$

$$P_{i} = 616 W$$

Para la elección del convertidor, se detallan los requerimientos a tener:

- Tensión de entrada (V_{CC}): debe coincidir con la tensión del sistema. En este caso es de 12 V.
- Tensión de salida (V_{AC}): debe coincidir con la tensión de consumo de los equipos. En este caso es de 220 V.
- Frecuencia: debe coincidir con la frecuencia requerido por los equipos. En este caso es de 60 Hz.
- Potencia de salida: debe ser mayor a la potencia demandada por los equipos. En este caso debe ser superior a 585,5 W.

La base de datos de los inversores (convertidores), de acuerdo con [25], se muestra en el Anexo 19. Partiendo de ello, se elaborará una matriz de decisión para elegir la mejor opción de batería. Con todo lo mencionado anteriormente, se estableció una tabla con los posibles escenarios.

ESPECIFICACIÓN	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
VICTRON ENERGY C12/3000/120	12	230	50	2400	6472,55
VICTRON ENERGY C12/2000	12	230	50/60	1600	5065,36
VICTRON ENERGY C12/1600	12	230	50/60	1300	4372,37
VICTRON ENERGY 12/1200	12	120/230	50/60	1000	2936,17
XANTREX PROwatt SW 2000i	12	230	50	2000	2622,22
ATERSA QUADRO 1000VA 12V	12	230	-	1400	1966,67
XANTREX PROwatt SW 1400i	12	230	50	1400	1899,47
VICTRON ENERGY 12/800	12	110/230	50/60	700	1404,7
XANTREX PROwatt SW 700i	12	230	50	700	1137,39
MUST SOLAR EP20-800	12	220/230/240	50/60	800	983.33

Tabla 76: Posibles escenarios utilizando cada convertidor de la base de datos.

Tabla 77: Posibles escenarios utilizando cada convertidor de la base de datos. (continuación)

ESPECIFICACIÓN	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
VICTRON ENERGY 12/500	12	120/230	50/60	400	813,33
MUST SOLAR EP20-600	12	220/230/240	50/60	600	663,75
VICTRON ENERGY 12/375	12	120/230	50/60	300	558,6
MUST SOLAR EP20-300	12	220/230/240	50/60	300	531
VICTRON ENERGY 12/250	12	120/230	50/60	200	435,37
VICTRON ENERGY EASY SOLAR 24/3000/70-50	24	230	50	2400	11175,12
VICTRON ENERGY 24/5000/120	24	230	50	4000	10397,4
VICTRON ENERGY 24/3000/70	24	230	50	2400	8454,2
VICTRON ENERGY C24/2000/50	24	230	50	1600	5673,57
ATERSA QUADRO 5000VA MPPT 80A	24	230	-	5000	5149,1
VICTRON ENERGY INV-CARG C24/1600/40	24	230	50	1300	4210,76
VICTRON ENERGY C24/1600/40	24	230	50	1300	3908,75
ATERSA QUADRO 3000VA 24V MPPT 60A	24	230	-	3000	3218,18
VICTRON ENERGY 24/1200	24	120/230	50/60	1000	2936,17
MUST SOLAR PV18-3024 HM	24	220/240	50/60	2400	2865,71
ATERSA QUADRO 3000VA 24V PWM 50A	24	230	-	3000	2242
VICTRON ENERGY 24/800	24	120/230	50/60	650	1404,7
VICTRON ENERGY 24/500	24	120/230	50/60	400	813,24
VICTRON ENERGY 24/375	24	120/230	50/60	300	558,6
VICTRON ENERGY 24/250	24	120/230	50/60	200	435,37

Después de haber aplicado los requerimientos (como formato condicional en el software Microsoft Excel) a la tabla de posibles escenarios, se llega a la conclusión que el único convertidor que cumple con todo es el "MUST SOLAR|EP20-800", por lo que a continuación se muestran sus características.

Figura 40: Convertidor MUST SOLAR/EP20-800. [26]

Tabla 78: Características del convertidor MUST SOLAR/EP20-800. [26]

MODELO	MUST SOLAR EP20-800	
TENSIÓN DE ENTRADA VCC	12	V
TENSIÓN DE SALIDA VAC	220/230/240	V
FRECUENCIA	50/60	Hz
POTENCIA DE SALIDA	800	W

Una vez culminado el dimensionamiento de los equipos con cada método, se procede a realizar un cuadro comparativo con la cantidad y precio de los equipos.

		N	MÉTODO 2						
N°	EQUIPO	UNIDAD	CANTIDAD	PRECIO UNITARIO (Soles S/)	PRECIO TOTAL (Soles S/)	UNIDAD	CANTIDAD	PRECIO UNITARIO (Soles S/)	PRECIO TOTAL (Soles S/)
1	PANEL FOTOVOLTAICO	u.	14	S/. 696.42	S/. 9,749.88	u.	4	S/. 907.69	S/. 3,630.76
2	BATERÍA	u.	6	S/. 1,319.74	S/. 7,918.44	u.	4	S/. 1,647.16	S/. 6,588.64
3	CONTROLADOR	u.	2	S/. 3,506.04	S/. 7,012.08	u.	1	S/. 2,109.56	S/. 2,109.56
4	INVERSOR	u.	1	S/. 983.33	S/. 983.33	u.	1	S/. 983.33	S/. 983.33
	TOTAL		23		S/. 25.663.73		10		S/. 13.312.29

Tabla 79: Comparación de equipos en ambos métodos.

Cabe resaltar que ambos métodos han tenido las mismas consideraciones iniciales, por lo que ambos cumplen con la demanda requerida.

En el cuadro anterior se evidencia que el Método 2 utiliza menos recursos económicos y menos equipos para satisfacer la demanda de los equipos biomédicos de la Unidad Médica Móvil, en comparación con el Método 1. Por lo tanto, se elige al Método 2 como el óptimo.

A continuación, se muestra un cuadro con los equipos seleccionados que abastecerán la demanda de energía de los equipos biomédicos de la Unidad Médica I:

			PRECIO	PRECIO
EQUIPO	UNIDAD	CANTIDAD	UNITARIO	TOTAL
			(Soles S/)	(Soles S/)
Panel solar 320Wp 24V Csun Policristalino	u.	4	S/. 907,69	S/. 3,630,76
Batería Upower 550Ah 6V-GC16	u.	4	S/. 1,647,16	S/. 6,588,64
Controlador MPPT LCD 60A 12-24-48V Must Solar	u.	1	S/. 2,109,56	S/. 2,109,56
Inversor cargador 800W 12V 25A Must Solar	u.	1	S/. 983,33	S/. 983,33
ΤΩΤΔΙ		10		S/ 13 312 29

Tabla 80: Equipos seleccionados que abastecerán a los equipos biomédicos.

4.3.2.2.5. Dimensionado de la sección del cableado

Una vez elegido el Método (método 2), se procede a dimensionar la sección del cableado de acuerdo con las ecuaciones de la metodología elegida.

Algunas consideraciones a tener en cuenta son:

- Para un mayor orden en la conexión de los paneles, se utilizará una "Caja de conexión" (Caja estanca de paso) entre los paneles y el regulador, así como un "Repartidor" (Bornera).
- Se utilizará 1 m de cable del mismo calibre del tramo regulador-batería para la conexión entre baterías.

De acuerdo con [13], se procede a calcular la corriente máxima por cada circuito:

- Para el circuito panel-caja de conexión, la intensidad máxima (I_{max}) es la siguiente:

$$I_{max} = (1,25)(I_{max_panel})$$

 $I_{max} = (1,25)(8,84)$
 $I_{max} = 11,05 A$

- Para el circuito caja de conexión-regulador, la intensidad máxima (l_{gm}) es la siguiente:

$$I_{gm} = (1,25)(I_g)$$

 $I_{gm} = (1,25)(44,2)$
 $I_{gm} = 55,25 A$

- Para el circuito regulador-batería, la corriente máxima (l_{rm}) es:

$$I_{rm} = I_{gm}$$

$$I_{rm} = 55,25 A$$

- Para el circuito batería-inversor, la intensidad máxima (I_{bm}) es la siguiente:

$$I_{bm} = \frac{(1,25)(P_{ca})}{(V_{ns})(1 - k_c)}$$
$$I_{bm} = \frac{(1,25)(585,2)}{(12)(1 - 0,05)}$$
$$I_{bm} = 64,167 A$$

- Para el circuito de alimentación en alterna, a intensidad máxima (I_{cam}) sería la siguiente:

$$I_{cam} = \frac{(1,25)(P_{ca})}{V_{ca}}$$

$$I_{cam} = \frac{(1,25)(585,2)}{220}$$

$$I_{cam} = 3,325 A$$

Una vez calculadas las corrientes máximas para cada tramo, se procede a calcular la sección del cableado para cada tramo considerando las siguientes caídas de tensión:

Circuito	Tensión nominal	Caída de tensión	Caída de tensión	
Circuito	del circuito (V)	admisible (%)	admisible (V)	
Panel-caja de	24	o	1,92	
conexión	24	O	1,92	
Caja de conexión-	24	o	1.02	
regulador	24	0	1,92	
Regulador-batería	12	0,5	0,06	
Batería-inversor	12	0,5	0,06	
Iluminación	220	3	6,6	
Equipos	220	5	11	

Tabla 81: Caída de tensión en cada circuito. [13]

Además, se realizará una estimación de la longitud del cableado en base a las medidas de la tolva de la Unidad Médica Móvil, y de las consideraciones antes mencionadas:

Circuito	N° de cables	Longitud unitaria estimada del cable m	Longitud total del cable m
Panel-caja de conexión	8	2	16
Caja de conexión-regulador	2	13	26
Regulador-batería	2	1,5	3
Conexión de baterías	1	1	1
Batería-inversor	2	1,2	2,4
Inversor-equipos	2	15	30

Tabla 82: Cantidad y longitud estimada del cableado para cada circuito.

Con los datos antes mencionados, se procede a calcular la sección del cable (mm²), de cada circuito de la instalación.

- Para el circuito panel-caja de conexión:

$$S_{panel-caja} = \frac{(0,036)(I)(L)}{\Delta V}$$

$$S_{panel-caja} = \frac{(0,036)(11,05 A)(2 m)}{1,92}$$

$$S_{panel-caja} = 0,4144 mm^{2}$$

- Para el circuito caja de conexión-regulador:

$$S_{caja-regulador} = \frac{(0,036)(I)(L)}{\Delta V}$$

$$S_{caja-regulador} = \frac{(0,036)(55,25 \, A)(13 \, m)}{1,92}$$

$$S_{caja-regulador} = 13,4672 \ mm^2$$

- Para el circuito regulador-baterías:

$$S_{regulador-baterías} = \frac{(0,036)(I)(L)}{\Delta V}$$

$$S_{regulador-baterías} = \frac{(0,036)(55,25 \text{ A})(1,5 \text{ m})}{0,06}$$

$$S_{regulador-baterías} = 49,725 \text{ mm}^2$$

- Para el circuito baterías-inversor:

$$S_{baterias-inversor} = \frac{(0,036)(I)(L)}{\Delta V}$$

$$S_{baterias-inversor} = \frac{(0,036)(64,167 A)(1,2 m)}{0,06}$$

$$S_{baterias-inversor} = 46,2002 mm^{2}$$

- Para el circuito inversor-equipos:

$$S_{inversor-equipos} = \frac{(0,036)(I)(L)}{\Delta V}$$

$$S_{inversor-equipos} = \frac{(0,036)(3,325 A)(15 m)}{11}$$

$$S_{inversor-equipos} = 0,1632 mm^{2}$$

A continuación, se muestra un cuadro resumen con los datos utilizados en el cálculo de la sección del cableado de la instalación:

Tabla 83: Cuadro resumen del cálculo de la sección del cableado según el circuito.

Circuito	Corriente máxima A	Longitud estimada del tramo m	Caída de tensión admisible V	Sección del cable mm²
Panel-caja de conexión	11,05	2	1,92	0,4144
Caja de conexión- regulador	55,25	13	1,92	13,4672
Regulador-batería	55,25	1,5	0,06	49,7250
Batería-inversor	64,167	1,2	0,06	46,2002
Inversor-equipos	3,325	15	11	0,1632

Una vez calculada la sección del cable, el siguiente paso es mediante tablas (sabiendo el método referencial de instalación) seleccionar el calibre del cable inmediato superior. Las tablas se muestran a continuación:

Tabla 84: Métodos de instalación referenciales. [30]

				Tabla y columna Capacidades de corriente				
					rcuitos			Factor de
Metodo refe	erencial de instalaci	on		niento		niento	Factor de	reducción
				/C	conduct	/ EPR	temperatura ambiente	por agrupa-
			2	3	2	3	ambiente	miento
	1	2	3	4	5	6	7	8
	Conductores	-	3	- 4	3	- 0	,	
	aislados dentro de	A1	Tabla 2	Tabla 2	Tabla 2	Tabla 2		
900	un tubo empotrado	^'	Col. 2	Col. 3	Col. 14	Col. 15	Tabla 5A	Tabla 5C
	en una pared		332	555	00	00110		
	Cable multipolar en							
	un tubo empotrado	A2	Tabla 2	Tabla 2	Tabla 2	Tabla 2	T-61- 5A	T-bl- 50
	dentro de una pared		Col. 4	Col. 5	Col. 16	Col. 17	Tabla 5A	Tabla 5C
	Conductores	١						
(a.a.)	aislados dentro de	B1	Tabla 2	Tabla 2	Tabla 2	Tabla 2	Tabla 5A	Tabla 5C
8	un tubo sobre una		Col. 6	Col. 7	Col. 18	Col. 19		1
B.	pared de madera							
	Cable multipolar	B2	T-1-1- 2	T-61- 2	T-1-1- 2	T-1-1- 2		
	dentro de un tubo sobre una pared de	B2	Tabla 2 Col. 8	Tabla 2 Col. 9	Tabla 2 Col. 20	Tabla 2 Col. 21	Tabla 5A	Tabla 5C
	madera		001.0	001. 3	001. 20	001. 21		
Ø.								
% 8	Cable unipolar o	С	Tabla 2	Tabla 2	Tabla 2	Tabla 2		
	multipolar sobre una pared de	-	Col. 10	Col. 11	Col. 22	Col. 23	Tabla 5A	Tabla 5C
(00)	madera		001. 10	001. 11	001. 22	001. 23		
N N	Cable multipolar en	\vdash						
	ductos enterrados		Tabla 2	Tabla 2	Tabla 2	Tabla 2		
		D	Col. 12	Col. 13	Col. 24	Col. 25	Tabla 5A	Tabla 5D
		-						
	Cable multipolar al							
	aire libre	E	Co	bre	Co	bre		
		-		la 1		ila 1	Tabla 5A	Tabla 5C
Separación a la pared no menor de 0,3 veces								
el diámetro del cable								
یم ا	Cables unipolar, en							
&	contacto al aire libre							
900 8		F	Co	bre	Co	bre		
8 8		'	Cobre Tabla 1		ı	ıla 1	Tabla 5A	Tabla 5C
			T GANGET					
Separación a la pared no menor de un								
diámetro del cable	C-1-1							
(a)	Cables unipolar, espaciados al aire							
<u> </u>	libre	G	Cobre		Cobre		T	
8 6 7			Tabla 1		Tabla 1		Tabla A	-
8 0 0 0					- Carra			
N P G G								

Tabla 85: Capacidad de corriente en A de conductores aislados-En canalización o cable. [30]

Sección			Méto	do de ii			acuerd 64-5-52		NTP 37	0.301			
nominal del	Α	1	A2		В	B1		B2		С		D	
conductor [mm²]								0		9	Õ		
Aislamiento	XLPE	o EPR	XLPE	o EPR	XLPE	o EPR	XLPE	o EPR	XLPE	o EPR	XLPE	o EPR	
Temperatura	90	°C	90	°C	90	°C	90	°C	90	°C	90	°C	
Cantidad de conductores	2	3	2	3	2	3	2	3	2	3	2	3	
1	14	15	16	17	18	19	20	21	22	23	24	25	
Cobre													
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22	
2,5	26	23	25	22	31	28	30	26	33	30	34	29	
4	35	31	33	30	42	37	40	35	45	40	44	37	
6	45	40	42	38	54	48	51	44	58	52	56	46	
10	61	54	57	51	75	68	69	60	80	71	73	61	
16	81	73	76	68	100	88	91	80	107	96	95	79	
25	106	95	99	69	133	117	119	105	138	119	121	101	
35	131	117	121	109	164	144	146	128	171	147	146	122	
50	158	141	145	130	198	175	175	154	209	179	173	144	
70	200	179	183	164	253	222	221	194	269	229	213	178	
95	241	216	220	197	306	269	265	233	328	278	252	211	
120	278	249	253	227	354	312	305	268	382	322	287	240	
150	318	285	290	259	-	-	-	-	441	371	324	271	
185	362	324	329	295	-	_	-	_	506	424	363	304	
240	424	380	386	346	-	_	-	-	599	500	419	351	
300	486	435	442	39	-	-	-	-	693	576	474	396	

Tabla 86: Capacidad de corriente en A de conductores aislados-Al aire libre. [30]

		Cables mu	ultipolares	;		Cables u	nipolares		
	Mét	odo de ins	talación de	acuerdo a	la NTP 37	0.301 (IEC	60364-5-	523)	
Sección	Dos condi	uctores de	Tres cond	uctores de			Tres conductores de		
nominal del	ca	rga	cai	rga	carga al	contacto	carga en	triángulo	
conductor [mm ²]	(ॐ	XXXXXXXXX			9 3			
	Méto	do E	Méto	do E	Méto	do F	Méto	do F	
Aislamiento	PVC	XLPE o EPR	PVC	XLPE o EPR	PVC	XLPE o EPR	PVC	XLPE o EPR	
Temperatura	70 °C	90 °C	70 °C	90 °C	70 °C	90 °C	70 °C	90 °C	
1	2	3	4	5	6	7	8	9	
1,5	22	26	18,5	23	-	-	-	-	
2,5	30	36	25	32	-	-	-	-	
4	40	49	34	42	-	-	-	-	
6	51	63	43	54	-	-	-	-	
10	70	86	60	75	-	-	-	-	
16	94	115	80	100	-	-	-	-	
25	119	149	101	127	131	161	110	135	
35	148	185	126	158	162	200	137	169	
50	180	225	153	192	196	242	167	207	
70	232	289	196	246	251	310	216	268	
95	282	352	238	298	304	377	264	328	
120	328	410	276	346	352	437	308	383	
150	379	473	319	399	406	504	356	444	
185	434	542	364	456	463	575	409	510	
240	514	641	430	538	546	679	485	607	
300	593	741	497	621	629	783	561	703	
400	-	-	-	-	754	940	656	823	
500 630	-	-	-	-	868 1005	1083 1254	749 855	946 1088	

Tabla 87: Capacidad de corriente en A de conductores aislados-En canalización o cable. Alternativa para calibre AWG.
[30]

Basada en temperatura ambiente de 30 °C

AWG	Sección [mm²]			THWN-2, XHHW-2				
	[]	Temperatura						
		60 °C	75 °C	90 °C				
16	1.31	-	-	18				
14	2,08	20	20	25				
12	3,31	25	25	30				
10	5,26	30	35	40				
8	8,37	40	50	55				
6	13,30	55	65	75				
4	21,15	70	85	95				

Tabla 88: Capacidad de corriente en A de conductores aislados unipolares-Al aire libre. Alternativa para calibre AWG.
[30]

Basada en temperatura ambiente del Aire de 30 °C

AWG	Sección [mm²]	TW, TWF	THW, THHW, THHWF, XHHW	THWN-2, XHHW-2				
	[]	Temperatura						
		60 °C	75 °C	90 °C				
16	1,31	-	-	24				
14	2,08	25	30	35				
12	3,31	30	25	40				
10	5,26	40	50	55				
8	8,37	60	70	80				
6	13,30	80	95	105				
4	21,15	105	125	140				

La NTP 370.301 [31], presenta un método simplificado para determinar la capacidad de corriente nominal según los métodos referenciales, este método se ejemplifica en la siguiente tabla:

Métodos Referenciales en tabla 2				Número	de conduc	tor de car	ga y tipo d	e aislamier	nto			
A1		Tres PVC	Dos PVC		Tres XLPE	Dos XLPE						
A2	Tres PVC	Dos PVC		Tres XLPE	Dos XLPE							
B1				Tres PVC	Dos PVC		Tres XLPE		Dos XLPE			
B2			Tres PVC	Dos PVC		Tres XLPE	Dos XLPE					
С					Tres PVC		Dos PVC	Tres XLPE		Dos XLPE		
Е						Tres PVC		Dos PVC	Tres XLPE		Dos XLPE	
F							Tres PVC		Dos PVC	Tres XLPE		Dos XLPE
1	2	3	4	5	6	7	8	9	10	11	12	13
Dimensión mm² Cobre												
1,5	13	13,5	14,5	15,5	17	18,5	19,5	22	23	24	26	_
2,5	17,5	18	19,5	21	23	25	27	30	31	33	36	_
4	23	24	26	28	31	34	36	40	42	45	49	_
6	29	31	34	36	40	43	46	51	54	58	63	-
10	39	42	46	50	54	60	63	70	75	80	86	-
16	52	56	61	68	73	80	85	94	100	107	115	_
25	68	73	80	89	95	101	110	119	127	135	149	161
35	-	-	-	110	117	126	137	147	158	169	185	200
50	-	-	-	134	141	153	167	179	192	207	225	242
70	-	-	-	171	179	196	213	229	246	268	289	310
95	-	-	-	207	216	238	258	278	298	328	352	377
120	-	-	-	239	249	276	299	232	346	382	410	437
150	-	-	-	-	285	318	344	371	395	441	473	504
185	-	-	-	-	324	364	392	424	450	506	542	575
240	-	-	_	_	380	420	461	500	538	599	641	679

Tabla 89: Capacidad nominal de corriente según los métodos referenciales. [31]

Es necesario consultar las tablas 4 a 9 para determinar el rango de diámetros de conductores para los cuales son aplicables las capacidades de corriente nominal para cada método de instalación.

Para el supuesto caso en el que no se pueda determinar la capacidad nominal de la corriente (columna 2, 3, 4, 5, 13 de la tabla anterior), la [31] presenta una fórmula que expresa las capacidades de corriente; esta fórmula es la siguiente:

$$I = (A)(S^m) - (B)(S^n)$$
(52)

Donde:

- I: capacidad de corriente en amperios (A)
- S: área de la sección transversal del conductor en milímetros cuadrados (mm²)
- A y B: coeficientes
- m y n: exponentes según el método de instalación y el tipo de cable

La tabla de coeficientes y exponentes se muestra a continuación:

Tabla 90: Coeficientes y exponentes. [31]

Tabla de	Columna	Conducto	r de cobre
capacidad de corriente nominal	Columna	A	m
	2	11,2	0,6118
	3≤120 mm ²	10,8	0,6015
	3> 120 mm ²	10,19	0,6118
	4	13,5	0,625
4	5< 16 mm ²	13,1	0,600
	6≤ 16 mm ²	15,0	0,625
	6> 16 mm ²	15,0	0,625
	7	17,6	0,551
	2	14,9	0,611
	$3 \le 120 \text{ mm}^2$	14,46	0,598
	3> 120 mm ²	13,56	0,611
	4	17,76	0,6250
5	5	17,25	0,600
	6≤ 16 mm ²	18,77	0,628
	6> 16 mm ²	17,0	0,650
	7	20,8	0,548
	2	10.4	0,605
	3≤ 120 mm ²	10,1	0,592
	3> 120 mm ²	9,462	0,605
	4	11,84	0,628
6	5	11,65	0,6005
	6≤ 16 mm ²	13,5	0,625
	6> 16 mm ²	12,4	0,635
	7	14,6	0,550
	2	13,34	0,611
	3≤ 120 mm ²	12,95	0,598
	3> 120 mm ²	12,14	0,611
	4	15,62	0,6252
7	5	15,17	0,60
	6≤ 16 mm ²	17,0	0,623
	6> 16 mm ²	15,4	0,635
	7	17,3	0,549

Tabla 91: Coeficientes y exponentes (continuación). [31]

Tabla de	Columna	Coeficientes y exponentes				
capacidad de corriente nominal	Columna	A	m	В	n	
8	2≤16 mm ² 2> 16 mm ² 3≤16 mm ² 3> 16 mm ² 4 5< 300 mm ² 5>300 mm ² 6< 300 mm ² 6>300 mm ² 7 8	16,8 14,9 14,3 12,9 17,1 13,28 13,28 13,75 13,75 18,75 15,8	0,62 0,646 0,62 0,64 0,632 0,6564 0,6564 0,6581 0,637 0,654			
9	2≤16 mm ² 2> 16 mm ² 3≤16 mm ² 3> 16 mm ² 4 5< 300 mm ² 5>300 mm ² 6< 300 mm ² 6>300 mm ² 7 8	20,5 18,6 17,8 16,4 20,8 16,0 16,0 16,57 16,57 22,9 19,1	0,623 0,646 0,623 0,637 0,636 0,6633 0,6633 0,665 0,665 0,644 0,662	6x 10 ⁻⁴	- - - - 1,793 - 1,876	

- Circuito panel-caja de conexión

Para este circuito, el método referencial de instalación es el "F", "Cable unipolar, en contacto al aire libre" según la Tabla 84. Conociendo el valor de la sección del cable (0,4144 mm²) y con la ayuda de la Tabla 89, se determina que la sección nominal estándar superior es de 2,5 mm²; debido a que dicha sección es la mínima recomendada por el "Código Nacional de Electricidad" [30]. Así como en la Tabla 89 (para la sección de 2,5 mm²) se determina que la capacidad nominal es de 31 A (considerando "Dos conductores PVC"); también se evidencia en la Tabla 92, que no se dispone de una capacidad máxima de corriente, por lo que se utilizará la fórmula 52 para comprobar el valor de corriente antes mencionado.

Para ello, se utilizarán las Tablas 90 y 91 para determinar los coeficientes y exponentes. Estas tablas están en función de las "Tablas de capacidad de corriente nominal", presentes en la NTP 370.301. Al consultar dicha norma [31], se verifica que la "Tabla 8" (capacidad de corriente nominal en amperes para los métodos de instalación E, F y G de la Tabla 2) es la más indicada para este caso. La tabla antes mencionada se muestra a continuación:

Tabla 92: Tabla 8 de la NTP 370.301-capacidad de corriente nominal en amperes para los métodos de instalación E, F y G con Aislamiento PVC, conductores de cobre.

Área de	Método de instalación de la Tabla 2							
sección	Cables mu	ıltipolares	Cables unipolares					
transversal nominal	Dos	Tres	Dos conductores	Tres conductores	Tres conductoras de carga, en un plano		rga, en un	
del	conductores	conductores	de carga al	de carga en	Al	Espac	iado	
conductor	de carga	de carga	contacto	triángulo	contacto	Horizontal	Vertical	
mm²	Método E	Método E	Método F	Método F	900 900 Método F		O + O + O + O + O + O + O + O + O + O +	
1	2	3	4	5	6	7	8	
1,5	22	18,5	-	-	-	-	-	
2,5	30	25	-	-	-	-	-	
4	40	34	-	-	-	-	-	
6	51	43	-	-	-	-	-	
10	70	60	-	-	-	-	-	
16	94	80	-	-	-	-	-	
25	119	101	131	110	114	146	130	
35	148	126	162	137	143	181	162	
50	180	153	196	167	174	219	197	
70	232	196	251	216	225	281	254	
95	282	238	304	264	275	341	311	
120	328	276	352	308	321	396	362	
150	379	319	406	356	372	456	419	
185	434	364	463	409	427	521	480	
240	514	430	546	485	507	615	569	
300	593	497	629	561	587	709	659	
400	-	-	754	656	689	852	795	
500	-	-	868	749	789	982	920	
630	-	-	1005	855	905	1138	1070	

NOTA: Se asume conductores circulares para secciones hasta e inclusive 16 mm². Valores para dimensiones mayores están relacionados a la forma de los conductores y puede ser aplicado a conductores circulares.

Con la tabla anterior, podemos determinar que se trata de "cables unipolares", y de "dos conductores de carga al contacto" (método F), todo indica que este caso particular se ubica en la columna 4. Con la ayuda de la Tabla 91 y el dato antes hallado, determinamos que los coeficientes y exponentes son los siguientes:

$$A = 17.1$$

$$m = 0.632$$

$$B = 0$$

$$n = 0$$

Utilizando la ecuación 52, calculamos la capacidad de corriente en amperios para una sección de 2,5 mm².

$$I = (A)(S^m) - (B)(S^n)$$
$$I = (17,1)(2,5^{0,632}) - (0)(2,5^0)$$
$$I = 30,513 A$$

Se evidencia que la máxima corriente que el cable soporta, es muy superior a la requerida por la instalación, ya que para 2,5 mm², la corriente máxima es de 31 A y la de la instalación es de 11,05 A. Realizando la conversión AWG-mm² utilizando la siguiente tabla, se determina que 2,5 mm² equivale a 14 AWG.

Tabla 93: Conversión AWG-mm². [32]

AWG/MCM	SECCIÓN METRICAS CORRESPONDIENTES mm ²	SECCIÓN mm ²
20 AWG	0,518	0,75
18 AWG	0,823	1
16 AWG	1,31	1,5
14 AWG	2,08	2,5
12 AWG	3,31	4
10 AWG	5,26	6
8 AWG	8,37	10
6 AWG	13,3	16
4 AWG	21,2	25
3 AWG	26,7	25 *
2 AWG	33,6	35
1 AWG	42,4	50
1/0 AWG	53,5	50 *
2/0 AWG	67,4	70
3/0 AWG	85	95
4/0 AWG	107,2	120
	,	

La base de datos de los cables, de acuerdo con [33], se muestra a continuación.

Tabla 94: Base de datos de cables (PROMART). [33]

MODELO	CANTIDAD Metros	PRECIO Soles	MARCA	AISLAMIENTO
Cable THW 14 AWG Rojo x metro	1	1,5	CENTELSA	PVC
Cable THW 14 AWG Azul x metro	1	1,5	CENTELSA	PVC
Cable THW 14 AWG Negro x metro	1	1,5	CENTELSA	PVC
Cable TW 14 AWG Rojo x metro	1	1,6	INDECO	PVC
Cable TW 14 AWG Azul x metro	1	1,6	INDECO	PVC
Cable TW 14 AWG Negro x metro	1	1,6	INDECO	PVC
Cable THW 12 AWG Rojo x metro	1	2,2	CENTELSA	PVC
Cable THW 12 AWG Azul x metro	1	2,2	CENTELSA	PVC
Cable THW 12 AWG Negro x metro	1	2,2	CENTELSA	PVC
Cable THW-90 14 AWG Azul x 25 metros	25	34,9	CENTELSA	PVC
Cable THW-90 14 AWG Rojo x 25 metros	25	34,9	CENTELSA	PVC
Cable THW-90 14 AWG Blanco x 25 metros	25	34,9	CENTELSA	PVC
Cable THW-90 14 AWG Negro x 25 metros	25	34,9	CENTELSA	PVC
Cable THW-90 14 AWG Azul x 50 metros	50	64,9	CENTELSA	PVC
Cable THW-90 14 AWG Rojo x 50 metros	50	64,9	CENTELSA	PVC
Cable THW-90 14 AWG Blanco x 50 metros	50	64,9	CENTELSA	PVC
Cable THW-90 14 AWG Negro x 50 metros	50	64,9	CENTELSA	PVC

Con la base de datos antes mostrada, se determina que el cable a utilizar en el circuito "panelcaja de conexión" es "Cable THW 14 AWG Negro x metro" y "Cable THW 14 AWG Rojo x metro", los cuales se muestran a continuación:

Figura 41: Cable THW 14 AWG Negro x metro. [33]

Figura 42: Cable THW 14 AWG Rojo x metro. [33]

- Circuito caja de conexión-regulador

Para este circuito, el método referencial de instalación es la "F", "Cable unipolar en contacto al aire libre" según la Tabla 84. Conociendo el valor de la sección del cable (13,4672 mm²) y con la ayuda de la Tabla 89, se determina que la sección nominal estándar superior es de 16 mm². Al igual que en el circuito anterior, se evidencia que no se dispone de una capacidad máxima de corriente, por lo que se utilizará la fórmula 52.

Para ello, se utilizarán las Tablas 90 y 91 para determinar los coeficientes y exponentes. Estas tablas están en función de las "Tablas de capacidad de corriente nominal", presentes en la NTP 370.301. Al consultar dicha norma [31], se verifica que la "Tabla 9" (capacidad de corriente nominal en amperes para los métodos de instalación E, F y G de la Tabla 2) es la más indicada para este caso. La tabla antes mencionada se muestra a continuación:

Tabla 95: Tabla 9 de la NTP 370.301-capacidad de corriente nominal en amperes para los métodos de instalación E, F y G con Aislamiento XLPE o EPR, conductores de cobre.

Área de	Método de instalación de la tabla 2						
sección	Cables n	nultipolar	Cables unipolar				
transversal nominal	Dos	Tres	Dos conductores	Tres conductores	Tres conductoras de carga, en un plano		rga, en un
del	conductores	conductores	de carga al	de carga en	A1 Espaci		iado
conductor	de carga	de carga	contacto	triángulo	contacto	Horizontal	Vertical
mm ²	Método E	Método E	Método F	H I Método F	Método F	Método G	S +
1	2	3	4	5	6	7	8
1,5	26	23	-	-	-	-	-
2,5	36	32	-	-	-	-	-
4	49	42	-	-	-	-	-
6	63	54	-	-	-	-	-
10	86	75	-	-	-	-	-
15	115	100	-	-	-	-	-
25	149	127	161	135	141	182	161
35	185	158	200	169	176	226	201
50	225	192	242	207	216	275	246
70	289	246	310	268	279	353	318
95	352	298	377	328	342	430	389
120	410	346	437	383	400	500	454
150	473	399	504	444	464	577	527
185	542	456	575	510	533	661	605
240	641	538	679	607	634	781	719
300	741	621	783	703	736	902	833
400	-	-	940	823	868	1085	1008
500	-	-	1083	946	998	1253	1169
630	-	-	1254	1088	1151	1454	1362

NOTA: Se asume conductores circulares para secciones hasta e inclusive 16 mm². Valores para dimensiones mayores están relacionados a la forma de los conductores y puede ser aplicado a conductores circulares.

Con la tabla anterior, podemos determinar que se trata de "cables unipolares", y de "dos conductores de carga al contacto" (método F), todo indica que este caso particular se ubica en la columna 4. Con la ayuda de la Tabla 91 y el dato antes hallado, determinamos que los coeficientes y exponentes son los siguientes:

$$A = 20,8$$

$$m = 0,636$$

$$B = 0$$

$$n = 0$$

Utilizando la ecuación 52, calculamos la capacidad de corriente en amperios para una sección de 16 mm².

$$I = (A)(S^m) - (B)(S^n)$$
$$I = (20.8)(16^{0.636}) - (0)(16^0)$$
$$I = 121,3064 A$$

Se evidencia que la máxima corriente que el cable soporta, es muy superior a la requerida por la instalación, ya que para 16 mm² (6 AWG), la corriente máxima es de 121,3064 A (considerando "Dos conductores XLPE) y la de la instalación es de 55,25 A.

La base de datos de los cables, de acuerdo con [26], se muestra a continuación.

PRECIO RECOMENDACIÓN TIPO DE MODELO Soles por CONDUCTOR AISLAMIENTO **CUBIERTA DEL FABRICANTE** metro Cable unifilar 6 mm² SOLAR PV ZZ-F Rojo COBRE XI PF PVC 7.62 Panel al regulador Cable unifilar 6 mm² SOLAR PV ZZ-F Negro COBRE **XLPE** PVC 7.62 Panel al regulador Paneles al regulador v Cable unifilar 10 mm² SOLAR PV ZZ-F Rojo 9,44 COBRE **XLPE** PVC Regulador a las baterías Paneles al regulador y Cable unifilar 10 mm² SOLAR PV ZZ-F Negro 9,44 **COBRE XLPE PVC** Regulador a las baterías Cable unifilar 16 mm² SOLAR PV ZZ-F Rojo 14,53 **COBRE XLPE** PVC Panel al regulador Cable unifilar 16 mm² SOLAR PV ZZ-F Negro 14,53 COBRE XLPE PVC Panel al regulador Cable unifilar 50 mm² POWERFLEX RV-K Verde 32,19 **COBRE XLPE PVC** Batería al inversor Cable unifilar 50 mm² POWERFLEX RV-K Negro COBRE XI PF PVC 32.73 Batería al inversor

Tabla 96: Base de datos de cables (AUTOSOLAR). [26]

Con la base de datos antes mostrada, se determina que el cable a utilizar en el circuito "caja de conexión-regulador" es "Cable unifilar 16 mm² SOLAR PV ZZ-F Rojo" y "Cable unifilar 16 mm² SOLAR PV ZZ-F Negro", los cuales se muestran a continuación:

Figura 43: Cable unifilar 16 mm² SOLAR PV ZZ-F Rojo. [26]

Figura 44: Cable unifilar 16 mm² SOLAR PV ZZ-F Negro. [26]

- Circuito regulador-batería

Para este circuito, el método referencial de instalación es el "B1", "Conductores aislados dentro de un tubo sobre una pared de madera" según la Tabla 84. Conociendo el valor de la sección del cable (49,725 mm²) y con la ayuda de la Tabla 89, se determina que la sección nominal estándar superior es de 50 mm².

Se evidencia que la máxima corriente que el cable soporta, es muy superior a la requerida por la instalación, ya que para 50 mm² (1 AWG), la corriente máxima es 192 A ("Dos conductores XLPE") y la de la instalación es de 55,25 A.

Con la base de datos antes mencionada, se determina que el cable a utilizar en el circuito "regulador-batería" es "Cable unifilar 50 mm² POWERFLEX RV-K Verde" y "Cable unifilar 50 mm² POWERFLEX RV-K Negro", el cual se muestra a continuación:

Figura 45: Cable unifilar 50 mm² POWERFLEX RV-K Verde. [26]

Figura 46: Cable unifilar 50 mm² POWERFLEX RV-K Negro. [26]

- Circuito batería-inversor

Para este circuito, el método referencial de instalación es el "B1", "Conductores aislados dentro de un tubo sobre una pared de madera" según la Tabla 84. Conociendo el valor de la sección del cable (46,2002 mm²) y con la ayuda de la Tabla 89, se determina que la sección nominal estándar superior es de 50 mm².

Se evidencia que la máxima corriente que el cable soporta, es muy superior a la requerida por la instalación, ya que para 50 mm² (1 AWG), la corriente máxima es 192 A (considerando "Dos conductores XLPE") y la de la instalación es de 64,167 A.

Con la base de datos antes mencionada, se determina que el cable a utilizar en el circuito "batería-inversor" es "Cable unifilar 50 mm² POWERFLEX RV-K Verde" y "Cable unifilar 50 mm² POWERFLEX RV-K Negro", el cual se muestra a continuación:

Figura 47: Cable unifilar 50 mm² POWERFLEX RV-K Verde. [26]

Figura 48: Cable unifilar 50 mm² POWERFLEX RV-K Negro. [26]

- Circuito inversor-equipos

Para este circuito, el método referencial de instalación es el "B1", "Conductores aislados dentro de un tubo sobre una pared de madera" según la Tabla 84. Conociendo el valor de la sección del cable (0,1632 mm²) y con la ayuda de la Tabla 89, se determina que la sección nominal estándar superior es de 2,5 mm².

Se evidencia que la máxima corriente que el cable soporta, es muy superior a la requerida por la instalación, ya que para 2,5 mm², la corriente máxima es 23 A (considerando "Dos conductores PVC") y la de la instalación es de 3,325 A. Realizando la conversión AWG-mm², se determina que 2,5 mm² equivale a 14 AWG.

Con la base de datos presentada en la Tabla 94, se determina que el cable a utilizar en el circuito "inversor-equipos" es "Cable THW 14 AWG Negro x metro" y "Cable THW 14 AWG Rojo x metro", los cuales se muestran a continuación:

Figura 49: Cable THW 14 AWG Negro x metro. [33]

Figura 50: Cable THW 14 AWG Rojo x metro. [33]

4.3.2.3. Selección de los dispositivos de protección

A continuación, se seleccionará los dispositivos de protección utilizando la tienda virtual de la cadena de tiendas "SODIMAC" [32] para cada circuito del sistema fotovoltaico.

- Circuito caja de conexión-regulador

Este circuito posee una corriente máxima (I_{gm}) de 55,25 A, por lo que según la tienda virtual [32] se selecciona el interruptor termomagnético de corriente inmediata superior. En este caso el interruptor termomagnético seleccionado es "Interruptor Tipo Riel Bifásico 63A Bticino" cuyas características se muestran a continuación:

Figura 51: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

Tabla 97: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

CARACTERÍSTICAS

Atributo	Detalle
Características	Curva de intervención tipo C, Interruptor tipo riel bifásico 2
Marca	Bticino
Material	Conductor de cobre con aislamiento de PVC
Potencia	2 x 63 A
Color	Blanco
Uso	Ofrece protección contra sobrecarga y cortocircuito en una instalación eléctrica. Aplicación Residencial e Industrial.
Garantia	1 año
Procedencia	Colombia
Recomendaciones	El mecanismo de disparo es independiente del mecanismo de mando manual.
Tipo	Interruptores Tipo Riel

- Circuito regulador-batería

Este circuito posee una corriente máxima (I_{rm}) de 55,25 A, por lo que según la tienda virtual [32] se selecciona el interruptor termomagnético de corriente inmediata superior. En este caso el interruptor termomagnético seleccionado es "Interruptor Tipo Riel Bifásico 63A Bticino" cuyas características se muestran a continuación:

Figura 52: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

Tabla 98: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

CARACTERÍSTICAS

Atributo	Detaile
Características	Curva de intervención tipo C, Interruptor tipo riel bifásico 2
Marca	Bticino
Material	Conductor de cobre con aislamiento de PVC
Potencia	2 x 63 A
Color	Blanco
Uso	Ofrece protección contra sobrecarga y cortocircuito en una instalación eléctrica. Aplicación Residencial e Industrial.
Garantía	1 año
Procedencia	Colombia
Recomendaciones	El mecanismo de disparo es independiente del mecanismo de mando manual.
Tipo	Interruptores Tipo Riel

- Circuito batería-inversor

Este circuito posee una corriente máxima (I_{bm}) de 64,167 A, por lo que según la tienda virtual [32] se selecciona el interruptor termomagnético de corriente inmediata superior. En este caso particular se seleccionará el "Interruptor Tipo Riel Bifásico 63A Bticino" debido a que comercialmente no se encuentra un interruptor termomagnético mayor a 64 A, por lo que se seleccionará el de 63 A. Las características del interruptor son las siguientes:

Figura 53: Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

Tabla 99: Características del Interruptor Tipo Riel Bifásico 63 A Bticino. [32]

CARACTERÍSTICAS

Atributo	Detaile
Características	Curva de intervención tipo C, Interruptor tipo riel bifásico 2
Marca	Bticino
Material	Conductor de cobre con aislamiento de PVC
Potencia	2 x 63 A
Color	Blanco
Uso	Ofrece protección contra sobrecarga y cortocircuito en una instalación eléctrica. Aplicación Residencial e Industrial.
Garantía	1 año
Procedencia	Colombia
Recomendaciones	El mecanismo de disparo es independiente del mecanismo de mando manual.
Tipo	Interruptores Tipo Riel

- Circuito inversor-equipos

Este circuito posee una corriente máxima (I_{cam}) de 3,325 A, por lo que según la tienda virtual [32] se selecciona el interruptor termomagnético de corriente inmediata superior. En este caso el interruptor termomagnético seleccionado es "Interruptor Tipo Riel Bifásico 10A Bticino" cuyas características se muestran a continuación:

Figura 54: Interruptor Tipo Riel Bifásico 10 A Bticino. [32]

Tabla 100: Características del Interruptor Tipo Riel Bifásico 10 A Bticino. [32]

CARACTERÍSTICAS

Atributo	Detalle
Características	Curva de intervención tipo C, Interruptor tipo riel bifásico 2
Marca	Bticino
Material	Conductor de cobre con aislamiento de PVC
Potencia	2 x 10 A
Color	Blanco
Uso	Ofrece protección contra sobrecarga y cortocircuito en una instalación eléctrica. Aplicación Residencial e Industrial.
Garantía	1 año
Procedencia	Colombia
Recomendaciones	El mecanismo de disparo es independiente del mecanismo de mando manual.
Tipo	Interruptores Tipo Riel

Debido a que este circuito alimenta de manera directa a los equipos de la Unidad Médica Móvil, se seleccionará un Interruptor Diferencial para detectar corrientes de fuga peligrosas para las personas.

Según [33], si un ID (Interruptor Diferencial) se encuentra aguas debajo de un ITM (Interruptor Termomagnético) de una corriente (I_{TM1}) y en la misma línea, la corriente del ID (I_{D1}) debe ser igual o mayor a I_{TM1} . Aunque algunas veces se recomienda que sea $I_{D1} \ge (1,4)(I_{TM1})$.

Sabiendo que I_{TM1}=10 A, entonces:

$$I_{D1} \ge (1,4)(I_{TM1})$$

 $I_{D1} \ge (1,4)(10 A)$
 $I_{D1} \ge 14 A$

Adicional a esto, se sabe que el ID debe tener un umbral de operación no mayor a 30 mA, según [30].

Por lo que según la tienda virtual [32], se selecciona el ID de corriente inmediata superior y con 30 mA. En este caso, el ID seleccionado es "Interruptor Diferencial Salvavida Bticino" de 25 A y 30 mA.

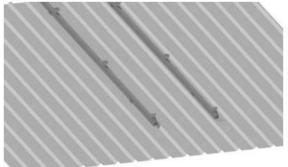
Figura 55: Interruptor Diferencial Salvavida Bticino. [32]

Tabla 101: Características del Interruptor Diferencial Salvavida Bticino. [32]

CARACTERÍSTICAS

Atributo	Detaile
Características	Salta al detectar fugas eléctricas.
Marca	Bticino
Material	Conductor de cobre con aislamiento de PVC
Amperaje	2×25A
Voltaje	230 V.
Color	Blanco
Uso	Ofrece protección contra sobrecarga y cortocircuito en una instalación eléctrica. Aplicación Residencial e Industrial electrica de la contra
Garantía	1año
Procedencia	Colombia
Recomendaciones	El mecanismo de disparo es independiente del mecanismo de mando manual.
Tipo	Interruptores Diferenciales
Categoria	Tableros y componentes
Promoción vigente hasta	19-06-2019
Familia	Electricidad

4.3.2.4. Selección de dispositivos y accesorios para el montaje del sistema


4.3.2.4.1. Paneles fotovoltaicos

4.3.2.4.1.1. Selección de Estructura de soporte

Considerando el hecho de que se utilizarán 4 módulos fotovoltaicos, se procede a seleccionar una estructura metálica de soporte que cumpla con lo antes mencionado. Por medio de [26], se seleccionó la "Estructura Cubierta Metálica 4 ud KH915 60mm", la cual cumple con el requisito antes mencionado. Este será colocado encima del remolque de la Unidad Médica Móvil I.

Figura 56: Estructura Cubierta Metálica 4 ud KH915 60mm. [26]

Los accesorios que se adquieren junto con la estructura de soporte son:

- Uniones guía
- Tornillos de martillo
- Arandelas planas
- Arandelas tipo Grower
- Tuercas
- Perfiles
- Presores (intermedio, laterales y finales)
- Tornillos

A parte de ello, se debe considerar tanto a la "Tela asfáltica", como al "Adhesivo sellador elástico"; ya que son dos materiales importantes para evitar filtraciones en la superficie a utilizar. Este par de materiales serán incluidos en el presupuesto general.

4.3.2.4.1.2. Selección de Conectores

Se tiene entendido que los terminales de los paneles seleccionados son compatibles con conectores MC4. Por lo que, utilizando los accesorios disponibles en [26], se seleccionó el "Conector MC4 Multicontact Macho-Hembra".

Figura 57: Conector MC4 Multicontact Macho-Hembra. [26]

4.3.2.4.1.3. Selección de Caja estanca de paso

La Caja estanca de paso es un accesorio muy importante en la conexión de los módulos fotovoltaicos (igual que la bornera o repartidor, que esta alberga), ya que brinda flexibilidad ante una posible desconexión originada por mantenimiento o sustitución de uno o varios paneles. [13]

Por lo que, utilizando los accesorios disponibles en [26], se seleccionó la "Caja estanca de paso 150 x 120 mm".

Figura 58: Caja estanca de paso 150 x 120 mm. [26]

4.3.2.4.1.4. Selección del Repartidor o Bornera

En este accesorio se realizarán las conexiones pertinentes del campo fotovoltaico con una salida única de dos conductores. Por ello, se considerará la corriente de salida del mismo para seleccionar el adecuado (55,25 A).

Tabla 102: Base de datos de Repartidores. [26]

MODELO	PRECIO S/
Legrand bornera seleccionable 40 A	S/. 118,00
Legrand bornera seleccionable 100 A	S/. 151,71
Legrand bornera seleccionable 125 A	S/. 160,14
Linkwell bornera seleccionable 125 A	S/. 249,28

Por lo que, utilizando la base de datos anterior [26], seleccionó la "Legrand bornera seleccionable 100 A".

Figura 59: Legrand bornera seleccionable 100 A. [26]

4.3.2.4.2. Baterías

4.3.2.4.2.1. Selección de Terminales de Compresión

Este accesorio permite la unión del conductor con los terminales de las baterías, por lo que es indispensable.

Los distintos Terminales que en [26] se venden, son presentados a continuación:

Tabla 103: Base de datos de Terminales de Compresión. [26]

MODELO	PRECIO S/
Terminal de Compresión Cable 16 mm-Perno 8 mm	S/. 1,31
Terminal de Compresión Cable 25 mm-Perno 10 mm	S/. 1,99
Terminal de Compresión Cable 16 mm-Perno 10 mm	S/. 2,22
Terminal de Compresión Cable 35 mm-Perno 8 mm	S/. 2,56
Terminal de Compresión Cable 10 mm-Perno 8 mm	S/. 2,87
Terminal de Compresión Cable 35 mm-Perno 10 mm	S/. 2,87
Terminal de Compresión Cable 50 mm-Perno 8 mm	S/. 5,17
Terminal de Compresión Cable 50 mm-Perno 10 mm	S/. 6,37
Terminal de Compresión Cable 50 mm-Perno 12 mm	S/. 7,66

Ya que los terminales de las baterías seleccionadas son tipo roscada de 8 mm, se seleccionará el "Terminal de Compresión Cable 50 mm-Perno 8 mm".

Figura 60: Terminal de Compresión Cable 50 mm-Perno 8 mm. [26]

4.3.2.4.3. Otros

4.3.2.4.3.1. Selección del Tablero Adosable

El principal criterio para seleccionar un tablero, es determinar la cantidad de polos que este albergará. A continuación, se mostrará un cuadro con el número de polos total necesarios en el tablero:

TRAMO	DISPOSITIVO	TIPO	N° POLOS
Caja de conexión-Regulador	Interruptor Termomagnético	Monofásico (cc)	2
Regulador-Baterías	Interruptor Termomagnético	Monofásico (cc)	2
Baterías-Inversor	Interruptor Termomagnético	Monofásico (cc)	2
Inversor-Equipos	Interruptor Termomagnético	Monofásico (ca)	2
Inversor-Equipos	Interruptor Diferencial	Monofásico (ca)	2
Reserva	-	Monofásico	2
		TOTAL	12

Tabla 104: Cantidad de polos necesarios en el Tablero.

Una vez determinada la cantidad de polos, se establece que el tablero seleccionado es el "Tablero Adosable 12 Polos VOLT", de acuerdo con la tienda virtual "Maestro".

A modo de complemento, en el Anexo 22 me muestra el Diagrama Unifilar del Sistema Fotovoltaico para la Unidad Médica Móvil I, y en el Anexo 23 se muestra el Diagrama de Montaje del Sistema Fotovoltaico para la Unidad Médica Móvil I. De igual manera, en el Anexo 24 se muestra el Campo Fotovoltaico, en el Anexo 25 se muestra la Vista de Explosión del Campo Fotovoltaico y en el Anexo 26 se muestra el Campo Fotovoltaico en la carrocería de la Unidad Médica Móvil

4.4. Evaluación económica de la propuesta

Para empezar con este apartado, se realizará un presupuesto general con todos los costos implicados en la propuesta, el cual se muestra en el Anexo 20.

4.4.1. Cálculo del Valor Actual Neto (VAN)

El dato principal que se ha obtenido del presupuesto es la Inversión Inicial, con un monto total de S/22,996,87. Como siguiente paso, se determinará el precio mínimo del balón de gas en el departamento de Lambayeque. Mediante el portal de Osinergmin "Facilito" [34], se puede obtener el precio de venta (Soles) del balón de gas de acuerdo con el departamento, provincia y distrito del país; esta data se muestra en el Anexo 21.

Como resultado se determinó que el precio mínimo del balón de gas en cada departamento es el siguiente:

PRECIO DE VENTA	PRECIO DE VENTA	PRECIO DE VENTA
EN LAMBAYEQUE	EN CHICLAYO	EN FERREÑAFE
(Soles)	(Soles)	(Soles)
33	30	32,5

Tabla 105: Precio del balón de gas según las provincias de Lambayeque.

De este último cuadro se puede determinar que el valor mínimo del precio de venta del balón de gas de 10 kg en el departamento de Lambayeque es de 30 Soles.

Este valor es importante debido a que, si bien es cierto, la Unidad Médica Móvil no posee ingresos directos; el único medio de "ingresos" a manera de ahorros es la NO COMPRA de los 4 balones de gas que dan una autonomía de 12 horas ininterrumpidas.

Lo cierto es que no se conoce con certeza el calendario de campañas de la Unidad Médica Móvil, por lo que para el análisis económico se estimará un total de 7 días de campaña al mes. A su vez, teniendo en cuenta que la autonomía es de 12 horas, se determinará que los 4 balones de gas se utilizarán por día.

Otro punto por tratar (de vital importancia) es la tasa de interés. De acuerdo con [35], la tasa social de descuento nominal es de 12%.

4.4.1.1. Ingresos

Para este apartado el valor de los "ingresos" mensuales está dado por el ahorro económico (AE) de los 4 balones de gas, tal ahorro se calcula a continuación:

$$AE_{balones_gas}=(4)(precio\ del\ gas)(días\ de\ utilización\ al\ mes)$$

$$AE_{balones_gas}=(4)(30)(7)$$

$$AE_{balones_gas}=840\ Soles\ al\ mes$$

4.4.1.2. Egresos

Las consideraciones que se tendrán en este apartado son de mantenimiento, garantía del equipo y la inversión inicial. La inversión inicial (como ya se mencionó antes) es de un monto de S/22,996,87. Cabe resaltar que el tiempo que se considerará para el cálculo del VAN es de 36 meses (3 años).

Para los equipos, se ha considerado lo siguiente.

- Para el panel fotovoltaico, el fabricante estipula que son 10 años de garantía, por lo que la renovación de compra de paneles no entra en el VAN.
- Para la batería, utilizando su curva de números de ciclos vs profundidad de descarga; para un valor de 55% de esta última, da como resultado un valor de 1500 ciclos. Asumiendo que 1 ciclo (uso de 100% a 55%) equivale a un día de uso de la batería, se tienen 4,10 años. Por lo que, debido al tiempo, la renovación de compra de baterías no entra en el VAN.
- Para el regulador, el fabricante no especifica una garantía, por lo que la renovación de compra del regulador no entra en el VAN.
- Para el inversor, el fabricante estipula que son 2 años de garantía, por lo que la posible renovación de compra de inversor se dará en el mes 24 con un monto de 983,33 Soles.

Para el mantenimiento, de acuerdo con [36] se estipula un monto de 200 Soles anuales.

Con todos los datos antes mencionados, se presentan a continuación los datos preliminares:

Tasa de interés anual12%Tasa de interés mensual0,948879293%Precio mínimo del gas30solesNúmero de días de utilización del sistema fotovoltaico al mes7díasAhorro económico de los 4 balones de gas840soles

Tabla 106: Datos preliminares para el VAN.

Igualmente, con todo lo antes mencionado se calcula el VAN:

Tabla 107: Cálculo del Valor Actual Neto.

MES	INGRESOS	EGRESOS	FLUJO NETO	FLUJO TOTAL
0	0	22862,66	-22862,66	-22996,87
1	840	0	840	832,1043343
2	840	0	840	824,2828847
3	840	0	840	816,5349536
4	840	0	840	808,8598499
5	840	0	840	801,2568892
6	840	0	840	793,7253933
7	840	0	840	786,2646905
8	840	0	840	778,8741153
9	840	0	840	771,5530085
10	840	0	840	764,3007173
11	840	0	840	757,1165947
12	840	200	640	571,4285714
13	840	0	840	742,9502985
14	840	0	840	735,9668613
15	840	0	840	729,0490657
16	840	0	840	722,1962946
17	840	0	840	715,4079368
18	840	0	840	708,6833869
19	840	0	840	702,0220451
20	840	0	840	695,4233172
21	840	0	840	688,8866148
22	840	0	840	682,4113547
23	840	0	840	675,9969596
24	840	1183,33	-343,33	-273,700574
25	840	0	840	663,3484808
26	840	0	840	657,113269
27	840	0	840	650,9366658
28	840	0	840	644,8181202
29	840	0	840	638,7570864
30	840	0	840	632,753024
31	840	0	840	626,8053974
32	840	0	840	620,9136761
33	840	0	840	615,0773346
34	840	0	840	609,2958524
35	840	0	840	603,5687139
36	840	200	640	455,5393586
				1253,652543

Como el valor del VAN es positivo (S/ 1253,652543), se dice que la inversión producirá ganancias y por ende el proyecto puede aceptarse.

4.4.2. Cálculo de la Tasa Interna de Retorno

Para el cálculo del TIR, se procede a realizar el VAN igual a 0. Esto se realizará con el software Microsoft Excel y su función "Buscar objetivo", el resultado es el siguiente.

Tabla 108: Cálculo de la Tasa Interna de Retorno.

Tasa de interés anual (TIR anual)	18204,71333	%
Tasa de interés mensual (TIR mensual)	1,264734564	%
Precio mínimo del gas	30	soles
Número de días de utilización del sistema fotovoltaico al mes	7	días
Ahorro económico de los 4 balones de gas	840	soles

MES	INGRESOS	EGRESOS	FLUJO NETO	FLUJO TOTAL
0	0	22862,66	-22862,66	-22996,87
1	840	0	840	829,5089141
2	840	0	840	819,1488553
3	840	0	840	808,9181874
4	840	0	840	798,8152943
5	840	0	840	788,8385801
6	840	0	840	778,986469
7	840	0	840	769,2574047
8	840	0	840	759,6498505
9	840	0	840	750,1622887
10	840	0	840	740,7932208
11	840	0	840	731,5411668
12	840	200	640	550,4035545
13	840	0	840	713,3822731
14	840	0	840	704,4725651
15	840	0	840	695,6741339
16	840	0	840	686,9855897
17	840	0	840	678,4055601
18	840	0	840	669,9326898
19	840	0	840	661,5656405
20	840	0	840	653,3030905
21	840	0	840	645,1437347
22	840	0	840	637,0862842
23	840	0	840	629,1294664
24	840	1183,33	-343,33	-253,9301478
25	840	0	840	613,512717
26	840	0	840	605,8503186
27	840	0	840	598,2836189
28	840	0	840	590,8114226
29	840	0	840	583,4325495
30	840	0	840	576,145834
31	840	0	840	568,9501251
32	840	0	840	561,8442862
33	840	0	840	554,8271949
34	840	0	840	547,8977428
35	840	0	840	541,0548353
36	840	200	640	407,0837269
				-0,000961559

El valor del TIR mensual es de 1,264734564%. Este valor en comparación con la tasa de interés inicial mensual utilizada en el VAN (0,948879293 %) es superior, por lo que se dice que el proyecto es aconsejable.

V. CONCLUSIONES

- El diagnóstico realizado sobre situación actual de la energía eléctrica en las zonas rurales de Lambayeque determinó que existe un total de 27 Centros Poblados sin energía eléctrica, según las fuentes consultadas, ubicados en los distritos de Cañaris, Illimo, Incahuasi, Mochumi, Mórrope, Motupe, Olmos y Salas.
- Se logró determinar los niveles de radiación para cada uno de los 20 Centros Poblados y con 5 fuentes distintas (Atlas de Energía Solar del Perú, Global Solar Atlas, NASA Surface Meteorology and Solar Energy, RETScreen Expert y Meteonorm) para mayor veracidad, esto a su vez determinó que la irradiación mínima es de un valor de 2,98 kWh/m².
- Se logró diseñar los elementos electromecánicos del sistema fotovoltaico de acuerdo con la potencia máxima (585,2 W) y el consumo máximo diario (2806,9333 Wh), estos se citan a continuación:
 - o 4 paneles solares 320Wp 24V Csun Policristalino
 - 4 baterías Upower 550Ah 6V-GC16
 - o 1 controlador MPPT LCD 60A 12-24-48V Must Solar
 - 1 inversor cargador 800W 12V 25A Must Solar
- El presupuesto del presente proyecto asciende a S/ 22,996,87. Mediante el VAN realizado durante 3 años, se obtuvo un valor de S/ 1253,652543; mientras que el valor obtenido del TIR mensual realizado para el mismo periodo es de 1,264734564%. Esto demuestra que el proyecto es viable económicamente.

VI. RECOMENDACIONES

Se recomienda que:

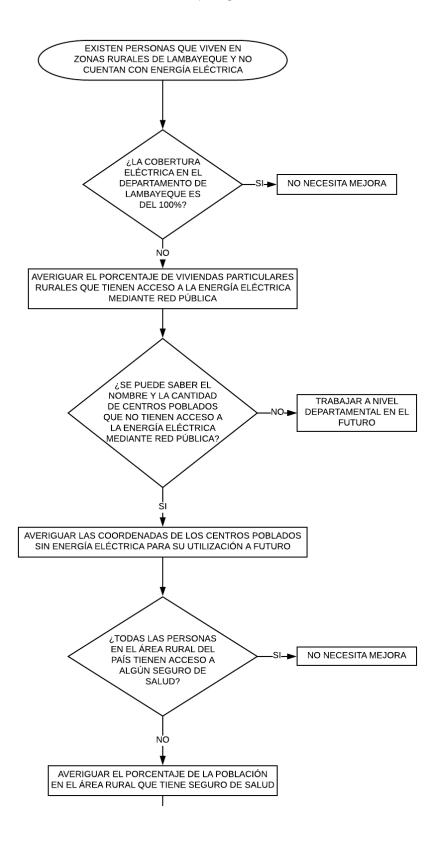
- Se realice un diseño de un sistema fotovoltaico pero basado en los equipos biomédicos de la Unidad Médica Móvil II (Equipada para Ecografía y Rayos X).
- Se considere la idea de aprovechar el recurso eólico durante el recorrido de la Unidad Médica Móvil para que, en conjunto con el sistema fotovoltaico, se estructure un solo sistema híbrido.

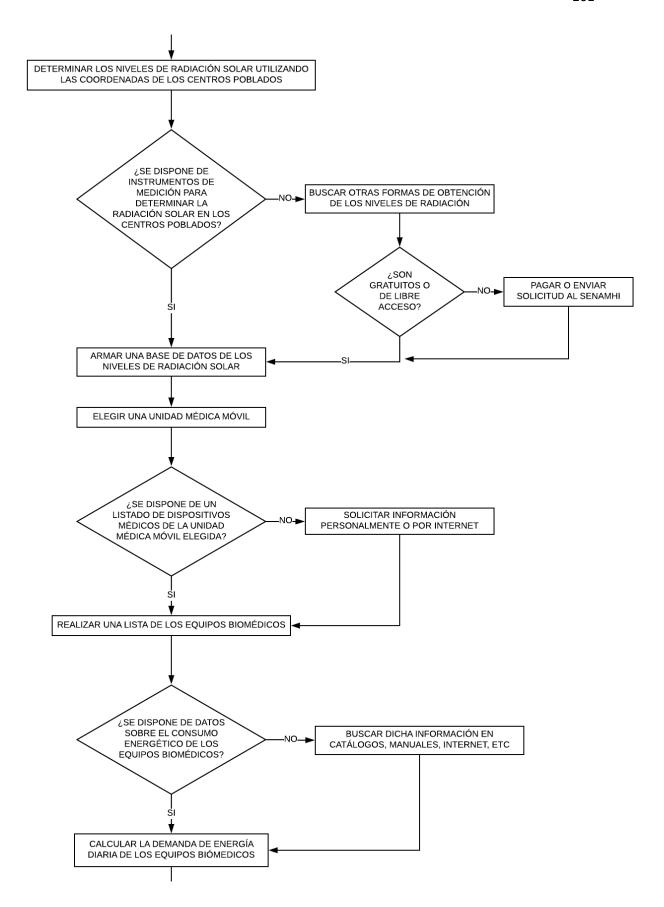
VII. OBSERVACIONES

 La puesta en marcha del presente proyecto trae consigo el aumento del peso en el remolque de la Unidad Médica Móvil, y con ello el aumento del consumo de combustible.

REFERENCIAS BIBLIOGRÁFICAS

- [1 Instituto Nacional de Estadística e Informática, Encuesta Nacional de Programas
- Presupuestales, Lima: Instituto Nacional de Estadística e Informática, 2018.
- [2 La realidad de la ayuda, «La realidad de la ayuda,» [En línea]. Available:
- http://www.realidadayuda.org/glossary/servicios-sociales-basicos. [Último acceso: 27 Mayo 2018].
- [3 Instituto Nacional de Estadística e Informática, «Informe Técnico Condiciones de Vida en el Perú,» Instituto Nacional de Estadística e Informática, Lima, 2018.
- [4 A. L. Vásquez Cordano, J. F. Tamayo Pacheco y J. Salvador Jácome, La industria de la energía
] renovable en el Perú: 10 años de contribuciones a la mitigación del cambio climático, Lima:
 Organismo Supervisor de la Inversión en Energía y Minería, 2017.
- [5 Ministerio de Energía y Minas, Plan Energético Nacional 2014-2025, Lima, 2015.
- [6 Instituto Nacional de Estadística e Informática, PERÚ: Evolución de los Indicadores de
- Programas Presupuestales, 2011-2017, Lima: Instituto Nacional de Estadística e Informática, 2018.
- [7 J. Schallenberg Rodríguez, G. Piernavieja Izquierdo, C. Hernández Rodríguez, P. UnamunzagaFalcón, R. García Déniz, M. Díaz Tores, D. Cabrera Pérez, G. Martel Rodríguez, J. Pardilla Fariña y V. Subiela Ortin, Energías renovables y eficiencia energética, Las Palmas de Gran Canaria: Instituto Tecnológico de Canarias, 2008.
- [8 EPEC, Las energía renovables, Córdova: EPEC.]
- [9 A. Labouret y M. Villoz, Energía Solar fotovoltaica: Manual Práctico (Adaptado al Código
- Técnico de la Edificación), Madrid: A. Madrid Vicente, Ediciones, 2008.
- [1 ELECTROTEC PERÚ, Dimensionamiento de sistemas fotovoltaicos, Lima, 2018. 0]
- [1 M. P. Muñoz, «mpuga,» [En línea]. Available:
- 1] http://www.mpuga.com/docencia/Fundamentos%20de%20Finanzas/Van%20y%20Tir%20201 1.pdf. [Último acceso: 18 Octubre 2018].
- [1 M. P. Aparicio, Energía solar fotovoltaico-Cálculo de una instalación aislada, Barcelona:
- 2] MARCOMBO, 2009.


- [1 Universidad Nacional de Educación a Distancia, CENSOLAR, Curso de Experto Profesional en
- 3] Energía Fotovoltaica, Sevilla: PROGENSA, 2009.
- [1 Organización Latinoamericana de Energía, «sieLAC,» [En línea]. Available:
- 4] http://sielac.olade.org/. [Último acceso: 25 Abril 2018].
- [1 Ministerio de Energía y Minas, Dirección General de Electrificación Rural, «Dirección General
- 5] de Electrificación Rural,» [En línea]. Available: http://dger.minem.gob.pe/Institucional_Presentacion.aspx. [Último acceso: 20 Abril 2018].
- [1 Ministerio de Energía y Minas, «Visor de Mapas-DGER,» [En línea]. Available:
- 6] http://mapas.minem.gob.pe/map_dger/. [Último acceso: 20 Abril 2018].
- [1 Instituto Nacional de Estadística e Informática, «Web Inei,» [En línea]. Available:
- 7] http://webinei.inei.gob.pe:8080/sisconcode/proyecto/index.htm?proyectoTitulo=CENTROS%2 0POBLADOS&proyectoId=4. [Último acceso: 29 Abril 2018].
- [1 Servicio Nacional de Meteorología e Hidrología, Ministerio de Energía y Minas, Atlas de
- 8] Energía Solar del Perú, Lima, 2003.
- [1 World Bank Group, Solargis, «Global Solar Atlas,» [En línea]. Available:
- 9] http://globalsolaratlas.info/. [Último acceso: 30 Abril 2018].
- [2 NASA, «NASA Surface meteorology and Solar Energy Location,» [En línea]. Available:
- 0] https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi. [Último acceso: 30 Abril 2018].
- [2 Government of Canada, «Natural Resources Canada,» [En línea]. Available:
- 1] https://www.nrcan.gc.ca/energy/software-tools/7465. [Último acceso: 9 Mayo 2018].
- [2 Meteotest, «Meteonorm,» Berna, 2018.
- 2]
- [2 Gobierno Regional de Lambayeque, «Portal de Transparencia Estándar,» [En línea]. Available:
- 3] http://www.transparencia.gob.pe/. [Último acceso: 6 Noviembre 2017].
- [2 J. Tamayo, J. Salvador, A. Vásquez y C. Vilches, La industria de la electricidad en el Perú: 25
- 4] años de aportes al crecimiento económico del país, Lima: Osinergmin, 2016.
- [2 W. A. Cuenca Benítez y C. R. Barreto Calle, Diseño de un sistema fotovoltaico para el
- 5] suministro alternativo de energía eléctrica al interior de un vehículo tipo casa-rodante en la ruta turística spondylus o ruta del sol, Loja: Universidad Nacional de Loja, 2018.
- [2 Autosolar Energy Solutions, «AutoSolar Energía del Perú,» [En línea]. Available:
- 6] https://autosolar.pe/. [Último acceso: 12 Septiembre 2018].


- [2 Autosolar Energy Solutions, «Autosolar,» [En línea]. Available:
- 7] https://autosolar.es/blog/aspectos-tecnicos/regulador-mppt-o-pwm. [Último acceso: 15 Octubre 2018].
- [2 S. Bortignon, «MPPTSOLAR,» [En línea]. Available: https://www.mpptsolar.com/es/como-
- 8] elegir-regulador-de-carga-solar.html. [Último acceso: 15 Octubre 2018].
- [2 Phocos, «Phocos,» [En línea]. Available: https://www.phocos.com/na/wp-
- 9] content/uploads/sites/6/2015/12/Guide-Comparing-PWM-MPPT-Charge-Controllers.pdf. [Último acceso: 15 Octubre 2018].
- [3 Ministerio de Energía y Minas, Código Nacional de Electricidad, Lima, 2006.

01

- [3 Comisión de Reglamentos Técnicos y Comerciales-INDECOPI, «Alfacent,» [En línea]. Available:
- 1] https://www.alfacent.com/uploads/NTP%20INSTALACIONES%20ELECTRICAS%20EN%20EDIFIC IOS.pdf. [Último acceso: 15 Octubre 2019].
- [3 SODIMAC, «SODIMAC,» [En línea]. Available: https://www.sodimac.com.pe/sodimac-pe/.
- 2] [Último acceso: 18 Octubre 2018].
- [3 A. P. Sanz, «Matemáticas Antonio Pérez Sanz,» [En línea]. Available:
- 3] http://platea.pntic.mec.es/alabarta/CVE/Soporte/Materiales/diferenciales.pdf. [Último acceso: 16 Octubre 2019].
- [3 Osinergmin, «Facilito,» [En línea]. Available:
- 4] http://www.facilito.gob.pe/facilito/actions/PreciosGLPAction.do. [Último acceso: 18 Octubre 2018].
- [3 Directiva General del Sistema Nacional de Inversión Pública, «Ministerio de Economía y
- 5] Finanzas,» [En línea]. Available: https://www.mef.gob.pe/contenidos/inv_publica/docs/anexos/new_direc/AnexoSNIP10_Para metros_de_Evaluacion-v3.pdf. [Último acceso: 7 Noviembre 2018].
- [3 P. D. V. Salas, Diseño de un sistema fotovoltaico para el suministro de energía eléctrica a 15
- 6] computadoras portátiles en la PUCP, Lima, 2014.
- [3 seca Sistemas Médicos de Pesaje y Medición, «seca,» [En línea]. Available:
- 7] https://www.seca.com/fileadmin/documents/product_sheet/seca_pst_354_es-mx.pdf. [Último acceso: 23 Mayo 2018].
- [3 HP, «Centro de Soporte al cliente HP,» [En línea]. Available: https://support.hp.com/pe-
- 8] es/document/c03802139. [Último acceso: 23 Mayo 2018].
- [3 Bistos, «WTEC,» [En línea]. Available: http://www.wtec.pt/demo/bistos/BT-200.pdf. [Último
- 9] acceso: 23 Mayo 2018].

- [4 SAMSUNG, «Specsserver,» [En línea]. Available:
- 0] http://www.specsserver.com/CACHE/FRITTRHEMFGN.PDF. [Último acceso: 23 Mayo 2018].
- [4 Welch Allyn, «Welch Allyn,» [En línea]. Available:
- 1] https://www.welchallyn.com/content/dam/welchallyn/documents/upload-docs/International_Marketing_Literature/LATIN_AMERICA/Hoja%20de%20Especificaciones%2 0L%C3%A1mpara%20de%20Examen%20GS%20IV.pdf. [Último acceso: 23 Mayo 2018].
- [4 Shenzhen Bestman Instrument Co, «Shenzhen Bestman Instrument Co,» [En línea]. Available:
- 2] http://www.szbestman.com/index.php/Fetal_Monitor/show/20.html#.WwVxNzQvxkh. [Último acceso: 23 Mayo 2018].
- [4 S.R.L., VICKING, «Cientifica Nacional,» [En línea]. Available:
- 3] http://cientificanacional.com.ar/v2/catalogos/Equipamiento_Banos_VICKING.pdf. [Último acceso: 23 Mayo 2018].
- [4 TRONIC, «Kompernass,» [En línea]. Available:
- 4] https://www.kompernass.com/admin/view/manual/a062d6fa051b55db5e35dd2489be59b4.p df. [Último acceso: 23 Mayo 2018].

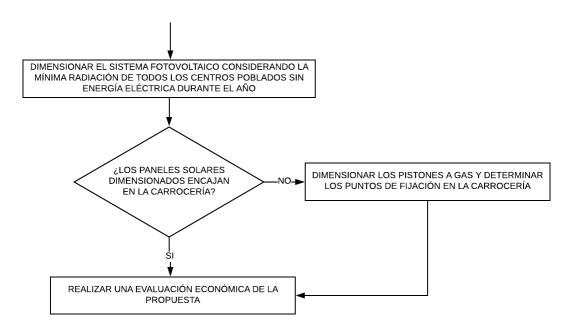


Figura 61: Diagrama de Flujo de la Investigación.

Balance energético resumido: Perú - 2016 | Total oferta de energía: 182,194.33 kbep

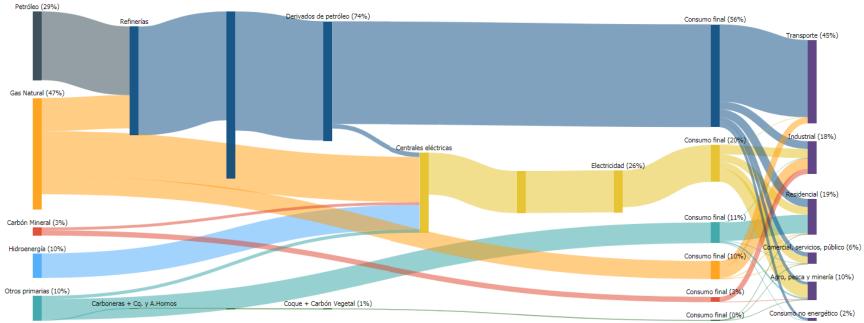


Figura 62: Balance Energético resumido del Perú en el 2016. [14]

Tabla 109: Porcentaje de viviendas particulares que tienen acceso a la energía eléctrica mediante red pública, según región y departamento, 2011-2017. [6]

0046 ACCESO Y USO DE LA ELECTRIFICACIÓN RURAL RESULTADO ESPECÍFICO: 0046 POBLACIÓN RURAL, AISLADA Y DE FRONTERA CON COBERTURA DE SERVICIO ELÉCTRICO

INDICADOR Nº 1: PORCENTAJE DE VIVIENDAS PARTICULARES QUE TIENEN ACCESO A LA ENERGÍA ELÉCTRICA MEDIANTE RED PÚBLICA, SEGÚN REGIÓN NATURAL Y DEPARTAMENTO, 2011-2017

Región natural /	2011	2012	2013	2014	2015	2016	2017		valo de za al 95%	Coeficiente de	Número de casos sin
Departamento								Inferior	Superior	variación	pondera
Total	58,4	61,1	66,9	70,2	71,4	76,2	79,1	77,3	81,0	1,2	14 969
Región natural											
Costa	67,0	74,2	79,5	78,5	75,4	80,0	83,7	80,0	87,4	2,3	2 999
Sierra	62,0	64,1	69,4	72,4	75,9	79,7	82,1	80,1	84,1	1,2	8 258
Selva	40,7	42,7	50,4	58,4	53,6	62,0	66,5	61,0	72,0	4,2	3 712
Departamento											
Amazonas	52,5	56,2	57,1	61,5	63,5	62,8	70,3	60,6	80,0	7,0	726
Áncash	78,6	78,8	83,5	83,4	85,8	87,6	93,2	90,3	96,1	1,6	596
Apurimac	57,4	67,3	73,2	77,1	82,2	82,1	88,3	84,7	91,9	2,1	615
Arequipa	65,8	73,8	81,1	81,9	87,6	88,2	88,5	84,3	92,6	2,4	653
Ayacucho	54,5	61,8	72,5	71,2	77,7	79,9	74,2	66,9	81,5	5,0	757
Cajamarca	47,9	51,8	57,8	67,0	72,2	77,3	84,0	79,4	88,6	2,8	743
Prov. Const. del Callao	-	-	-	-	-	-	-	-	-	-	-
Cusco	66,7	63,6	74,2	71,8	75,1	77,8	80,9	74,4	87,3	4,1	714
Huancavelica	69,3	75,7	75,1	76,4	77,6	80,4	84,8	80,8	88,7	2,4	677
Huánuco	50,6	48,0	49,6	58,7	63,5	74,1	71,1	63,6	78,6	5,4	704
Ica	72,7	72,9	82,7	78,2	87,0	79,9	81,1	75,1	87,1	3,8	576
Junin	61,8	66,6	71,6	75,4	70,0	78,3	79,7	70,0	89,4	6,2	652
La Libertad	50,7	61,8	66,5	67,7	74,0	80,2	79,1	70,9	87,3	5,3	600
Lambayeque	60,9	66,4	78,3	76,8	82,7	83,3	81,7	74,7	88,7	4,4	523
Lima	78,0	73,6	81,0	79,8	76,3	79,2	80,3	72,4	88,1	5,0	583
Provincia de Lima 1/	-	-	-	-	-	-	-	-	-	-	-
Región Lima 2/	78,0	73,6	81,0	79,8	76,3	79,2	80,3	72,3	88,2	5,0	583
Loreto	30,7	30,1	41,1	42,7	37,8	45,9	47,2	34,7	59,7	13,5	680
Madre de Dios	38,9	40,9	53,2	52,5	66,3	64,9	73,1	62,9	83,3	7,1	502
Moquegua	76,9	72,2	69,0	79,6	82,6	81,6	86,7	78,9	94,6	4,6	564
Pasco	55,6	55,2	53,4	61,3	62,6	70,6	81,9	74,6	89,2	4,5	610
Piura	52,9	66,4	67,3	78,0	71,5	74,4	76,8	68,6	85,0	5,4	674
Puno	65,7	60,1	70,2	71,1	64,4	72,3	78,6	71,2	86,0	4,8	690
San Martin	43,9	49,7	52,4	68,4	70,5	78,9	79,9	72,6	87,1	4,6	594
Tacna	70,0	75,5	69,3	69,8	83,4	83,6	84,6	76,1	93,1	5,1	413
Tumbes	68,0	79,3	73,9	82,4	76,5	76,4	79,0	74,3	83,7	3,0	502
Ucayali	26,5	39,7	33,3	35,1	35,4	43,8	48,6	36,4	60,9	12,8	621

Nota: Comprende a estimadores con coeficiente de variación mayor a 15% considerados como referenciales.

Porcentaje de viviendas que tienen acceso a la energía eléctrica, es cuando la vivienda tiene la instalación de este servicio.

Fuente: Instituto Nacional de Estadística e Informática - Encuesta Nacional de Programas Presupuestales.

^{1/} Comprende los 43 distritos que conforman la provincia de Lima.

^{2/} Comprende las provincias de Barranca, Cajatambo, Canta, Cañete, Huaral, Huarochirí, Huaura, Oyón y Yauyos

ANEXO 4

Tabla 110: Centros Poblados del Departamento de Lambayeque que no tienen ningún proyecto asociado. [16]

OBJECTID	UBIGEO	CÓDIGO DGER	DEPARTAMENTO	PROVINCIA	DISTRITO	CENTRO POBLADO	VIVIENDAS	PROYECTO ASOCIADO	ЕТАРА	SITUACIÓN	UNIDAD EJECUTORA	CÓDIGO SNIP
8415	1403100025	074092D	LAMBAYEQUE	LAMBAYEQUE	SALAS	BOTIJILLA	2	-	-	-	-	-
8416	-	074098D	LAMBAYEQUE	LAMBAYEQUE	SALAS	CHAUPIACO (HUATASHACO)	30	-	-	-	-	-
9494	1403100051	074180D	LAMBAYEQUE	LAMBAYEQUE	SALAS	YERBA SANTA	25	-	-	-	-	-
37924	1403100082	074147D	LAMBAYEQUE	LAMBAYEQUE	SALAS	NUEVA JERUSALEN	14	-	-	-	-	-
38818	1403100088	074099D	LAMBAYEQUE	LAMBAYEQUE	SALAS	CHILLACA	6	-	-	-	-	-
38819	1402020100	073312D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	PAJA BLANCA	8	-	-	-	-	-
38820	1402020116	073264D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	EL SAUCE	21	1	-	1	1	-
38823	1402020072	073357D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	WALCOCHALA	20	ı	-	ı	ı	-
38825	1402020117	073311D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	OXAPAMPA	11	ı	-	ı	ı	-
38828	1402020025	073288D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	LIQUE	16	-	-	-	-	-
38829	1402020008	073298D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	MOLINO	14	-	-	-	-	-
38830	1402020002	073315D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	PALO BLANCO	40	-	-	-	-	-
38832	1402020051	073272D	LAMBAYEQUE	FERREÑAFE	CAÑARIS	HUAMACHUCO	24	-	-	-	-	-
39304	-	073373D	LAMBAYEQUE	FERREÑAFE	INCAHUASI	ARCO	30	-	-	-	-	-
39311	1402030105	073387D	LAMBAYEQUE	FERREÑAFE	INCAHUASI	CUEVA BLANCA	85	-	-	-	-	-
62531	1402030008	073434D	LAMBAYEQUE	FERREÑAFE	INCAHUASI	SEÑOR DE LA HUMILDAD	19	-	-	-	-	-
117188	-	114008D	LAMBAYEQUE	LAMBAYEQUE	ILLIMO	SAN PEDRO SASAPE II	50	-	-	-	-	-
117210	1403060076	114052D	LAMBAYEQUE	LAMBAYEQUE	MORROPE	LOS PINOS	31	-	-	-	-	-
117388	1403060043	114058D	LAMBAYEQUE	LAMBAYEQUE	MORROPE	SAN CARLOS LAS DELICIAS	56	-	-	-	-	-
117397	1403080100	114087D	LAMBAYEQUE	LAMBAYEQUE	OLMOS	VINGUAR CHICO	38	-	-	-	-	-
117398	-	114035D	LAMBAYEQUE	LAMBAYEQUE	MOCHUMI	EL CARRIZO	82	-	-	-	-	-
117399	-	114037D	LAMBAYEQUE	LAMBAYEQUE	моснимі	LA PAVA HUACA BLANCA TRAPICHE	50	-	-	-	-	-
117400	1403050021	114042D	LAMBAYEQUE	LAMBAYEQUE	MOCHUMI	PUEBLO NUEVO	110	-	-	-	-	-
117401	1403050029	114036D	LAMBAYEQUE	LAMBAYEQUE	MOCHUMI	HUACA DE TORO	72	-	-	-	-	-
117402	1403050031	114039D	LAMBAYEQUE	LAMBAYEQUE	моснимі	MUY FINCA RAMA DIAZ	104	-	-	-	-	-
117403	1403060089	114061D	LAMBAYEQUE	LAMBAYEQUE	MORROPE	SAN SEBASTIAN	55	-	-	-	-	-
117431	-	117115D	LAMBAYEQUE	LAMBAYEQUE	MOTUPE	SAN JULIAN	10	-	-	-	-	-

Figura 63: Energía solar incidente diaria promedio anual del Perú (1975-1990). [18]

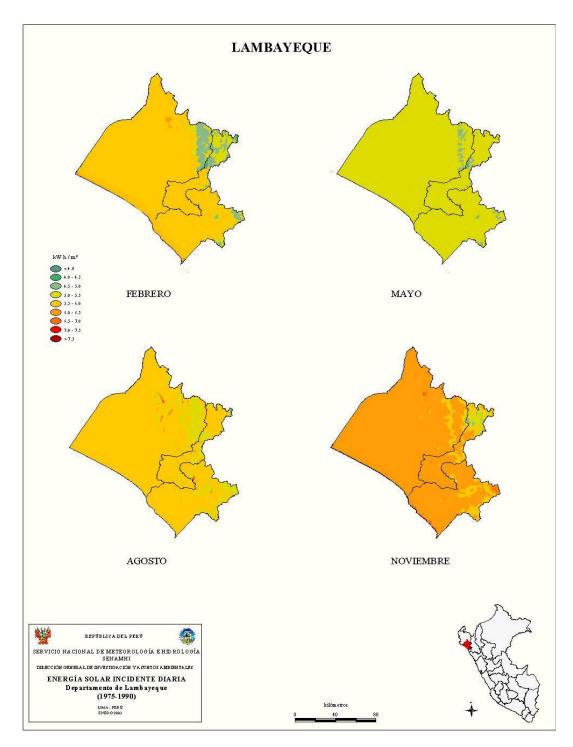


Figura 64: Energía solar incidente diaria en el departamento de Lambayeque (1975-1990). [18]

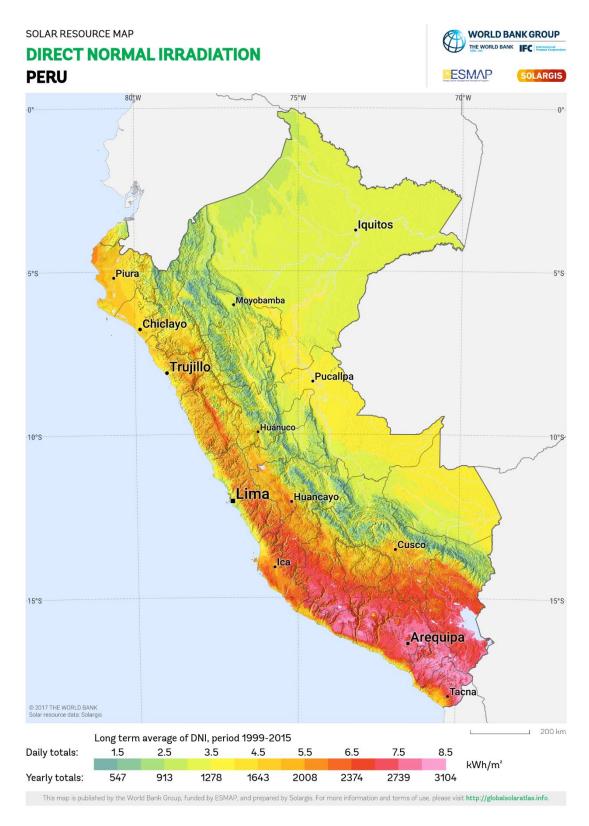


Figura 65: Irradiación normal directa del Perú (1999-2015). [19]

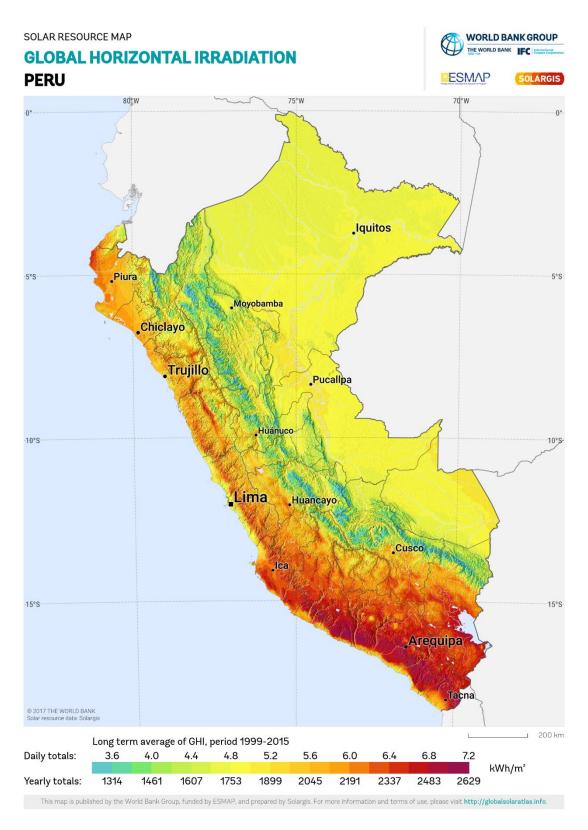


Figura 66: Irradiación horizontal global del Perú (1999-2015). [19]

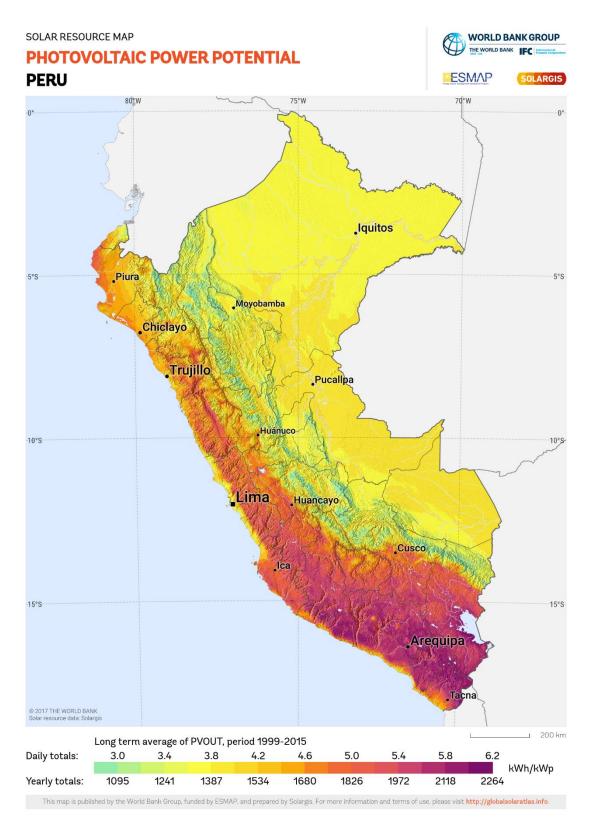


Figura 67: Potencial de energía fotovoltaica del Perú (1999-2015). [19]

Tabla 111: Datos de coordenadas geográficas, producción de electricidad fotovoltaica, irradiación horizontal global, irradiación normal directa, irradiación horizontal difusa, irradiación inclinada global, ángulo óptimo de módulos fotovoltaicos, temperatura del aire y elevación; de los centros poblados. [19]

CENTRO POBLADO	LATITUD	LONGITUD	PVOUT (kWh/kWp por día)	GHI (kWh/m2 por día)	DNI (kWh/m2 por día)	DIF (kWh/m2 por día)	GTI (kWh/m2 por día)	OPTA (°)	TEMP (°C)	ELE (m)
BOTIJILLA	-6,16085	-79,5631	3,962	5,049	3,781	2,293	5,112	10°/0°	21,8	679
YERBA SANTA	-6,25	-79,4839	3,953	4,945	3,866	2,123	5,038	11°/0°	18,5	1568
NUEVA JERUSALEN	-6,1543	-79,5415	3,91	4,964	3,693	2,271	5,022	10°/0°	20,7	979
CHILLACA	-5,97223	-79,4577	4,063	5	3,745	2,282	5,052	10°/0°	15	2425
PAJA BLANCA	-5,99948	-79,3818	3,819	4,707	3,238	2,395	4,737	7°/0°	15	2368
EL SAUCE	-6,06581	-79,3695	3,888	4,732	3,321	2,395	4,773	9°/0°	13,3	2887
WALCOCHALA	-6,06319	-79,219	3,23	4,011	2,186	2,37	4,041	6°/0°	16,2	2079
LIQUE	-6,04451	-79,1905	3,74	4,611	2,951	2,438	4,647	7°/0°	15,4	2260
MOLINO	-6,01658	-79,3831	3,816	4,723	3,241	2,389	4,742	8°/0°	15,3	2296
PALO BLANCO	-6,0503	-79,4028	3,893	4,795	3,436	2,348	4,838	11°/0°	15,1	2407
HUAMACHUCO	-6,07734	-79,1932	3,518	4,353	2,682	2,389	4,378	7°/0°	15,8	2187
CUEVA BLANCA	-6,12208	-79,376	3,792	4,614	3,301	2,312	4,666	9°/0°	12,4	3159
SEÑOR DE LA HUMILDAD	-6,13007	-79,3647	3,871	4,723	3,452	2,258	4,759	9°/0°	11,9	3281
LOS PINOS	-6,5016	-79,9647	4,419	5,658	4,359	2,416	5,69	7°/0°	23	33
VINGUAR CHICO	-5,9746	-79,9617	4,227	5,49	4,186	2,375	5,532	8°/0°	24,7	90
EL CARRIZO	-6,55528	-79,9202	4,386	5,616	4,307	2,411	5,652	7°/0°	23	29
PUEBLO NUEVO	-6,5618	-79,8957	4,381	5,614	4,301	2,414	5,649	7°/0°	23,1	31
HUACA DE TORO	-6,57985	-79,9288	4,411	5,638	4,323	2,425	5,674	7°/0°	22,9	25
MUY FINCA RAMA DIAZ	-6,57885	-79,8975	4,392	5,622	4,31	2,416	5,658	7°/0°	23	28
SAN SEBASTIAN	-6,52643	-80,0182	4,499	5,74	4,46	2,422	5,775	7°/0°	22,7	19

Tabla 112: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Botijilla" (kWh/m²/día). [20]

CENTRO POBLADO BOTIJILLA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,32	2,26	2,27	2,13
Direct	4,05	3,35	4,34	3,75	3,97	3,01	3,02	3,63	4,58	4,54	5,04	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,11	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,42	3,57	3,65	4,31	4,96	4,97	5,33	4,93	4,54
Inclinación a 90°	2,34	1,93	1,79	2,21	2,67	2,31	2,29	2,36	2,04	1,93	2,46	2,49	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,06	5,12	5,36	4,95	4,59
OPT ANG	13	6	2	15	26	27	26	19	8	5	13	15	14,6

Tabla 113: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Yerba Santa" (kWh/m²/día). [20]

CENTRO POBLADO YERBA SANTA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,32	2,26	2,27	2,13
Direct	4,05	3,35	4,34	3,75	3,97	3,01	3,02	3,63	4,58	4,54	5,04	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,11	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,37	4,42	3,57	3,65	4,31	4,96	4,97	5,32	4,93	4,54
Inclinación a 90°	2,34	1,93	1,79	2,22	2,68	2,31	2,3	2,36	2,04	1,93	2,46	2,49	2,24
OPT	4,79	4,43	5,01	4,38	4,43	3,58	3,66	4,31	5,06	5,12	5,36	4,95	4,59
OPT ANG	13	6	2	15	26	28	26	19	8	4	13	15	14,6

Tabla 114: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Nueva Jerusalén" (kWh/m²/día). [20]

CENTRO POBLADO NUEVA JERUSALÉN

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5.09	5.18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,32	2,26	2,27	2,13
Direct	4,05	3,35	4,34	3,75	3,97	3,01	3,02	3,63	4,58	4,54	5,04	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,11	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,57	3,65	4,31	4,96	4,97	5,33	4,93	4,54
Inclinación a 90°	2,34	1,93	1,79	2,21	2,67	2,31	2,29	2,36	2,04	1,93	2,46	2,49	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,06	5,12	5,36	4,95	4,59
OPT ANG	13	6	2	15	26	27	26	19	8	5	13	15	14,6

Tabla 115: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Chillaca" (kWh/m²/día). [20]

CENTRO POBLADO CHILLACA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,42	4,18	4,88	4,36	4,13	3,68	4,38	5,01	5,69	5,5	5,07	4,98	4,69
К	0,41	0,38	0,46	0,44	0,45	0,42	0,49	0,52	0,55	0,52	0,47	0,47	0,47
Diffuse	2,3	2,35	2,32	2,13	1,91	1,81	1,8	1,92	2,06	2,27	2,28	2,24	2,11
Direct	3,47	2,86	3,96	3,6	4,01	3,69	4,71	5,31	5,71	4,94	4,62	4,56	4,3
Inclinación a 0°	4,35	4,12	4,81	4,31	4,09	3,64	4,33	4,96	5,62	5,42	4,99	4,9	4,63
Inclinación a 5°	4,39	4,13	4,81	4,36	4,2	3,75	4,47	5,07	5,65	5,43	5,04	4,97	4,69
Inclinación a 20°	4,39	4,06	4,66	4,39	4,37	3,94	4,72	5,21	5,57	5,3	5,04	5,02	4,73
Inclinación a 90°	2,19	1,85	1,76	2,22	2,64	2,57	3	2,8	2,15	1,99	2,36	2,53	2,34
OPT	4,42	4,13	4,82	4,4	4,38	3,97	4,77	5,21	5,66	5,43	5,07	5,03	4,78
OPT ANG	13	6	2	14	25	29	29	21	8	5	12	16	15

Tabla 116: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Paja Blanca" (kWh/m²/día). [20]

CENTRO POBLADO PAJA BLANCA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,42	4,18	4,88	4,36	4,13	3,68	4,38	5,01	5,69	5,5	5,07	4,98	4,69
К	0,41	0,38	0,46	0,44	0,45	0,42	0,49	0,52	0,55	0,52	0,47	0,47	0,47
Diffuse	2,3	2,35	2,32	2,13	1,91	1,81	1,8	1,92	2,06	2,27	2,28	2,24	2,11
Direct	3,47	2,86	3,96	3,61	4,01	3,69	4,71	5,31	5,71	4,94	4,62	4,56	4,3
Inclinación a 0°	4,35	4,12	4,81	4,31	4,09	3,64	4,33	4,96	5,62	5,42	4,99	4,9	4,63
Inclinación a 5°	4,39	4,13	4,81	4,36	4,2	3,75	4,47	5,07	5,65	5,43	5,04	4,97	4,69
Inclinación a 20°	4,39	4,06	4,66	4,39	4,37	3,94	4,72	5,21	5,57	5,3	5,04	5,02	4,73
Inclinación a 90°	2,19	1,85	1,76	2,22	2,64	2,57	3	2,8	2,15	1,98	2,36	2,53	2,34
OPT	4,42	4,13	4,82	4,4	4,38	3,97	4,77	5,21	5,66	5,43	5,07	5,03	4,78
OPT ANG	13	6	2	14	25	29	29	21	8	5	12	16	15

Tabla 117: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "El Sauce" (kWh/m²/día). [20]

CENTRO POBLADO EL SAUCE

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,97	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,36	2,04	1,94	2,46	2,5	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 118: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Walcochala" (kWh/m²/día). [20]

CENTRO POBLADO WALCOCHALA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,97	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,36	2,03	1,94	2,46	2,5	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 119: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Lique" (kWh/m²/día). [20]

CENTRO POBLADO LIQUE

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,96	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,36	2,03	1,94	2,47	2,5	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 120: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Molino" (kWh/m²/día). [20]

CENTRO POBLADO MOLINO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
K	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,96	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,23	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,35	2,03	1,94	2,47	2,5	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	14	25	27	26	19	7	5	13	15	14,3

Tabla 121: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Palo Blanco" (kWh/m²/día). [20]

CENTRO POBLADO PALO BLANCO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,97	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,36	2,03	1,94	2,46	2,5	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 122: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Huamachuco" (kWh/m²/día). [20]

CENTRO POBLADO HUAMACHUCO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
K	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,83	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,97	3	3,01	3,62	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,12	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,98	5,33	4,93	4,54
Inclinación a 90°	2,35	1,93	1,78	2,21	2,67	2,3	2,29	2,36	2,04	1,94	2,46	2,49	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,05	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 123: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Cueva Blanca" (kWh/m²/día). [20]

CENTRO POBLADO CUEVA BLANCA

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,74	3,97	3	3,01	3,63	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,11	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,97	5,33	4,93	4,54
Inclinación a 90°	2,34	1,93	1,79	2,21	2,67	2,31	2,29	2,36	2,04	1,94	2,46	2,49	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,06	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 124: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Señor de la Humildad" (kWh/m²/día). [20]

CENTRO POBLADO SEÑOR DE LA HUMILDAD

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,31	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,32	2,26	2,27	2,13
Direct	4,06	3,35	4,34	3,75	3,97	3	3,01	3,63	4,57	4,54	5,05	4,43	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,12	3,31	3,42	4,15	5,02	5,11	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,05	5,11	5,34	4,9	4,53
Inclinación a 21°	4,77	4,34	4,84	4,36	4,41	3,56	3,65	4,31	4,96	4,97	5,33	4,93	4,54
Inclinación a 90°	2,34	1,93	1,79	2,21	2,67	2,31	2,29	2,36	2,04	1,93	2,46	2,49	2,24
OPT	4,8	4,43	5,01	4,38	4,42	3,58	3,66	4,31	5,06	5,12	5,37	4,95	4,59
OPT ANG	13	6	2	15	25	27	26	19	8	5	13	15	14,5

Tabla 125: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Los Pinos" (kWh/m²/día). [20]

CENTRO POBLADO LOS PINOS

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
K	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,32	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,33	2,26	2,28	2,13
Direct	4,05	3,35	4,35	3,76	3,98	3,02	3,03	3,64	4,58	4,54	5,03	4,42	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,13	3,31	3,42	4,15	5,03	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,06	5,11	5,34	4,9	4,53
Inclinación a 21°	4,76	4,34	4,84	4,37	4,42	3,57	3,66	4,32	4,97	4,97	5,32	4,93	4,54
Inclinación a 90°	2,33	1,92	1,8	2,23	2,69	2,32	2,31	2,38	2,06	1,92	2,45	2,48	2,24
OPT	4,79	4,43	5,02	4,39	4,43	3,59	3,67	4,32	5,06	5,11	5,36	4,94	4,59
OPT ANG	13	6	3	15	26	28	26	19	8	4	12	15	14,6

Tabla 126: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Vinguar Chico" (kWh/m²/día). [20]

CENTRO POBLADO VINGUAR CHICO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,42	4,18	4,88	4,36	4,13	3,68	4,38	5,01	5,69	5,5	5,07	4,98	4,69
К	0,41	0,38	0,46	0,44	0,45	0,42	0,49	0,52	0,55	0,52	0,47	0,47	0,47
Diffuse	2,3	2,35	2,32	2,13	1,91	1,81	1,8	1,92	2,06	2,27	2,28	2,24	2,11
Direct	3,47	2,86	3,96	3,6	4,01	3,69	4,71	5,31	5,71	4,94	4,62	4,56	4,3
Inclinación a 0°	4,35	4,12	4,81	4,31	4,09	3,64	4,33	4,96	5,62	5,42	4,99	4,9	4,63
Inclinación a 5°	4,39	4,13	4,81	4,36	4,2	3,75	4,47	5,07	5,65	5,43	5,04	4,97	4,69
Inclinación a 20°	4,39	4,06	4,66	4,39	4,37	3,94	4,72	5,21	5,57	5,3	5,04	5,02	4,73
Inclinación a 90°	2,19	1,85	1,76	2,22	2,64	2,57	3	2,8	2,15	1,99	2,36	2,53	2,34
OPT	4,42	4,13	4,82	4,4	4,38	3,97	4,77	5,21	5,66	5,43	5,07	5,03	4,78
OPT ANG	13	6	2	14	25	29	29	21	8	5	12	16	15

Tabla 127: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "El Carrizo" (kWh/m²/día). [20]

CENTRO POBLADO EL CARRIZO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
K	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,32	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,33	2,26	2,28	2,13
Direct	4,04	3,35	4,35	3,76	3,99	3,02	3,03	3,64	4,58	4,54	5,03	4,42	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,13	3,31	3,42	4,15	5,03	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,06	5,11	5,34	4,9	4,53
Inclinación a 21°	4,76	4,33	4,84	4,37	4,42	3,57	3,66	4,32	4,97	4,97	5,32	4,92	4,54
Inclinación a 90°	2,33	1,92	1,8	2,23	2,7	2,32	2,31	2,38	2,06	1,92	2,44	2,48	2,24
OPT	4,79	4,43	5,02	4,39	4,43	3,59	3,67	4,32	5,06	5,11	5,36	4,94	4,59
OPT ANG	13	6	3	15	26	28	26	19	8	4	12	15	14,6

Tabla 128: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Pueblo Nuevo" (kWh/m²/día). [10]

CENTRO POBLADO PUEBLO NUEVO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,32	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,33	2,26	2,28	2,13
Direct	4,04	3,35	4,35	3,76	3,99	3,02	3,03	3,64	4,58	4,54	5,03	4,42	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,13	3,31	3,42	4,15	5,03	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,06	5,11	5,34	4,9	4,53
Inclinación a 21°	4,76	4,33	4,84	4,37	4,42	3,57	3,66	4,32	4,97	4,97	5,32	4,92	4,54
Inclinación a 90°	2,33	1,92	1,8	2,23	2,7	2,32	2,31	2,38	2,06	1,92	2,44	2,48	2,24
OPT	4,79	4,43	5,02	4,39	4,43	3,59	3,67	4,32	5,06	5,11	5,36	4,94	4,59
OPT ANG	13	6	3	15	26	28	26	19	8	4	12	15	14,6

Tabla 129: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Huaca de Toro" (kWh/m²/día). [10]

CENTRO POBLADO HUACA DE TORO

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,32	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,33	2,26	2,28	2,13
Direct	4,04	3,35	4,35	3,76	3,99	3,02	3,03	3,64	4,58	4,53	5,03	4,42	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,13	3,31	3,42	4,15	5,03	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,06	5,11	5,34	4,9	4,53
Inclinación a 21°	4,76	4,33	4,85	4,37	4,42	3,57	3,66	4,32	4,97	4,97	5,32	4,92	4,54
Inclinación a 90°	2,33	1,92	1,81	2,23	2,7	2,32	2,31	2,38	2,06	1,92	2,44	2,48	2,24
OPT	4,79	4,43	5,02	4,39	4,44	3,59	3,67	4,32	5,06	5,11	5,36	4,94	4,59
OPT ANG	13	6	3	15	26	28	26	19	8	4	12	15	14,6

Tabla 130: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "Muy Finca Rama Diaz" (kWh/m²/día). [10]

CENTRO POBLADO MUY FINCA RAMA DIAZ

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	4,79	4,48	5,08	4,34	4,17	3,35	3,46	4,2	5,09	5,18	5,36	4,91	4,53
К	0,44	0,41	0,48	0,44	0,46	0,39	0,39	0,44	0,5	0,48	0,5	0,46	0,45
Diffuse	2,32	2,38	2,3	2,11	1,88	1,78	1,82	2	2,17	2,33	2,26	2,28	2,13
Direct	4,04	3,35	4,35	3,76	3,99	3,02	3,03	3,64	4,58	4,53	5,03	4,42	3,98
Inclinación a 0°	4,71	4,41	5,01	4,29	4,13	3,31	3,42	4,15	5,03	5,1	5,27	4,83	4,47
Inclinación a 6°	4,77	4,43	5,01	4,35	4,25	3,42	3,52	4,24	5,06	5,11	5,34	4,9	4,53
Inclinación a 21°	4,76	4,33	4,84	4,37	4,42	3,57	3,66	4,32	4,97	4,97	5,32	4,92	4,54
Inclinación a 90°	2,33	1,92	1,81	2,23	2,7	2,32	2,31	2,38	2,06	1,92	2,44	2,48	2,24
OPT	4,79	4,43	5,02	4,39	4,44	3,59	3,67	4,32	5,06	5,11	5,36	4,94	4,59
OPT ANG	13	6	3	15	26	28	26	19	8	4	12	15	14,6

Tabla 131: Mínima irradiación incidente en una superficie inclinada con dirección ecuatorial del Centro Poblado "San Sebastian" (kWh/m²/día). [10]

CENTRO POBLADO SAN SEBASTIAN

Parameters for Tilted Solar Panels:

Minimum Radiation Incident On An Equator-pointed Tilted Surface (kWh/m2/day)

-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
SSE MIN	6,3	5,77	5,55	5,86	4,17	3,25	3,01	3,67	4,15	5,01	5,23	5,64	4,79
К	0,58	0,53	0,52	0,59	0,46	0,37	0,34	0,39	0,4	0,47	0,49	0,53	0,47
Diffuse	2,04	2,26	2,23	1,83	1,88	1,77	1,78	2	2,22	2,34	2,28	2,17	2,06
Direct	6,67	5,63	5,47	6,49	4,42	2,92	2,25	2,79	2,98	4,12	4,76	5,78	4,52
Inclinación a 0°	6,2	5,68	5,48	5,79	4,13	3,22	2,98	3,63	4,1	4,95	5,15	5,54	4,73
Inclinación a 6°	6,31	5,72	5,47	5,91	4,25	3,31	3,05	3,69	4,11	4,95	5,21	5,65	4,8
Inclinación a 21°	6,35	5,61	5,29	6	4,42	3,45	3,14	3,74	4,04	4,81	5,18	5,7	4,81
Inclinación a 90°	2,91	2,22	1,85	2,87	2,69	2,24	1,97	2,08	1,82	1,9	2,4	2,8	2,31
OPT	6,37	5,72	5,48	6,01	4,43	3,47	3,14	3,74	4,12	4,96	5,23	5,72	4,86
OPT ANG	16	8	3	18	26	27	24	18	7	4	12	17	15

Tabla 132: Irradiación Solar diaria-horizontal (kWh/m2/d) según los meses del año de cada Centro Poblado. [21]

Irradiación Solar diaria-horizontal (kWh/m2/d) Cueva Huaca Los Muy Finca Nueva Paja Palo Pueblo San Señor de Vinguar Yerba El Carrizo El Sauce Botijilla Chillaca Huamachuco Lique Walcochala Mes Molino de Toro Pinos Jerusalén Nuevo Sebastian la Humidad Chico Santa Rama Diaz Blanca Blanco 5,27 5,27 5,27 6,62 5,27 Enero 5,27 6,62 6,62 4,16 4,16 5,27 6,62 5,27 5,27 6,62 6,62 5,27 5,27 4,16 6,62 Febrero 5,00 5,00 5,00 6,59 5,00 6,59 3,93 3,93 6,59 5,00 6,59 5,00 5,00 5,00 6,59 6,59 5,00 5,00 3,93 6,59 6,66 5,45 5,45 5,45 6,66 5,45 6,66 4,25 4,25 5,45 6,66 5,45 5,45 5,45 6,66 6,66 5,45 5,45 4,25 6,66 Marzo 5,14 5,14 6,42 4,24 4,24 6,42 5,14 5,14 6,42 6,42 4,24 6,42 Abril 5,14 5,14 6,42 6,42 5,14 5,14 5,14 5,14 4,98 4,98 4,98 4,98 4,98 4,98 Mayo 5,40 4,98 5,40 4,31 4,31 5,40 5,40 4,98 5,40 5,40 4,98 4,98 4,31 5,40 Junio 4,89 4,89 4,89 4,21 4,89 4,21 4,22 4,22 4,21 4,89 4,21 4,89 4,89 4,89 4,21 4,21 4,89 4,89 4,22 4,21 Julio 5,02 5,02 5,02 4,01 5,02 4,01 4,31 4,31 4,01 5,02 4,01 5,02 5,02 5,02 4,01 4,01 5,02 5,02 4,31 4,01 5,54 5,54 5,54 4,34 5,54 4,34 4,62 4,62 4,34 5,54 4,34 5,54 5,54 5,54 4,34 4,34 5,54 5,54 4,62 4,34 Agosto Septiembre 6,15 6,15 6,15 4,99 6,15 4,99 4,95 4,95 4,99 6,15 4,99 6,15 6,15 4,99 4,99 6,15 6,15 4,95 6,15 4,99 Octubre 6,08 6,08 6,08 5,54 6,08 5,54 4,94 4,94 5,54 6,08 5,54 6,08 6,08 5,54 5,54 6,08 6,08 4,94 5,54 6,08 Noviembre 6,10 6,10 6,10 5,96 6,10 5,96 5,15 5,15 5,96 6,10 5,96 6,10 6,10 6,10 5,96 5,96 6,10 6,10 5,15 5,96 Diciembre 5,67 5,67 5,67 6,34 5,67 6,34 4,63 4,63 6,34 5,67 6,34 5,67 5,67 5,67 6,34 6,34 5,67 5,67 4,63 6,34 5,59 5,59 5,44 5,44 5,44 5,59 5,44 5,59 4,48 4,48 5,44 5,59 5,44 5,44 5,44 5,59 5,59 5,44 5,44 4,48 Anual

Tabla 133: Base de datos de la irradiación global en una superficie inclinada según los meses y la inclinación de cada Centro Poblado. [22]

Centro Poblado	Inclinación	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
Botijilla	Inclinación 0°	4,68	4,96	5,16	5,17	4,74	4,63	4,71	5,29	5,87	5,84	5,67	5,26
Botijilla	Inclinación 6°	4,77	5,00	5,13	5,00	4,52	4,37	4,45	5,10	5,77	5,87	5,80	5,42
Botijilla	Inclinación 21°	4,87	4,96	4,87	4,47	3,81	3,53	3,68	4,45	5,30	5,74	5,93	5,65
Botijilla	Inclinación 90°	2,55	2,04	1,55	1,37	1,26	1,20	1,23	1,39	1,40	1,84	2,93	3,10
Chillaca	Inclinación 0°	4,48	4,68	4,94	4,73	4,61	4,60	4,71	5,16	5,53	5,58	5,50	4,81
Chillaca	Inclinación 5°	4,58	4,71	4,90	4,60	4,42	4,37	4,52	5,00	5,47	5,61	5,60	4,90
Chillaca	Inclinación 20°	4,71	4,64	4,68	4,17	3,77	3,60	3,74	4,35	5,07	5,55	5,80	5,10
Chillaca	Inclinación 90°	2,52	1,79	1,52	1,37	1,26	1,23	1,23	1,35	1,50	1,97	2,93	2,84
Cueva Blanca	Inclinación 0°	4,39	4,61	4,74	4,83	4,71	4,77	4,97	5,39	5,77	5,77	5,63	4,94
Cueva Blanca	Inclinación 6°	4,48	4,64	4,74	4,70	4,48	4,47	4,68	5,16	5,67	5,81	5,80	5,06
Cueva Blanca	Inclinación 21°	4,55	4,61	4,52	4,20	3,81	3,60	3,81	4,48	5,27	5,71	5,97	5,23
Cueva Blanca	Inclinación 90°	2,45	2,04	1,42	1,40	1,35	1,20	1,23	1,39	1,47	1,97	3,13	2,90
El Carrizo	Inclinación 0°	6,32	6,54	6,65	6,27	5,52	4,93	4,74	5,16	6,07	6,16	6,10	6,32
El Carrizo	Inclinación 6°	5,74	5,89	5,94	5,60	4,77	4,30	4,19	4,58	5,47	5,71	5,70	5,97
El Carrizo	Inclinación 21°	5,90	5,86	5,61	4,97	4,03	3,53	3,52	4,03	5,03	5,58	5,83	6,23
El Carrizo	Inclinación 90°	3,03	2,25	1,52	1,40	1,29	1,30	1,26	1,39	1,43	1,87	2,90	3,39
El Sauce	Inclinación 0°	5,00	5,21	5,32	5,30	5,19	5,17	5,35	5,77	6,23	6,23	6,17	5,39
El Sauce	Inclinación 6°	4,52	4,68	4,74	4,73	4,52	4,47	4,65	5,13	5,60	5,77	5,77	5,06
El Sauce	Inclinación 21°	4,61	4,64	4,52	4,23	3,81	3,63	3,81	4,42	5,20	5,68	5,93	5,23
El Sauce	Inclinación 90°	2,45	2,00	1,52	1,43	1,32	1,30	1,26	1,32	1,43	2,00	2,97	2,94
Huaca de Toro	Inclinación 0°	6,32	6,54	6,65	6,27	5,52	4,93	4,74	5,13	6,03	6,13	6,10	6,32
Huaca de Toro	Inclinación 6°	5,74	5,89	5,94	5,60	4,77	4,27	4,19	4,58	5,47	5,68	5,70	5,97
Huaca de Toro	Inclinación 21°	5,90	5,86	5,61	4,97	4,00	3,50	3,52	4,00	5,03	5,55	5,83	6,23
Huaca de Toro	Inclinación 90°	3,03	2,25	1,52	1,40	1,29	1,20	1,26	1,39	1,40	1,94	2,87	3,39
Huamachuco	Inclinación 0°	5,19	5,36	5,52	5,53	5,35	5,23	5,39	5,77	6,20	6,26	6,23	5,52

Huamachuco	Inclinación 6°	4,68	4,86	4,94	4,97	4,65	4,53	4,71	5,10	5,60	5,81	5,87	5,19
Huamachuco	Inclinación 21°	4,77	4,82	4,71	4,47	3,94	3,63	3,87	4,42	5,13	5,68	6,03	5,42
Huamachuco	Inclinación 90°	2,55	2,00	1,52	1,43	1,35	1,23	1,29	1,32	1,40	1,81	3,03	3,00
Lique	Inclinación 0°	5,19	5,39	5,52	5,57	5,35	5,23	5,39	5,77	6,20	6,26	6,23	5,52
Lique	Inclinación 6°	4,71	4,86	4,97	4,97	4,65	4,53	4,71	5,10	5,60	5,81	5,87	5,19
Lique	Inclinación 21°	4,84	4,79	4,71	4,43	3,94	3,70	3,84	4,42	5,17	5,74	6,03	5,39
Lique	Inclinación 90°	2,52	2,07	1,45	1,37	1,35	1,33	1,29	1,35	1,40	2,03	3,00	3,00
Los Pinos	Inclinación 0°	6,29	6,57	6,61	6,27	5,52	4,97	4,77	5,23	6,10	6,19	6,10	6,32
Los Pinos	Inclinación 6°	5,74	5,89	5,94	5,60	4,77	4,30	4,19	4,65	5,50	5,71	5,70	5,94
Los Pinos	Inclinación 21°	5,87	5,86	5,61	5,00	4,00	3,53	3,52	4,06	5,10	5,58	5,80	6,16
Los Pinos	Inclinación 90°	3,03	2,25	1,52	1,40	1,29	1,23	1,26	1,42	1,43	1,87	2,83	3,32
Molino	Inclinación 0°	5,03	5,25	5,42	5,33	5,23	5,20	5,35	5,81	6,23	6,26	6,17	5,42
Molino	Inclinación 6°	4,58	4,71	4,84	4,77	4,55	4,50	4,68	5,13	5,63	5,81	5,80	5,10
Molino	Inclinación 21°	4,71	4,68	4,58	4,27	3,81	3,63	3,84	4,45	5,20	5,71	5,97	5,26
Molino	Inclinación 90°	2,48	1,96	1,48	1,40	1,29	1,23	1,32	1,32	1,40	2,00	3,00	2,97
Muy Finca Rama Diaz	Inclinación 0°	6,29	6,50	6,61	6,23	5,52	4,93	4,77	5,16	6,07	6,16	6,10	6,32
Muy Finca Rama Diaz	Inclinación 6°	5,74	5,86	5,90	5,57	4,77	4,30	4,19	4,58	5,47	5,71	5,70	5,97
Muy Finca Rama Diaz	Inclinación 21°	5,90	5,82	5,61	4,93	4,00	3,53	3,52	4,03	5,03	5,58	5,83	6,23
Muy Finca Rama Diaz	Inclinación 90°	3,03	2,25	1,52	1,40	1,29	1,30	1,29	1,39	1,43	1,90	2,83	3,39
Nueva Jerusalén	Inclinación 0°	5,16	5,46	5,61	5,50	5,13	5,07	5,16	5,77	6,40	6,32	6,17	5,68
Nueva Jerusalén	Inclinación 6°	4,68	4,93	5,00	4,90	4,45	4,37	4,52	5,10	5,77	5,87	5,80	5,32
Nueva Jerusalén	Inclinación 21°	4,77	4,89	4,77	4,40	3,74	3,53	3,74	4,42	5,30	5,74	5,93	5,52
Nueva Jerusalén	Inclinación 90°	2,45	2,00	1,52	1,37	1,23	1,23	1,29	1,32	1,40	1,94	2,97	3,03
Paja Blanca	Inclinación 0°	5,10	5,29	5,48	5,40	5,26	5,20	5,39	5,81	6,27	6,26	6,20	5,45
Paja Blanca	Inclinación 5°	4,58	4,68	4,87	4,67	4,45	4,40	4,52	4,97	5,40	5,58	5,60	4,90
Paja Blanca	Inclinación 20°	4,71	4,64	4,65	4,20	3,77	3,60	3,74	4,29	5,03	5,52	5,77	5,10
Paja Blanca	Inclinación 90°	2,52	1,75	1,52	1,33	1,29	1,27	1,26	1,35	1,40	1,94	2,93	2,87
Palo Blanco	Inclinación 0°	4,87	5,07	5,19	5,13	5,06	5,13	5,32	5,77	6,23	6,19	6,10	5,26
Palo Blanco	Inclinación 6°	4,39	4,57	4,65	4,60	4,39	4,43	4,65	5,10	5,60	5,71	5,70	4,94
Palo Blanco	Inclinación 21°	4,48	4,54	4,45	4,17	3,74	3,63	3,81	4,42	5,13	5,61	5,83	5,10

Palo Blanco	Inclinación 90°	2,39	1,96	1,45	1,37	1,29	1,30	1,32	1,23	1,40	1,97	2,93	2,84
Pueblo Nuevo	Inclinación 0°	6,29	6,50	6,61	6,23	5,52	4,97	4,77	5,19	6,10	6,16	6,10	6,32
Pueblo Nuevo	Inclinación 6°	5,71	5,86	5,90	5,57	4,77	4,30	4,19	4,61	5,50	5,71	5,70	5,97
Pueblo Nuevo	Inclinación 21°	5,87	5,82	5,58	4,93	4,00	3,53	3,52	4,06	5,07	5,58	5,83	6,19
Pueblo Nuevo	Inclinación 90°	3,03	2,21	1,52	1,40	1,29	1,30	1,29	1,39	1,43	1,90	2,83	3,39
San Sebastian	Inclinación 0°	6,35	6,64	6,65	6,27	5,52	4,93	4,65	5,10	5,93	6,10	6,07	6,29
San Sebastian	Inclinación 6°	5,55	5,68	5,65	5,40	4,65	4,03	3,87	4,23	5,00	5,32	5,30	5,61
San Sebastian	Inclinación 21°	5,71	5,68	5,35	4,83	3,90	3,33	3,29	3,74	4,63	5,19	5,40	5,84
San Sebastian	Inclinación 90°	2,94	2,32	1,52	1,43	1,32	1,20	1,26	1,32	1,40	1,77	2,63	3,19
Señor de la Humildad	Inclinación 0°	4,97	5,21	5,32	5,30	5,19	5,20	5,39	5,84	6,30	6,29	6,20	5,42
Señor de la Humildad	Inclinación 6°	4,48	4,68	4,74	4,73	4,52	4,50	4,71	5,19	5,70	5,81	5,80	5,10
Señor de la Humildad	Inclinación 21°	4,61	4,64	4,52	4,20	3,81	3,67	3,87	4,48	5,27	5,68	5,97	5,29
Señor de la Humildad	Inclinación 90°	2,45	2,07	1,52	1,33	1,29	1,30	1,29	1,42	1,50	1,94	3,07	3,00
Vinguar Chico	Inclinación 0°	5,65	6,04	6,16	6,00	5,35	5,10	4,90	5,61	6,37	6,42	6,27	6,13
Vinguar Chico	Inclinación 5°	5,10	5,36	5,45	5,20	4,52	4,30	4,13	4,81	5,47	5,71	5,67	5,52
Vinguar Chico	Inclinación 20°	5,23	5,39	5,19	4,67	3,87	3,53	3,48	4,23	5,10	5,61	5,80	5,74
Vinguar Chico	Inclinación 90°	2,71	2,29	1,58	1,43	1,29	1,20	1,23	1,39	1,40	1,90	2,83	3,13
Walcochala	Inclinación 0°	5,16	5,36	5,52	5,53	5,35	5,23	5,39	5,77	6,20	6,26	6,23	5,52
Walcochala	Inclinación 6°	4,71	4,82	4,94	4,93	4,65	4,53	4,71	5,10	5,60	5,84	5,83	5,19
Walcochala	Inclinación 21°	4,84	4,75	4,68	4,40	3,97	3,67	3,84	4,42	5,20	5,74	6,00	5,39
Walcochala	Inclinación 90°	2,52	1,93	1,45	1,40	1,35	1,23	1,23	1,29	1,43	2,03	2,93	3,00
Yerba Santa	Inclinación 0°	5,03	5,32	5,45	5,40	5,16	5,17	5,29	5,90	6,47	6,39	6,23	5,65
Yerba Santa	Inclinación 6°	4,58	4,79	4,87	4,83	4,48	4,43	4,61	5,19	5,83	5,94	5,83	5,32
Yerba Santa	Inclinación 21°	4,65	4,75	4,65	4,30	3,77	3,57	3,77	4,48	5,40	5,81	6,00	5,52
Yerba Santa	Inclinación 90°	2,45	1,89	1,55	1,33	1,26	1,17	1,26	1,29	1,40	1,90	2,93	3,03

Tabla 134: Base de datos de la irradiación solar de cada centro poblado según la fuente y el mes.

Centro Poblado	Fuente	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Botijilla	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.10	5.27	4.83
Botijilla	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Botijilla	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Botijilla	METEONORM (Inclinación a 0°)	4.68	4.96	5.16	5.17	4.74	4.63	4.71	5.29	5.87	5.84	5.67	5.26
Botijilla	GLOBAL SOLAR ATLAS (Valor promedio)	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05	5.05
Chillaca	NASA (Inclinación a 0°)	4.35	4.12	4.81	4.31	4.09	3.64	4.33	4.96	5.62	5.42	4.99	4.90
Chillaca	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Chillaca	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Chillaca	METEONORM (Inclinación a 0°)	4.48	4.68	4.94	4.73	4.61	4.60	4.71	5.16	5.53	5.58	5.50	4.81
Chillaca	GLOBAL SOLAR ATLAS (Valor promedio)	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Cueva Blanca	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Cueva Blanca	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Cueva Blanca	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Cueva Blanca	METEONORM (Inclinación a 0°)	4.39	4.61	4.74	4.83	4.71	4.77	4.97	5.39	5.77	5.77	5.63	4.94
Cueva Blanca	GLOBAL SOLAR ATLAS (Valor promedio)	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61
El Carrizo	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.13	3.31	3.42	4.15	5.03	5.10	5.27	4.83
El Carrizo	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
El Carrizo	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
El Carrizo	METEONORM (Inclinación a 0°)	6.32	6.54	6.65	6.27	5.52	4.93	4.74	5.16	6.07	6.16	6.10	6.32
El Carrizo	GLOBAL SOLAR ATLAS (Valor promedio)	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62
El Sauce	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
El Sauce	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
El Sauce	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
El Sauce	METEONORM (Inclinación a 0°)	5.00	5.21	5.32	5.30	5.19	5.17	5.35	5.77	6.23	6.23	6.17	5.39

El Sauce	GLOBAL SOLAR ATLAS (Valor promedio)	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73
Huaca de Toro	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.13	3.31	3.42	4.15	5.03	5.10	5.27	4.83
Huaca de Toro	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
Huaca de Toro	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Huaca de Toro	METEONORM (Inclinación a 0°)	6.32	6.54	6.65	6.27	5.52	4.93	4.74	5.13	6.03	6.13	6.10	6.32
Huaca de Toro	GLOBAL SOLAR ATLAS (Valor promedio)	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64	5.64
Huamachuco	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Huamachuco	RETSCREEN EXPERT (Valor promedio)	4.16	3.93	4.25	4.24	4.31	4.22	4.31	4.62	4.95	4.94	5.15	4.63
Huamachuco	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Huamachuco	METEONORM (Inclinación a 0°)	5.19	5.36	5.52	5.53	5.35	5.23	5.39	5.77	6.20	6.26	6.23	5.52
Huamachuco	GLOBAL SOLAR ATLAS (Valor promedio)	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35	4.35
Lique	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Lique	RETSCREEN EXPERT (Valor promedio)	4.16	3.93	4.25	4.24	4.31	4.22	4.31	4.62	4.95	4.94	5.15	4.63
Lique	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Lique	METEONORM (Inclinación a 0°)	5.19	5.39	5.52	5.57	5.35	5.23	5.39	5.77	6.20	6.26	6.23	5.52
Lique	GLOBAL SOLAR ATLAS (Valor promedio)	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61
Los Pinos	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.13	3.31	3.42	4.15	5.03	5.10	5.27	4.83
Los Pinos	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
Los Pinos	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Los Pinos	METEONORM (Inclinación a 0°)	6.29	6.57	6.61	6.27	5.52	4.97	4.77	5.23	6.10	6.19	6.10	6.32
Los Pinos	GLOBAL SOLAR ATLAS (Valor promedio)	5.66	5.66	5.66	5.66	5.66	5.66	5.66	5.66	5.66	5.66	5.66	5.66
Molino	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Molino	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Molino	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Molino	METEONORM (Inclinación a 0°)	5.03	5.25	5.42	5.33	5.23	5.20	5.35	5.81	6.23	6.26	6.17	5.42
Molino	GLOBAL SOLAR ATLAS (Valor promedio)	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72
Muy Finca Rama Diaz	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.13	3.31	3.42	4.15	5.03	5.10	5.27	4.83
Muy Finca Rama Diaz	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34

Muy Finca Rama Diaz	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Muy Finca Rama Diaz	METEONORM (Inclinación a 0°)	6.29	6.50	6.61	6.23	5.52	4.93	4.77	5.16	6.07	6.16	6.10	6.32
Muy Finca Rama Diaz	GLOBAL SOLAR ATLAS (Valor promedio)	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62	5.62
Nueva Jerusalén	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.10	5.27	4.83
Nueva Jerusalén	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Nueva Jerusalén	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Nueva Jerusalén	METEONORM (Inclinación a 0°)	5.16	5.46	5.61	5.50	5.13	5.07	5.16	5.77	6.40	6.32	6.17	5.68
Nueva Jerusalén	GLOBAL SOLAR ATLAS (Valor promedio)	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96	4.96
Paja Blanca	NASA (Inclinación a 0°)	4.35	4.12	4.81	4.31	4.09	3.64	4.33	4.96	5.62	5.42	4.99	4.90
Paja Blanca	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Paja Blanca	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Paja Blanca	METEONORM (Inclinación a 0°)	5.10	5.29	5.48	5.40	5.26	5.20	5.39	5.81	6.27	6.26	6.20	5.45
Paja Blanca	GLOBAL SOLAR ATLAS (Valor promedio)	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71
Palo Blanco	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Palo Blanco	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Palo Blanco	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Palo Blanco	METEONORM (Inclinación a 0°)	4.87	5.07	5.19	5.13	5.06	5.13	5.32	5.77	6.23	6.19	6.10	5.26
Palo Blanco	GLOBAL SOLAR ATLAS (Valor promedio)	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80	4.80
Pueblo Nuevo	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.13	3.31	3.42	4.15	5.03	5.10	5.27	4.83
Pueblo Nuevo	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
Pueblo Nuevo	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Pueblo Nuevo	METEONORM (Inclinación a 0°)	6.29	6.50	6.61	6.23	5.52	4.97	4.77	5.19	6.10	6.16	6.10	6.32
Pueblo Nuevo	GLOBAL SOLAR ATLAS (Valor promedio)	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61	5.61
San Sebastian	NASA (Inclinación a 0°)	6.20	5.68	5.48	5.79	4.13	3.22	2.98	3.63	4.10	4.95	5.15	5.54
San Sebastian	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
San Sebastian	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
San Sebastian	METEONORM (Inclinación a 0°)	6.35	6.64	6.65	6.27	5.52	4.93	4.65	5.10	5.93	6.10	6.07	6.29
San Sebastian	GLOBAL SOLAR ATLAS (Valor promedio)	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74	5.74

Señor de la Humidad	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Señor de la Humidad	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Señor de la Humidad	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Señor de la Humidad	METEONORM (Inclinación a 0°)	4.97	5.21	5.32	5.30	5.19	5.20	5.39	5.84	6.30	6.29	6.20	5.42
Señor de la Humidad	GLOBAL SOLAR ATLAS (Valor promedio)	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72
Vinguar Chico	NASA (Inclinación a 0°)	4.35	4.12	4.81	4.31	4.09	3.64	4.33	4.96	5.62	5.42	4.99	4.90
Vinguar Chico	RETSCREEN EXPERT (Valor promedio)	5.27	5.00	5.45	5.14	4.98	4.89	5.02	5.54	6.15	6.08	6.10	5.67
Vinguar Chico	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Vinguar Chico	METEONORM (Inclinación a 0°)	5.65	6.04	6.16	6.00	5.35	5.10	4.90	5.61	6.37	6.42	6.27	6.13
Vinguar Chico	GLOBAL SOLAR ATLAS (Valor promedio)	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49
Walcochala	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.11	5.27	4.83
Walcochala	RETSCREEN EXPERT (Valor promedio)	4.16	3.93	4.25	4.24	4.31	4.22	4.31	4.62	4.95	4.94	5.15	4.63
Walcochala	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Walcochala	METEONORM (Inclinación a 0°)	5.16	5.36	5.52	5.53	5.35	5.23	5.39	5.77	6.20	6.26	6.23	5.52
Walcochala	GLOBAL SOLAR ATLAS (Valor promedio)	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01
Yerba Santa	NASA (Inclinación a 0°)	4.71	4.41	5.01	4.29	4.12	3.31	3.42	4.15	5.02	5.10	5.27	4.83
Yerba Santa	RETSCREEN EXPERT (Valor promedio)	6.62	6.59	6.66	6.42	5.40	4.21	4.01	4.34	4.99	5.54	5.96	6.34
Yerba Santa	ATLAS SOLAR DEL PERÚ (Valor promedio)	5.50	6.00		5.00	5.50		5.50	6.00		6.50	7.00	
Yerba Santa	METEONORM (Inclinación a 0°)	5.03	5.32	5.45	5.40	5.16	5.17	5.29	5.90	6.47	6.39	6.23	5.65
Yerba Santa	GLOBAL SOLAR ATLAS (Valor promedio)	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95

GOBIERNO REGIONAL DE LAMBAYEQUE OFICINA REGIONAL DE ADMINISTRACIÓN OFICINA DE LOGÍSTICA

<u>ACTA DE RECEPCIÓN Y ENTREGA DE BIENES</u>

ADQUISICIÓN DE UNIDADES MOVILES PARA EL PROYECTO: "MEJORAMIENTO DEL ACCESO A LOS SERVIIOS ESPECIALIZADOS DE SALUD EN GINECOLOGIA, PEDRIATRIA E IMAGENOLOGIA A TRAVES DE UNIDADES MOVILES PARA LA POBLACIÓN DE ZONAS DISPERSAS Y EXCLUIDAS EN EL DEPARTAMENTO LAMBAYEQUE" - Contrato de Bienes Nº 109-2014-GR.LAMB/ORAD.

Siendo las diez de la mañana del día Veintiséis de Noviembre del año dos mil catorce, en la Sede del Gobierno Regional Lambayeque – en los ambientes del Almacén General, se reunieron los siguientes servidores: Lic. Yosip Mejia Diaz (Jefe de la Oficina de Logística), el Sr. Arturo Mendoza Wong (Coordinador de Almacén) y el Ing. Cristóbal Alburquerque Llontop (Jefe del Equipo Mecánico), por parte de la Gerencia Regional de Salud el Dr. Marco Antonio Usquiano Vitela, identificado con DNI Nº 16470274; el Dr Miguel Salazar Calopiña, identificado con DNI N° 08236272 y el Ing. José Javier Sosa Victoriano, identificado con DNI N° 16586199 y por FABRIMETAL SAC el Gerente Comercial Miguel A. Zuñiga Morishigue); con la finalidad de llevar a cabo la recepción y entrega de 02 Unidades Móviles equipadas con Orden de Compra N° 2481 y 2482 de fecha 25 de Noviembre del 2014, las mismas que se detallan a continuación:

01 Unidad Médica Móvil I: Equipada para Ginecología, Pediatría y Farmacia

Marca: IVECO

Tipo: Tractor Remolcador

Modelo: Eurocargo 180E 28 4x2

Procedencia: Europea Año de Fabricación: 2013

Tipo: Turbo Diesel Intercooler

Motor: IVECO Tector F4AEO661AC

Garantía: 02 años

Especificaciones Técnicas: Balanza mecánica de pie; Balanza Pediátrica digital; Bote metálico; Coche de curaciones; Computadora portátil; Cubeta de acero 25x14; Cubeta acero 32x22x6; Detector de latidos fetal; Escalinata metálica; Estabilizador voltaje; Estetoscopio Neonatal, pediátrico y adulto; Impresora láser; Lampara cuello ganso; Linterna mano; Mesa divan examen ginecológico; Divans examen médico; Monitor fetal; Pantoscopio pediátrico; Riñonera set x 3; Set instrumentos partos; Set instrumentos ex. Gineobstetrico; Curaciones; Tambor para gasa (03); Tensiómetro aneroide pediátrico, adulto; vídeo colposcopio; escritorio; silla giratoria; silla apilable.

Tarjetas de propiedad, placas, Registro SUNARP, SOAT e Instalación.

Garantía: 50 meses.

01 Unidad Médica Móvil II: Equipada para Ecografía y Rayos X,

Marca: IVECO

Tipo: Tractor Remolcador.

Tipo: Turbo Diesel

Motor: IVECO Tector F4AEO681AC

Modelo: Eurocargo 180E 28 4x2

Procedencia: Europea Año de Fabricación: 2013

Garantía: 02 años

Especificaciones Técnicas: Bote metálico; Computadora portátil; Ecógrafo Doppler color 4D; Equipo de Rayos X; Clasificador Equipo Biomédico; Escalinata de 1 paso; Estabilizador de voltaje; mandil de plomo; mesa divan para examen médico; Negatoscopio de 02 campos de acero inoxidable; números de plomo; UPS 1500 Va true on line. Garantía: 50 meses.

Cabe mencionar que la Unidades Móviles no cuentan con sticker de seguridad. Mejora por parte del contratista:

- Descarga por condensadores; el fabricante otorgara sin costo alguno el mismo que servirá para el buen funcionamiento del equipo de Rayos X.
- o Componentes de flat Paner para funcionamiento del equipo Rayos X.

Siendo las 11.40 de la mañana del mismo día se dio por finalizado el proceso de recepción y entrega de la Unidad móvil.

ING. JUSE JAVIER SOSA YIGORIANO RCIP 59098

TARCOULEURANO ULTERA

Andid Hunds In

CALSOLOUTIONEU.

处村46856535

Migrel Angel 2001 Morrishigu

1: Do

GOBIERNO REGIONAL DE LAMBAYEQUE OFICINA REGIONAL DE ADMINISTRACIÓN OFICINA DE LOGÍSTICA

ACTA DE RECEPCIÓN Y ENTREGA DE UNIDADES MOVILES

ADQUISICIÓN DE UNIDADES MOVILES PARA EL PROYECTO: "MEJORAMIENTO DEL ACCESO A LOS SERVIIOS ESPECIALIZADOS DE SALUD EN GINECOLOGIA, PEDRIATRIA E IMAGENOLOGIA A TRAVES DE UNIDADES MOVILES PARA LA POBLACIÓN DE ZONAS DISPERSAS Y EXCLUIDAS EN EL DEPARTAMENTO LAMBAYEQUE" - Contrato de Bienes Nº 109-2014-GR.LAMB/ORAD.

Siendo las tres y treinta de la tarde del día Trece de Marzo del año dos mil quince, en la Sede del Gobierno Regional Lambayeque - en los ambientes del Almacén General, se reunieron el Comité de Recepción de las Unidades Móviles según Resolución Ejecutiva Regional Nº 476-2014-GR.LAMB/PR DEL 26 de Noviembre del 2014; conformado por los profesionales Médico Marco Antonio Usquiano Vitela quien lo preside y como miembros el Ginecólogo Miguel lazar Calopiña, Ingeniero Mecánico José Javier Sosa Victoriano, el Sr. José Velasquez Lara Responsable de la Unidad Control Patrimonial de la GERESA y Sr. Milton Arboleda Rodriguez Encargado del Area de Transportes y por parte del Gobierno Regional de Lambayeque, el Ing. Willian Jave Sanchez Jefe de la Oficina de Logística, el Sr. Arturo Mendoza Wong Coordinador de Almacén y el Servidor Oscar Valdivia Molina; con la finalidad de llevar a cabo la recepción y entrega de 02 Unidades Móviles, que estuvieron en calidad de custodia en los ambientes del Gobierno Regional de Lambayeque. Se adjunta Acta de Recepción y Entrega. Así mismo se esta haciendo entrega de:

- 02 Tarjetas de Propiedad de Unidad AEA-938, Unidad ADP-867
- 02 Hologramas de cada Unidad Móvil.
- Copia de Certificado de Inspección Técnica Vehicular.
- Accesorios:
 - 04 conos de seguridad.
 - 02 botiquines.
 - 02 mangueras 1/4" Euroflex p/aire.
 - 02 cocodrilos para pase de corriente con estuche color rojo.
 - 01 cable de acero para remolque.
 - 01 juego de 990 por 03 alicates PO83 mas 01.
- 01 juego de 990 llaves por 08 piezas STANEY mas 01 de la N° 08 a la N° 19 mas 01. Di juego de 990 herramientas por 03 piezas PO60-10. Dilaves N° 18 STANEY mixtas.

 - 02 llaves N° 15 STANEY.
- 1 llave N° 16 BAHCO. 01 llave N° 17 BAHCO.
 - 02 Desarmadores estrella marca/RED LINE Nº 3.
 - 02 Desarmadores planos marca RED LINE 8X200 mm.
 - 02 llaves de rueda por 03 piezas con estuche.
 - 02 llaves IV 1955 802622159
 - 02 llaves IV 1954 402622160
 - 03 llaves de Pediatría.
 - 03 llaves de Ginecología.

 - 03 llaves de Móvil I.
 - 03 llaves del Ecógrafo.

03 llaves de Farmacia. 03 llaves Rampa I. 02 llaves Rampa II. 03 llaves Baño I. 03 llaves Baño II. 03 llaves Rayos X. 03 llaves Sala de Revelados. 01 llave de Móvil II. 04 llaves grandes con mango negro. 02 Placas de la Unidad Móvil I colocadas. 02 Placas de la Unidad Móvil I colocadas. Manual de cada Unidad 02 encendedores. Se encuentra en tramite la Placa de Rodajes de las carrocerías o remolques por la SUNARP. Siendo las cuatro y treinta de la tarde del mismo día se dio por finalizado el proceso de) recepción y entrega de la Unidad móvil. 164702+4 ANTUR HOUNDS JOND)

Figura 69: Acta de Recepción y Entrega de Unidades Móviles. [23]

seca **354**

Pesabebés electrónica de doble utilidad, con plataforma para el pesaje de niños

- de plataforma para niños.
- desmontable de la base.
- Ingesta de la Leche Materna BMIF (Function Breast Milk Intake).
- Móvil y robusta para el transporte.

seca 354: Versátil y robusta; calidad compacta con doble utilidad. n el hogar, en el consultorio médico y en cualquier sitio del mundo donde empleza una vida, el control flable del peso corporal es decisivo para un crecimiento sano. La seca 354 es una báscula multifunción desarrollada a partir de la práctica. Por una parte es una pesabebés, y por otra se puede utilizar como báscula de plataforma para niños pequeños. Fácil manejo con teclas de Pesabebés y báscula de Móvil y robusta para función que se explican por plataforma a la vez. sí solas. el transporte. La artesa de la báscula seca 354 resquarda La tacilidad en el uso de la báscula seca se Con su construcción compacta y sólida. a los pequeños para un pesaje seguro y condebe a un concepto de manejo intuitivo, con la seca 354 está predestinada a ser la fortable; sus formas arqueadas, con laterales tecias que se explican por sí solas. La función herramienta ideal de todos los que necesitan ligeramente elevados, brindan confianza y HOLD permite atender al bebé inmediatamente movilidad para atender la salud de los más protección. Al desmontar la artesa de la base. descués del pesale, incluso antes de leer el pequeños. Gracias a un funcionamiento de se obtiene una báscula electrónica de platapeso registrado. Con la función TARA, el peso bajo consumo a pilas que permite realizar forma lista para funcionar, con una capacidad de pañales o paños suaves se comprueba con hasta 20.000 pesajes con un solo juego, de 20 kg. eficacia. Y la función Breast Milk Intake (BMIF). la báscula se puede usar en cualquier sitio. permite comprobar la cantidad de leche ma-El firme bloqueo de la artesa tema ingerida por el lactante: con sólo pulsar brinda un alto nivel de seguridad. una tecia, queda almacenado el peso del bebé antes de la lactancia; en un segundo pesele Con una sencilla maniobra, la pesabebés se realizado después de la Ingestión de leche convierte en una báscula de plataforma: la materna, éste se restará del peso actual. unión entre la artesa y la base se suelta con seca 414 sólo pulsar una tecla. En estado bioqueado, la sólida unión entre la artesa y la base permite levantar la pesabebés y transportaria sin ningún inconveniente. seca 354 Datos técnicos Capacidad: 20 kg / 44 lbs Division: 10 g < 10 kg > 20 g / 0.5 oz < 22 fbs > 1 oz Dimensiones (AxAxP): 552 x 156 x 332 mm / 21.7 x 6.1 x 13.1* La bandeja de pesaje se puede di y fácilmente, simplemente pulsando una tecia. Dimensiones/superficie de pesaje (AxAxP): 525 x 80 x 250 mm / 20.7 x 3.1 x 9.8° Dimensiones/plataforma (AxAxP); 280 x 65 x 235 mm / 11 x 2.6 x 9.3* Peso: 2.3 kg / 5 lbs Alimentación: pilas Funciones: TARA, BMIF, auto-HOLD, conmutación kg/fbs, desconexión automática Opcional: Boiso de transporte seca 414 y seca 413 seca Sistemas Médicos de Pesaje y Medición - S. A. de C. V. - Norte 45 Num - 805-D. Col. Industrial Valleio - 02300 México - D. F. México Telefono +52 55 5567 8537 6 5567 5189 - Fax +52 55 5719 0728 - www.seca.com

Figura 70: Hoja de Producto de seca 354-Pesabebés electrónica de doble utilidad, con plataforma para el pesaje de niños. [37]

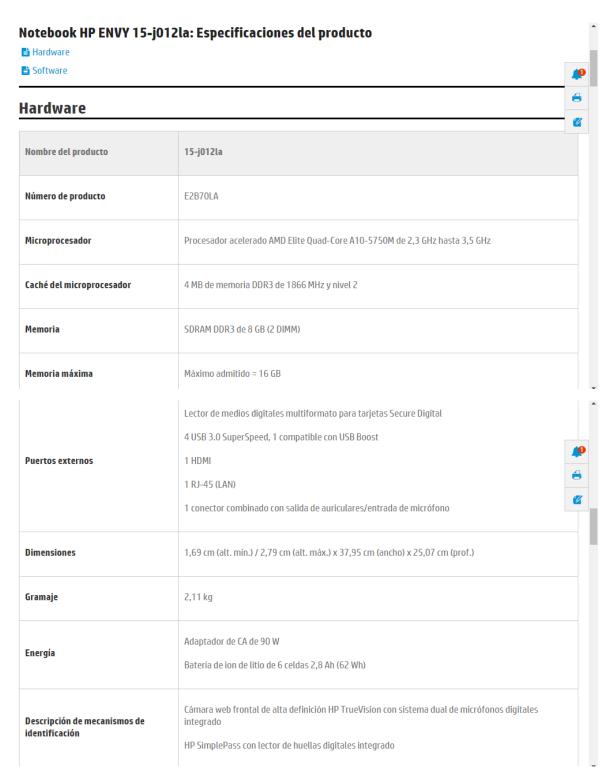


Figura 71: Especificaciones del producto Notebook HP ENVY 15-j012la. [38]

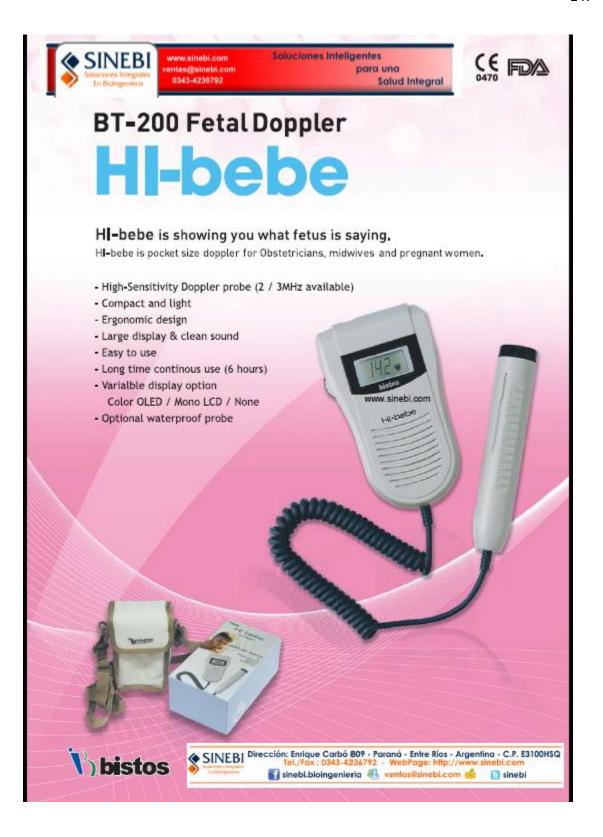


Figura 72: Especificaciones técnicas del BT-200 Fetal Doppler HI-bebe. [39]

ML-1640 Series ML-2240 Series

Impresora láser monocromo Manual del usuario

Mariual del usuario

imagine las posibilidades

Gracias por adquirir este producto Samsung. Para recibir un servicio más completo, registre su producto en

www.samsung.com/global/register

Especificaciones

Este capítulo ofrece una guía sobre las especificaciones del dispositivo, como numerosas funciones.

Este capítulo incluye:

· Especificaciones de ML-1640 Series

Especificaciones de ML-1640 Series

ELEMENTO	DESCRIPCIÓN
Método de impresión	Impresión láser
Velocidad de impresión ^a	Hasta 16 ppm (A4), 17 ppm (Letter)
Tiempo de salida de la primera impresión	Desde Listo: menos de 10 segundos Desde arranque en frio: menos de 36 segundos
Resolución de impresión	Máx.: 1.200 x 600 ppp salida efectiva
Lenguaje de la impresora	SPL
Sistemas operativos compatibles ^b	Windows: 2000/XP/2003/Vista Linux: RedHat 8.0-9.0, Mandrake 9.2~10.1, SuSE 8.2-9.2, Fedora Core 1-4, Ubuntu 6.0 Macintosh: Mac OS 10.3~10.5
Interfaz	USB 2.0 máxima velocidad
Capacidad de alimentación de papel	Bandeja: 150 hojas de papel común de 75 g/m² Para obtener información detallada acerca de la capacidad de entrada de papel, consulte la página 20
Capacidad de salida del papel	Cara de impresión hacia abajo: 50 hojas de 75 g/m²
Fuente de alimentación	AC 110 – 127 V o AC 220 – 240 V Consulte la etiqueta adherida al dispositivo para conocer la tensión, la frecuencia (hercios) y el tipo de corriente adecuados para el dispositivo.
Consumo de energía	Modo de funcionamiento promedio: menos de 300 W Modo Listo: menos de 70 W Modo de ahorro de energía: menos de 6 W Modo de apagado: 0 W
Nivel de ruidoº	Modo Listo: menos de 26 dBA Modo de impresión: inferior a 50 dBA

· Especificaciones de ML-2240 Series

ELEMENTO	DESCRIPCIÓN
Tiempo predeterminado para pasar al modo de ahorro de energia desde el modo Listo	5 minutos
Tiempo de calentamiento	Menos de 35 segundos
Entorno de funcionamiento	Temperatura: 10 a 32.5 °C Humedad: de 20 a 80% de HR
Duración del cartucho de tóner ^d	Rendimiento medio del cartucho: 1.500 páginas estándar (incluye cartucho de tóner para 700 páginas).
Dimensiones externas (an. x prof. x alt.)	350.5 x 298.5 x 212 mm
Gramaje (incluidos los consumibles)	5,88 kg
Peso del paquete	Papel: 1 kg Plástico: 0.19 kg
Ciclo de servicio	Hasta un máximo de 5.000 páginas
Temperatura de fusión	180 °C

- Depende de varios factores, como el sistema operativo, la velocidad del equipo, el software utilizado, el método de conexión, el tipo y el tamaño del material de impresión, y la complejidad del trabajo de impresión.
- b. Visite la página www.samsungprinter.com para descargar la última versión del software.
- c. Nivel sonoro, ISO 7779.
- d. Valor de rendimiento declarado de acuerdo con ISO/IEC 19752. El número de páginas puede verse afectado por el entomo del funcionamiento, los intervalos de impresión, o por el tipo y tamaño del material.

Especificaciones_41

Figura 73: Manual del usuario de la Impresora láser monocromo Samsung ML-1640 series. [40]

Luz más blanca, más brillante y más ecológica

Características de la lámpara de examen GS IV:

- Cabeza compacta y discreta que garantiza la precisión.
- Luz más blanca y más brillante que la luz halógena, lo que permite ver una reproducción fiel del color de los tejidos durante un examen
- Menor consumo de energía
- Sin necesidad de sustituir la bombilla

Espeditaciones sobre la luc	N.* de LED	1 LEO blanco
	Temperatura del color	5.500 K
	Intensidad de la lez a distancia de trabajo	20 000 Lax a 40 cm (16 pulg.)
	Tamaño del pento de luz a distancia de trabajo	10-25 cm (4-10 psig.) a 40 cm (16 psig.)
ar .		
Olmandones Micas	Alcosco de la base môvil	126 cm (49,61 pulg.)
	Alcance del soporte de pared	126 cm (49,61 pulg.)
	Alcance del soporte de techo	s/a
	To cho araba/abajo	1/2
	Antefacto de lez (alto/ancho/lergo)	Longitus: 13,1 cm (5,16 pulg.) Dlam.: 4 cm (1,58 pulg.)
	Cuadro de control (alto/ancho/largo)	27,5/10,0/8,0 cm (10,83/3,94/3,15 pulg.)
	Base mövli (alter/diametro)	61 cm/53 cm (24,82 pulg,/20,67 pulg.
	Peso total del soporte de mesa/pered	2,4 kg (5,30 libras)
	Peso total de base móvil	5,63 kg (12,40 libras)
Espeditadones eléctros	Suministro aláctrico	Entrada: 100-240 V- 58 Ha-68 Hz, 0,30 A máx
	Cable eléctrico	Conjunto da cables con conexión a tierre de tres hilos n.º 18 AWG y 2,5 m (8 pies) de longitud
	Funciones de control	Encendido/apagado sin centacts
Datos variados	Opciones de montaje	Base movil, mese/pared, rail
	Tipo de extensión	Cuells de cisne
	Accesarios opcionales	Funda desechable: n.º 52540 Longitud: 129,54 cm (51 pulg.)
	Vida 618	93.000 horas
	Garantia	3 affos

IDEAL PARA SU USO EN LOS SIGUIENTES ENTORNOS:

- * OBSTETRICIA Y GINECOLOGÍA * CIRUGÍA AMBULATORIA
- MEDICINA DE FAMILIA
- CIRUGÍA PLÁSTICA
- DERMATOLOGÍA
- SALAS DE EMERGENCIAS
- . SALAS DE DILATACIÓN Y PARITORIOS
- . CENTROS DE CIRUGÍA

Para realizar un pedido, póngase en contacto con el departamento de Servicio al cliente.

Sede central corporativa de Welch 4341 State Street Road, P.O. Box 220 Skaneateles Falls, NY 13153-0220, EE, UU.

Teléfono: +1.315.695.4502 +1.900.535.6863

Fax: +1.315.685.0054

+353 48 90 67790

Australia: +61 29 638 3000 China: +86 21 6327 9631 cia: +33 160 09 33 66

of clientel: +33 155 69 58 49 +49 6950 995 132

onix +34 912 990 376 +91 3 3219 0071 +91 44 4353 5724

Malasia: +603 78753341

ses Bajos: +31 202 061 360 papur: +65 6419 9100 +44 207 365 6790

Advancing Frontine Care

© 2009 Welch Allyn SM4016 Rev A

Figura 74: Hoja de Especificaciones Lámpara de Examen Green Series IV de Welch Allyn. [41]

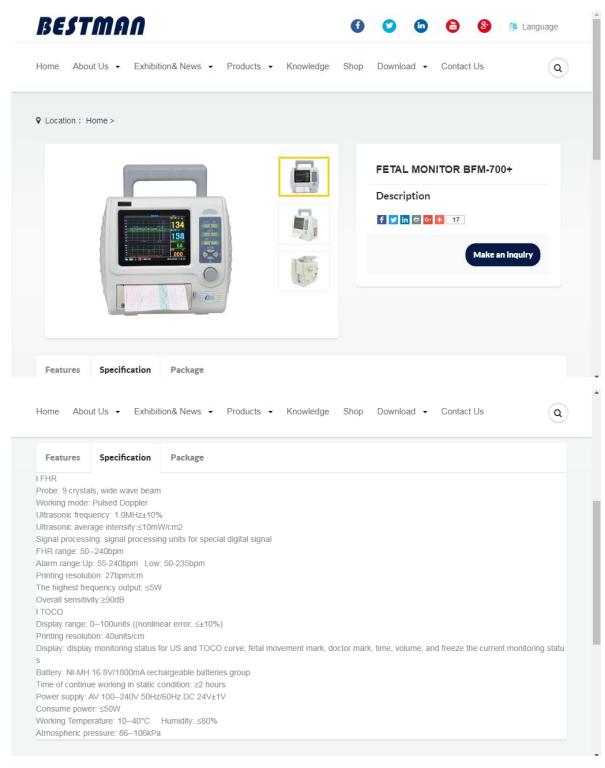


Figura 75: Especificaciones técnicas del Fetal Monitor BFM -700+. [42]

Baños termostáticos y cabezales de circulación Agitadores, vortex y rotadores - Propipetas de caucho Policubetas descartables fondo en "U" 96 cavidades.

Desde 1966 fabricando equipos para laboratorio

VIDEO COLPOSCOPIO BINOCULAR

MARCA CM FABRICADO POR VICKING S.R.L.

Características Técnicas:

Video Colposcopio Binocular Modelo CM-006

- Distancia libre de trabajo: 250 mm.
- Diámetro de campo visual: 18 mm.
- · Profundidad del foco: 4 mm.
- Aumentos: 13X
- Lámpara: Halógena 6V 20W.
- Intensidad de luz variable: 4 -5 -6 v
- Fusible: T160 mA L / 250 v
- · Filtro verde
- Base con pie Rodante
- Indinación del cabezal: 45°
- Giro Horizontal: 360°
- Mecanismo doble de enfoque por piñón y cremallera y de inclinación por una sola perilla de mando
- Mecanismo para el desplazamiento vertical del cabezal, montado sobre soporte giratorio
- Resorte para sistema de suspensión y regulación mecánica del estativo

- Regulación de altura: 990mm a 1290mm
- Óptica de alta resolución
- · Modo de Operación: Intermitente
- Con sistema óptico que permite la transmisión de video y la observación binocular simultanea, manteniendo ambas imágenes en foco.
- Para utilizar con cámara de video color CCD con sensor de 1/3", montura C y resolución horizontal de 470 línea mínimo.
- Aumento en pantalla de monitor o televisor de 14": 30 x aproximadamente.
- Voltaje: 220 v 50/60 Hz Potencia 20W
- Voltaje a pedido: 110 v 50/60 Hz

AUTORIZADO POR LA A.N.M.A.T. PM-1336-1

Distribuidor Oficial

Figura 76: Característica técnicas del Video Colposcopio Binocular Modelo CM-006. [43]

5 % new

■ CARGADOR DE PILAS CARICABATTERIE

- CARGADOR DE PILAS
 Instrucciones de uso
- CARICABATTERIE

 Istruzioni per l'uso
- APARELHO DE RECARGA PARA PILHAS Monuol de instruções
- BATTERY CHARGER
 Operating instructions
- AKKU-LADEGERÄT
 Bedienung sanleitung

KOMPERNASS GMBH - BURGSTRASSE 2 1 - D-44867 BOCHUM

www.kompermoss.com

ID-Nr.: KH968-09/09-V2

CARGADOR DE PILAS KH 968

Uso previsto

El cargador de pilas universal se ha diseñado exclusivamente para la:

- para la carga de baterias recargables Ni-Cd y Ni-MH del tamaño AAA/AA/C/D y de bloque de 9 V de capacidades de dimensión de uso comercial normales.
- para cargar baterías de carga rápida y de carga normal.
- para el uso privado no comercial.

Volumen de suministro

- Cargador de pilas KH 968
- Manual de instrucciones

Descripción de aparatos

- Compartimentos de carga para bloque 9 V (Compartimentos de carga 5 y 6; Véase el lado abatible)
- Compartimentos de carga para tipo AAA/AA/C/D (Compartimentos de carga 1 a 4; Véase el lado abatible)
- EDs

Datos técnicos

Tensión de entrada: AC 100- 240 V ~

60/50 Hz

Consumo de corriente: 130 mA

Clase de protección: II /

Temperatura de servicio: 0° C - 25° C

Temperatura de

almacenamiento : -20° C - 50° C Potencia de salida: max. 3,34 VA Tensiones de salida:

4 x 1,4 V

(Compartimentos de carga 1-4)

2 x 9 V ---

(Compartimentos de carga 5-6)

Corrientes de carga:

1000 mA (con 1-2 baterías) 500 mA (con 3-4 baterías) 2 x 30 mA (con baterías de 9 V)

Indicaciones de seguridad

⚠ Riesgo de incendio!

No coloque el Cargador de pilas universal:

- en lugares donde exista una incidencia de rayos solares directa. En caso contrario podría sobrecalentarse el cargador de pilas universal y dañarse de forma irreparable.
- en proximidades de fuentes de calor. Forman parte por ej. hornos, ventiladores y aparatos similares tales como aperturas de ventilación y demás aparatos eléctricos. En caso contrario el cargador de pilas universal podría dañarse de forma irreparable.
- en entornos húmedos o cerca del agua. En caso contrario podría penetrar humedad dentro del cargador de pilas universal. Existe riesgo de una descarga eléctrica e incluso un incendio!
- Cargue exclusivamente pilas recargables de los fipos "Ni-Cd" y "Ni-MH". No cargue nunca acumuladores de otro tipo o pilas que no sean recargables. Estas no son aptas para recargar. Las pilas que no son recargables pueden sobrecalentarse e incluso explotar. Se podría dañar el cargador de pilas universal y las pilas recargables insertadas de modo irreparable. ¡Existe peligro de lesiones!

Tabla 135: Base de datos de las potencias de los Equipos Biomédicos utilizada para realizar la curva de carga en 1 hora

N° Minuto	Minuto	Impresora (W)	Balanza pediátrica digital (W)	Laptop (W)	Detector de latidos fetal (W)	Estabilizador de voltaje (W)	Lámpara cuello ganso (W)	Monitor fetal (W)	Video colposcopio (W)	Potencia total (W)	Consumo (Wmin)	Consumo (Wh)
1	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
2	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
3	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
4	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
5	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
6	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
7	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
8	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
9	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
10	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
11	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,753333333
12	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,753333333
13	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,753333333
14	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,753333333
15	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,753333333
16	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
17	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
18	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
19	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
20	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
21	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
22	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
23	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
24	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
25	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
26	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
27	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
28	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
29	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333

											Consumo (Wh en 8 horas)	2806.933333
											Consumo (Wh en 1 hora)	350,8666667
60	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
59	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
58	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
57	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
56	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,853333333
55	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
54	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
53	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
52	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
51	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
50	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
49	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
48	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
47	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
46	1	70	28,6	90	28,6	2	66	50	20	355,2	355,2	5,92
45	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,75333333
44	1	300	28,6	90	28,6	2	66	50	20	585,2	585,2	9,75333333
42	1 1	300	28,6 28,6	90	28,6 28,6	2	66	50	20	585,2 585,2	585,2 585,2	9,75333333 9,75333333
41	1	300 300	28,6	90 90	28,6	2	66 66	50 50	20	585,2	585,2	9,75333333
40	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
39	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
38	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
37	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
36	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
35	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
34	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
33	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
32	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
31	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,85333333
30	1	6	28,6	90	28,6	2	66	50	20	291,2	291,2	4,8533333

Consumo (Wh en 8 horas) 2806,933333

ANEXO 15

Tabla 136: Base de datos de paneles fotovoltaicos. [26]

ESPECIFICACIÓN	MARCA	MODELO	TIPO DE CÉLULA	POT. NOM. (PMPP) W	TENSIÓN MÁX. (VMPP) V	CORRIENTE MÁX. (IMPP) A	TENSIÓN EN VACÍO (VOC) V	CORRIENTE DE CORTOCIRCUITO (ISC) A	EFICIENCIA DE MÓDULO (%)	MÁXIMA TENSIÓN DEL SISTEMA V
RED SOLAR RED165-36M	RED SOLAR	RED165-36M	MONOCRISTALINA	165	18,92	8,72	22,71	9,85	19,75	1000
WAAREE WS-200/12V	WAAREE	WS-200/12V	POLICRISTALINA	200	17,97	11,13	22,97	11,64	13,56	1000
YINGLI SOLAR YL145P-17B	YINGLI SOLAR	YL145P-17B	POLICRISTALINA	145	18,2	7,99	22,5	8,47	18,5	600
SHINE SOLAR SHS150-36P	SHINE SOLAR	SHS150-36P	POLICRISTALINA	150	18,1	8,33	22,4	8,82	15	1000
TAI ENERGY TAI 150Wp-156-36P	TAI ENERGY	TAI 150Wp-156-36P	POLICRISTALINA	150	17,9	6,7	22,4	8,81	16	1000
YINGLI SOLAR YL120P-17B	YINGLI SOLAR	YL120P-17B	POLICRISTALINA	120	18,5	6,5	22,9	6,89	15,5	600
YINGLI SOLAR YL100P-17B	YINGLI SOLAR	YL100P-17B	POLICRISTALINA	100	17,1	5,86	21,5	6,17	12,9	600
TAI ENERGY TAI 100Wp-156-36P	TAI ENERGY	TAI 100Wp-156-36P	POLICRISTALINA	100	17,6	5,68	21,8	6,12	18,5	1000
SHINE SOLAR SHS75-36P	SHINE SOLAR	SHS75-36P	POLICRISTALINA	75	17,7	4,24	21,97	4,675	14,34	600
TAI ENERGY TAI 80Wp-156-36P	TAI ENERGY	TAI 80Wp-156-36P	POLICRISTALINA	80	17,6	4,55	21,8	4,9	16	1000
YINGLI SOLAR YL70P-17B	YINGLI SOLAR	YL70P-17B	POLICRISTALINA	70	18	3,89	22,3	4,15	13,8	50
YINGLI SOLAR YL320P-35B	YINGLI SOLAR	YL320P-35B	POLICRISTALINA	320	37	8,64	46	9,18	16,5	1000
TAI ENERGY TAI 300Wp-156-72P	TAI ENERGY	TAI 300Wp-156-72P	POLICRISTALINA	300	35,6	7,72	43,2	8,48	16	1000
CSUN CSUN 320-72P	CSUN	CSUN 320-72P	POLICRISTALINA	320	36,2	8,84	45	9,17	16,52	1000
YINGLI SOLAR YL200P-35B	YINGLI SOLAR	YL200P-35B	POLICRISTALINA	200	36,9	5,42	45,7	5,69	15,1	600
WAAREE WS-200/24V	WAAREE	WS-200/24V	POLICRISTALINA	200	36,1	5,55	44,53	6	13,56	1000

Tabla 137: Base de datos de paneles fotovoltaicos. (continuación) [26]

ESPECIFICACIÓN	COEF. DE TEMP. DE PMPP %/°C	COEF. DE TEMP. DE VOC %/°C	COEF. DE TEMP. DE ISC %/°C	TOLERANCIA (+/-)%	N° DE CÉLULAS	TENSIÓN NOMINAL V	PESO kg	LONG. mm	ANCH. mm	PROFUN. mm	ÁREA m²	PRECIO Soles
RED SOLAR RED165-36M	-0,48	-0,34	0,037	3	36	12	12	1482	680	35	1,00776	842,86
WAAREE WS-200/12V	-0,3845	-0,2941	0,0681	-	36	12	17,5	1490	990	42	1,4751	696,42
YINGLI SOLAR YL145P-17B	-0,45	-0,37	0,06	5	36	12	10,8	1470	680	25	0,9996	629,33
SHINE SOLAR SHS150-36P	-0,47	-0,34	0,045	5	36	12	12	1480	670	35	0,9916	608,03
TAI ENERGY TAI 150Wp-156-36P	-0,47	-0,38	0,1	3	36	12	12	1470	680	35	0,9996	571,93
YINGLI SOLAR YL120P-17B	-0,45	-0,37	0,06	5	36	12	8,68	1180	660	25	0,7788	520,83
YINGLI SOLAR YL100P-17B	-0,45	-0,37	0,06	5	36	12	8,68	1180	660	25	0,7788	434,03
TAI ENERGY TAI 100Wp-156-36P	-0,47	-0,38	0,1	3	36	12	8,9	1030	670	35	0,6901	381,29
SHINE SOLAR SHS75-36P	-0,47	-0,34	0,045	5	36	12	6	780	670	35	0,5226	374,02
TAI ENERGY TAI 80Wp-156-36P	-0,47	-0,38	0,1	3	36	12	6,8	1030	670	35	0,6901	305,03
YINGLI SOLAR YL70P-17B	-0,45	-0,37	0,06	5	36	12	6,2	770	660	25	0,5082	282,11
YINGLI SOLAR YL320P-35B	-0,42	-0,32	0,05	5	72	24	22	1960	992	40	1,94432	1200,28
TAI ENERGY TAI 300Wp-156-72P	-0,47	-0,38	0,1	3	72	24	24	1956	992	50	1,940352	1143,87
CSUN CSUN 320-72P	-0,408	-0,292	0,045	3	72	24	22,3	1956	990	50	1,93644	907,69
YINGLI SOLAR YL200P-35B	-0,45	-0,37	0,06	5	72	24	14,9	1335	990	40	1,32165	875,18
WAAREE WS-200/24V	-0,3845	-0,2941	0,0681	-	72	24	17,5	1490	990	42	1,4751	752,12

ANEXO 16

Tabla 138: Base de datos de baterías. [26]

VISION 6FM60D-X VISION 6FM60D-X AGM 12 60 VISION 6FM230-X VISION 6FM230-X AGM 12 230 KAISE KBFS122500 KAISE KBFS122500 AGM 12 250 UPOWER UP-TFS250-12 UPOWER UP-TFS250-12 AGM 12 250 UPOWER SP 250 UPOWER SP 250 AGM 12 250 UPOWER UP7.2-12 UPOWER UP7.2-12 AGM 12 7,2 KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 86 ULTRACELL UC86-12 ULTRACELL UC115-12 AGM 12 130 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC172-12 AGM 12 138	50 50 50 50 75
KAISE KBFS122500 KAISE KBFS122500 AGM 12 250 UPOWER UP-TFS250-12 UPOWER UP-TFS250-12 AGM 12 250 UPOWER SP 250 UPOWER SP 250 AGM 12 250 UPOWER UP7.2-12 UPOWER UP7.2-12 AGM 12 7,2 KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 86 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 138	50 50
UPOWER UP-TFS250-12 UPOWER UP-TFS250-12 AGM 12 250 UPOWER SP 250 UPOWER SP 250 AGM 12 250 UPOWER UP7.2-12 UPOWER UP7.2-12 AGM 12 7,2 KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 15 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
UPOWER SP 250 UPOWER SP 250 AGM 12 250 UPOWER UP7.2-12 UPOWER UP7.2-12 AGM 12 7,2 KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	
UPOWER UP7.2-12 UPOWER UP7.2-12 AGM 12 7,2 KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	75 -
KAISE KB1290 KAISE KB1290 AGM 12 8 LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	-
LIVEN LV 17-12 VRLA LIVEN LV 17-12 VRLA AGM 12 17 VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	
VICTRON ENERGY BAT412600080 VICTRON ENERGY BAT412600080 AGM 12 66 ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
ULTRACELL UC86-12 ULTRACELL UC86-12 AGM 12 86 ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
ULTRACELL UC115-12 ULTRACELL UC115-12 AGM 12 115 VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
VICTRON ENERGY BAT412121080 VICTRON ENERGY BAT412121080 AGM 12 130 ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
ULTRACELL UC138-12 ULTRACELL UC138-12 AGM 12 138 ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
ULTRACELL UC172-12 ULTRACELL UC172-12 AGM 12 172	50
•	50
	50
ME MEBA12-220 ME MEBA12-220 AGM 12 220	80
ULTRACELL UC230-12 ULTRACELL UC230-12 AGM 12 230	50
KAISE KBAS122500 KAISE KBAS122500 AGM 12 250	50
KAISE KBL122000 KAISE KBL122000 AGM 12 200	50
NARADA 12NDF100 NARADA 12NDF100 AGM 12 100	-
NARADA 12HTB150 NARADA 12HTB150 AGM 12 150	-
RITAR RA12-75 RITAR RA12-75 AGM 12 75	-
RITAR RA12-100 AGM 12 100	-
RITAR RA12-150 RITAR RA12-150 AGM 12 150	-
RITAR RA12-200 RITAR RA12-200 AGM 12 200	-
ME MEBG12-100 ME MEBG12-100 GEL 12 100	80

ME MEBG12-150	ME	MEBG12-150	GEL	12	150	80
ULTRACELL UCG98-12	ULTRACELL	UCG98-12	GEL	12	98	50
ULTRACELL UCG115-12	ULTRACELL	UCG115-12	GEL	12	115	50
ULTRACELL UCG172-12	ULTRACELL	UCG172-12	GEL	12	172	50
ME MEBG12-220	ME	MEBG12-220	GEL	12	220	80
ULTRACELL UCG230-12	ULTRACELL	UCG230-12	GEL	12	230	50
ULTRACELL UCG288-12	ULTRACELL	UCG288-12	GEL	12	288	50
ULTRACELL UFTG115-12T	ULTRACELL	UFTG115-12T	GEL	12	115	50
NARADA AG12V100F	NARADA	AG12V100F	GEL	12	100	-
RITAR DG12-65	RITAR	DG12-65	GEL	12	65	50
RITAR DG12-75	RITAR	DG12-75	GEL	12	75	50
RITAR DG12-100	RITAR	DG12-100	GEL	12	100	50
RITAR DG12-150	RITAR	DG12-150	GEL	12	150	50
RITAR DC12-200	RITAR	DC12-200	GEL	12	200	50
RITAR DC12-260	RITAR	DC12-260	GEL	12	260	50
UPOWER UP-GC2TOP	UPOWER	UP-GC2TOP	PLOMO ÁCIDO ABIERTO	6	250	75
ROLLS S-290	ROLLS	S-290	PLOMO ÁCIDO ABIERTO	6	220	50
UPOWER UP-GC16-6RE	UPOWER	UP-GC16-6RE	PLOMO ÁCIDO ABIERTO	6	550	50
FORMULA STAR FS 260 SOLAR	FORMULA STAR	FS 260 SOLAR	PLOMO ÁCIDO ABIERTO	12	260	-
UPOWER SPO70	UPOWER	SPO70	PLOMO ÁCIDO ABIERTO	12	70	75
UPOWER SPO85	UPOWER	SPO85	PLOMO ÁCIDO ABIERTO	12	85	75
UPOWER SPO120	UPOWER	SPO120	PLOMO ÁCIDO ABIERTO	12	120	75
UPOWER SPO160	UPOWER	SPO160	PLOMO ÁCIDO ABIERTO	12	165	75
UPOWER SPO250	UPOWER	SPO250	PLOMO ÁCIDO ABIERTO	12	250	75
UPOWER UP-GC12TOP	UPOWER	UP-GC12TOP	PLOMO ÁCIDO ABIERTO	12	260	50
UPOWER UP-GC42-2RE	UPOWER	UP-GC42-2RE	ESTACIONARIOS	2	1700	50
GNB ENERSOL T 760	GNB	ENERSOL T 760	OPZS	2	760	-
GNB ENERSOL T 880	GNB	ENERSOL T 880	OPZS	2	880	-
GNB ENERSOL T 1250	GNB	ENERSOL T 1250	OPZS	2	1250	-

Tabla 139: Base de datos de baterías. (continuación) [26]

ESPECIFICACIÓN	N° DE CICLOS DE VIDA	ÍNDICE DE AUTODESCARGA POR MES	PESO kg	LONG. mm	ANCH. mm	PROFUN. mm	VOLUMEN cm³	PRECIO Soles
VISION 6FM60D-X	650	0,03	24	258	166	206	8822,568	909,36
VISION 6FM230-X	470	0,03	72,6	520	269	203	28395,64	2130,56
KAISE KBFS122500	400	0,03	60	560	126	320	22579,2	1389,44
UPOWER UP-TFS250-12	400	-	57,3	555	125	320	22200	1319,74
UPOWER SP 250	500	-	59,5	518	274	242	34347,544	1341,03
UPOWER UP7.2-12	-	-	2,3	151	65	93,5	917,7025	60,64
KAISE KB1290	450	0,03	2,5	151	65	94	922,61	61,57
LIVEN LV 17-12 VRLA	450	0,03	5	181	77	167	2327,479	160,11
VICTRON ENERGY BAT412600080	600	0,02	24	258	166	235	10064,58	1126,76
ULTRACELL UC86-12	650	0,03	22,3	259	168	208	9050,496	537,18
ULTRACELL UC115-12	650	0,03	30,4	330	173	212	12103,08	692,34
VICTRON ENERGY BAT412121080	600	0,02	38	410	176	227	16380,32	1802,78
ULTRACELL UC138-12	650	0,03	37,6	410	177	225	16328,25	854,04
ULTRACELL UC172-12	650	0,03	43,5	485	170	240	19788	1004,06
ME MEBA12-220	500	-	64	522	260	220	29858,4	1547,35
ULTRACELL UC230-12	650	0,03	61,5	522	240	218	27311,04	1383,92
KAISE KBAS122500	450	0,03	57,4	522	240	218	27311,04	1341,03
KAISE KBL122000	450	0,03	59,1	522	238	218	27083,448	1301,74
NARADA 12NDF100	-	0,0333	33	390	105	287	11752,65	852,89
NARADA 12HTB150	-	0,05	56	546	125	310	21157,5	1223,96
RITAR RA12-75	-	0,03	23,5	260	169	235	10325,9	598,19
RITAR RA12-100	-	0,03	30	328	172	222	12524,352	729,31
RITAR RA12-150	-	0,03	44,5	483	170	240	19706,4	1089,86
RITAR RA12-200	-	0,03	60	522	240	223	27937,44	1393,06
ME MEBG12-100	500	-	29,5	330	171	217	12245,31	863,69
ME MEBG12-150	500	-	42,5	484	170	241	19829,48	1192,9
ULTRACELL UCG98-12	1200	0,03	26,7	306	170	208	10820,16	725,63

ULTRACE	LL UCG115-12	1200	0,03	31	328	173	212	12029,728	734,7
ULTRACE	LL UCG172-12	1200	0,03	43,5	485	170	240	19788	1065,14
ME N	1EBG12-220	500	-	69	522	260	220	29858,4	1829
ULTRACE	LL UCG230-12	1200	0,03	61	522	240	218	27311,04	1474,13
ULTRACE	LL UCG288-12	1200	0,03	70	522	268	220	30777,12	1780,43
ULTRACEL	L UFTG115-12T	1050	0,03	35	394	110	285	12351,9	716,43
NARADA	4 AG12V100F	-	0,03	33	390	287	105	11752,65	922,98
RITA	R DG12-65	600	0,03	21	350	167	182	10637,9	762,08
RITA	R DG12-75	600	0,03	23,5	260	169	211	9271,34	819,44
RITAR	R DG12-100	600	0,03	30	328	172	215	12129,44	999,72
RITAR	R DG12-150	1350	0,03	44,5	483	170	241	19788,51	1515,97
RITAF	R DC12-200	600	0,03	60	522	240	219	27436,32	2006,5
RITAF	R DC12-260	600	0,03	74	520	268	220	30659,2	2540,28
UPOWE	R UP-GC2TOP	1000	-	27,7	261	181	276	13038,516	593,85
ROI	LLS S-290	1350	-	31	259	181	279	13079,241	981,56
UPOWER	NUP-GC16-6RE	1600	-	52	318	181	425	24462,15	1647,16
FORMULA S	TAR FS 260 SOLAR	-	-	64	518	276	242	34598,256	1095,59
UPOV	VER SPO70	400	-	14,9	242	175	190	8046,5	298
UPOV	VER SPO85	400	-	18	278	175	190	9243,5	380,56
UPOW	/ER SPO120	400	-	27,1	345	175	230	13886,25	565,4
UPOW	/ER SPO160	400	-	37,5	513	189	223	21621,411	780,49
UPOW	/ER SPO250	400	-	58	518	274	242	34347,544	1021,74
	R UP-GC12TOP	1550	-	53	395	178	379	26647,49	1454,55
UPOWER	R UP-GC42-2RE	1550	-	52	318	181	425	24462,15	1454,55
	NERSOL T 760	-	-	31	137	199	508	13849,604	930,26
GNB E	NERSOL T 880	-	-	38	137	199	556	15158,228	985,47
GNB EN	IERSOL T 1250	-	-	52,8	191	199	556	21133,004	1103,77

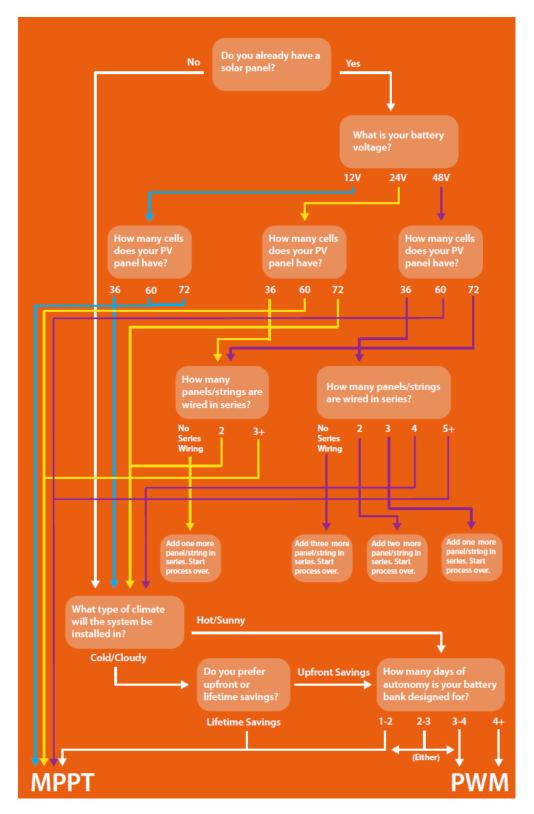


Figura 78: Diagrama de flujo de decisión entre PWM y MPPT. [29]

ANEXO 18

Tabla 140: Base de datos de controladores. [26]

ESPECIFICACIÓN	MARCA	TIPO	MODELO	TENSIÓN DE LA BATERÍA V	TENSIÓN MAX DE CIRCUITO ABIERTO FV V	CORRIENTE DE CARGA NOMINAL A
VICTRON ENERGY MPPT MPPT 150/85	VICTRON ENERGY	MPPT	MPPT 150/85	12/24/48	150	85
VICTRON ENERGY MPPT MPPT 150/70	VICTRON ENERGY	MPPT	MPPT 150/70	12/24/48	150	70
VICTRON ENERGY MPPT MPPT 150/100	VICTRON ENERGY	MPPT	MPPT 150/100	12/24/48	150	100
FLEXMAX MPPT FM80-150VDC	FLEXMAX	MPPT	FM80-150VDC	12/24/36/48/60	150	-
FLEXMAX MPPT FM60-150VDC	FLEXMAX	MPPT	FM60-150VDC	12/24/36/48/60	150	-
VICTRON ENERGY MPPT MPPT 150/60	VICTRON ENERGY	MPPT	MPPT 150/60	12/24/48	150	60
VICTRON ENERGY MPPT MPPT 150/45	VICTRON ENERGY	MPPT	MPPT 150/45	12/24/48	150	45
SOLAR SYSTEM MPPT PC16-6015A	SOLAR SYSTEM	MPPT	PC16-6015A	12/24/36/48	145	-
MORNINGSTAR MPPT SUNSAVERMPPT 15	MORNINGSTAR	MPPT	SUNSAVERMPPT 15	12/24	60	-
VICTRON ENERGY MPPT MPPT 100/50	VICTRON ENERGY	MPPT	MPPT 100/50	12/24	100	50
VICTRON ENERGY MPPT MPPT 150/35	VICTRON ENERGY	MPPT	MPPT 150/35	12/24/36/48	150	35
VICTRON ENERGY MPPT MPPT 100/30	VICTRON ENERGY	MPPT	MPPT 100/30	12/24	100	-
SOLAR SYSTEM MPPT PC16-3015A	SOLAR SYSTEM	MPPT	PC16-3015A	12/24	145	-
VICTRON ENERGY MPPT MPPT 100/20	VICTRON ENERGY	MPPT	MPPT 100/20	12/24	100	20
SOLAR SYSTEM MPPT PC16-2015A	SOLAR SYSTEM	MPPT	PC16-2015A	12/24	145	-
VICTRON ENERGY MPPT MPPT 100/15	VICTRON ENERGY	MPPT	MPPT 100/15	12/24	100	15
VICTRON ENERGY MPPT MPPT 75/15	VICTRON ENERGY	MPPT	MPPT 75/15	12/24	75	15
VICTRON ENERGY MPPT MPPT 75/10	VICTRON ENERGY	MPPT	MPPT 75/10	12/24	75	10
ATERSA PWM LEO10 35A	ATERSA	PWM	LEO10 35A	12/24/48	45	35
XANTREX PWM C60	XANTREX	PWM	C60	12/24	55	60
VICTRON ENERGY PWM PWM-PRO 12/24- 30	VICTRON ENERGY	PWM	PWM-PRO 12/24- 30	12/24	55	30
XANTREX PWM C40	XANTREX	PWM	C40	12/24/48	125	40

20 20 50LAR SYSTEM PWM PC1500B-50-60 SOLAR SYSTEM PWM PC1500B-50-60 12/24 50 60 50LAR SYSTEM PWM PC1500B-6048D 50A SOLAR SYSTEM PWM PC1500B-6048D 50A 50A 100 500 50A 50A 50A 50A 50A 50A 50A 50A 5	9	SOLAR SYSTEM PWM PC1500B-6048D	SOLAR SYSTEM	PWM	PC1500B-6048D	48	100	60
SOLAR SYSTEM PWM PC1500B-6048D 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTE	VIC	• • • • • • • • • • • • • • • • • • • •	VICTRON ENERGY	PWM	·	12/24	55	20
SOLAR SYSTEM PWM PC1500B-6048D 50A SOLAR SYSTEM PWM 50A 48 100 50 SOLAR SYSTEM PWM PC1500B-50-60 50A SOLAR SYSTEM PWM PC1500B-50-60 12/24 50 50		SOLAR SYSTEM PWM PC1500B-50-60	SOLAR SYSTEM	PWM	PC1500B-50-60	12/24	50	60
SOLAR SYSTEMTPWMTPC1500B-50-60 50A — SOLAR SYSTEM — PWM — — — — 12/24 — — 50 — — 50	so	LAR SYSTEM PWM PC1500B-6048D 50A	SOLAR SYSTEM	PWM		48	100	50
	SO	OLAR SYSTEM PWM PC1500B-50-60 50A	SOLAR SYSTEM	PWM		12/24	50	50
ATERSA PWM MINO V2 12/24V 30 ATERSA PWM MINO V2 12/24V - 21		ATERSA PWM MINO V2 12/24V 30	ATERSA	PWM	•	12/24	-	21
SOLAR SYSTEM PWM PC1500B-30-40 40A SOLAR SYSTEM PWM PC1500B-30-40 40A 12/24 50 40	SO	OLAR SYSTEM PWM PC1500B-30-40 40A	SOLAR SYSTEM	PWM		12/24	50	40
VICTRON ENERGY PWM PWM-PRO 12/24- 10 VICTRON ENERGY PWM PWM-PRO 12/24- 10 12/24 55 10	VIC	·	VICTRON ENERGY	PWM	•	12/24	55	10
ATERSA PWM MINO V2 12/24V 15 ATERSA PWM MINO V2 12/24V - 12/24 - 12		ATERSA PWM MINO V2 12/24V 15	ATERSA	PWM	·	12/24	-	12
SOLAR SYSTEM PWM PC1500B-30-40 30A SOLAR SYSTEM PWM PC1500B-30-40 30A 12/24 50 30	SO	DLAR SYSTEM PWM PC1500B-30-40 30A	SOLAR SYSTEM	PWM		12/24	50	30

Tabla 141: Base de datos de controladores. (continuación) [26]

ESPECIFICACIÓN	CORRIENTE MÁXIMA DE SALIDA A	POTENCIA FV MÁX (12V) W	POTENCIA FV MÁX (24V) W	POTENCIA FV MÁX (36V) W	POTENCIA FV MÁX (48V) W	POTENCIA FV MÁX (60V) W	EFICIENCIA %	PRECIO Soles
VICTRON ENERGY MPPT MPPT 150/85	-	1200	2400	-	4900	-	98	3621,13
VICTRON ENERGY MPPT MPPT 150/70	-	1000	2000	-	4000	-	98	3533,31
VICTRON ENERGY MPPT MPPT 150/100	-	1450	2900	-	5800	-	98	3506,04
FLEXMAX MPPT FM80-150VDC	80	1250	2500	-	5000	7500	97,5	2930,4
FLEXMAX MPPT FM60-150VDC	60	900	1800	-	3600	4500	98,1	2582,73
VICTRON ENERGY MPPT MPPT 150/60	-	860	1720	-	3440	-	98	2950
VICTRON ENERGY MPPT MPPT 150/45	-	650	1300	-	2600	-	98	2033,15
SOLAR SYSTEM MPPT PC16-6015A	60	800	1600	2400	3200	-	98	2109,56
MORNINGSTAR MPPT SUNSAVERMPPT 15	15	200	400	-	-	-	97,5	1403,06
VICTRON ENERGY MPPT MPPT 100/50	-	700	1400	-	-	-	98	1355,41
VICTRON ENERGY MPPT MPPT 150/35	-	500	1000	1500	2000	-	98	1355,41
VICTRON ENERGY MPPT MPPT 100/30	30	440	880	-	-	-	98	903,62
SOLAR SYSTEM MPPT PC16-3015A	30	450	900	-	-	-	98	967,6
VICTRON ENERGY MPPT MPPT 100/20	-	290	580	-	-	-	98	760,23
SOLAR SYSTEM MPPT PC16-2015A	20	300	600	-	-	-	98	649
VICTRON ENERGY MPPT MPPT 100/15	-	200	400	-	-	-	98	491,73
VICTRON ENERGY MPPT MPPT 75/15	-	200	400	-	-	-	98	473,52
VICTRON ENERGY MPPT MPPT 75/10	-	135	270	-	-	-	98	404,67
ATERSA PWM LEO10 35A	35	-	-	-	-	-	-	734,86
XANTREX PWM C60	85	-	-	-	-	-	-	623,78
VICTRON ENERGY PWM PWM-PRO 12/24-30	-	-	-	-	-	-	-	542

XANTREX PWM C40	85	-	-	-	-	-	-	496,52
SOLAR SYSTEM PWM PC1500B-6048D	-	-	-	-	-	-	-	413
VICTRON ENERGY PWM PWM-PRO 12/24-20	-	-	-	-	-	-	-	357,82
SOLAR SYSTEM PWM PC1500B-50-60	-	-	-	-	-	-	-	354
SOLAR SYSTEM PWM PC1500B-6048D 50A	-	-	-	-	-	-	-	342,2
SOLAR SYSTEM PWM PC1500B-50-60 50A	-	-	-	-	-	-	-	283,2
ATERSA PWM MINO V2 12/24V 30	-	-	-	-	-	-	-	270,42
SOLAR SYSTEM PWM PC1500B-30-40 40A	-	-	-	-	-	-	-	247,8
VICTRON ENERGY PWM PWM-PRO 12/24-10	-	-	-	-	-	-	-	193,15
ATERSA PWM MINO V2 12/24V 15	-	-	-	-	-	-	-	177
SOLAR SYSTEM PWM PC1500B-30-40 30A	-	-	-	-	-	-	-	165,2

Tabla 142: Base de datos de controladores. [26]

ESPECIFICACIÓN	MARCA	MODELO	TENSIÓN DE ENTRADA VCC	TENSIÓN DE SALIDA VAC	FRECUENCIA HZ	POTENCIA DE SALIDA W	PRECIO Soles
VICTRON ENERGY C12/3000/120	VICTRON ENERGY	C12/3000/120	12	230	50	2400	6472,55
VICTRON ENERGY C12/2000	VICTRON ENERGY	C12/2000	12	230	50/60	1600	5065,36
VICTRON ENERGY C12/1600	VICTRON ENERGY	C12/1600	12	230	50/60	1300	4372,37
VICTRON ENERGY 12/1200	VICTRON ENERGY	12/1200	12	120/230	50/60	1000	2936,17
XANTREX PROwatt SW 2000i	XANTREX	PROwatt SW 2000i	12	230	50	2000	2622,22
ATERSA QUADRO 1000VA 12V	ATERSA	QUADRO 1000VA 12V	12	230	-	1400	1966,67
XANTREX PROwatt SW 1400i	XANTREX	PROwatt SW 1400i	12	230	50	1400	1899,47
VICTRON ENERGY 12/800	VICTRON ENERGY	12/800	12	110/230	50/60	700	1404,7
XANTREX PROwatt SW 700i	XANTREX	PROwatt SW 700i	12	230	50	700	1137,39
MUST SOLAR EP20-800	MUST SOLAR	EP20-800	12	220/230/240	50/60	800	983,33
VICTRON ENERGY 12/500	VICTRON ENERGY	12/500	12	120/230	50/60	400	813,33
MUST SOLAR EP20-600	MUST SOLAR	EP20-600	12	220/230/240	50/60	600	663,75
VICTRON ENERGY 12/375	VICTRON ENERGY	12/375	12	120/230	50/60	300	558,6
MUST SOLAR EP20-300	MUST SOLAR	EP20-300	12	220/230/240	50/60	300	531
VICTRON ENERGY 12/250	VICTRON ENERGY	12/250	12	120/230	50/60	200	435,37
VICTRON ENERGY EASY SOLAR 24/3000/70-50	VICTRON ENERGY	EASY SOLAR 24/3000/70-50	24	230	50	2400	11175,12
VICTRON ENERGY 24/5000/120	VICTRON ENERGY	24/5000/120	24	230	50	4000	10397,4
VICTRON ENERGY 24/3000/70	VICTRON ENERGY	24/3000/70	24	230	50	2400	8454,2
VICTRON ENERGY C24/2000/50	VICTRON ENERGY	C24/2000/50	24	230	50	1600	5673,57
ATERSA QUADRO 5000VA MPPT 80A	ATERSA	QUADRO 5000VA MPPT 80A	24	230	-	5000	5149,1
VICTRON ENERGY INV-CARG C24/1600/40	VICTRON ENERGY	INV-CARG C24/1600/40	24	230	50	1300	4210,76
VICTRON ENERGY C24/1600/40	VICTRON ENERGY	C24/1600/40	24	230	50	1300	3908,75

ATERSA QUADRO 3000VA 24V MPPT 60A	ATERSA	QUADRO 3000VA 24V MPPT 60A	24	230	-	3000	3218,18
VICTRON ENERGY 24/1200	VICTRON ENERGY	24/1200	24	120/230	50/60	1000	2936,17
MUST SOLAR PV18-3024 HM	MUST SOLAR	PV18-3024 HM	24	220/240	50/60	2400	2865,71
ATERSA QUADRO 3000VA 24V PWM 50A	ATERSA	QUADRO 3000VA 24V PWM 50A	24	230	-	3000	2242
VICTRON ENERGY 24/800	VICTRON ENERGY	24/800	24	120/230	50/60	650	1404,7
VICTRON ENERGY 24/500	VICTRON ENERGY	24/500	24	120/230	50/60	400	813,24
VICTRON ENERGY 24/375	VICTRON ENERGY	24/375	24	120/230	50/60	300	558,6
VICTRON ENERGY 24/250	VICTRON ENERGY	24/250	24	120/230	50/60	200	435,37

Tabla 143: Presupuesto general de la propuesta.

Tipo	N°	Item	Unidad	Tipo de unidades	Costo Unitario	Costo total	
	1	Panel Solar 320W 24V Csun Policristalino	4	unidad	S/ 907,69	S/ 3,630,76	
	2	Batería Upower 550Ah 6V-GC16	4	unidad	S/ 1,647,16	S/ 6,588,64	
	3	Controlador MPPT LCD 60A 12-24-48V Must Solar	1	unidad	S/ 2,109,56	S/ 2,109,56	
Ī	4	Inversor Cargador 800 W 12V 25A Must Solar	1	unidad	S/ 983,33	S/ 983,33	
Ī	5	Conector MC4 Multicontact Macho-Hembra	4	unidad	S/ 50,15	S/ 200,60	
Ī	6	Terminal de Compresión Cable 50 mm-perno 8 mm	12	unidad	S/ 5,17	S/ 62,04	
	7	Caja estanca de paso 150x120 mm	1	unidad	S/ 78,67	S/ 78,67	
	8	Legrand bornera seleccionable 100 A	1	unidad	S/ 151,71	S/ 151,71	
Sistema fotovoltaico	9	Membrana asfáltica Geotrans 10 m ²	1	unidad	S/ 269,00	S/ 269,00	
olt	10	Adhesivo y sellante Sikabond metal 300 ml gris	1	unidad	S/ 36,90	S/ 36,90	
to	11	Tablero Adosable 12 Polos VOLT	1	unidad	S/ 50,90	S/ 50,90	
ı fo	12	Cable THW 14 AWG Rojo x metro	23	metros	S/ 1,50	S/ 34,50	
i mg	13	Cable THW 14 AWG Negro x metro	23	metros	S/ 1,50	S/ 34,50	
iste	14	Cable unifilar 16 mm ² SOLAR PV ZZ-F Rojo 13 metros S/ 14,5				S/ 188,89	
S	15	Cable unifilar 16 mm ² SOLAR PV ZZ-F Negro	13	metros	S/ 14,53	S/ 188,89	
	16	Cable unifilar 50 mm ² POWERFLEX RV-K Verde	4 (3,2)	metros	S/ 32,19	S/ 128,76	
	17	Cable unifilar 50 mm ² POWERFLEX RV-K Negro	4 (3,2)	metros	S/ 32,73	S/ 130,92	
	18	Interruptor Tipo Riel Bifásico 63 A Bticino	3	unidad	S/ 45,90	S/ 137,70	
	19	Interruptor Tipo Riel Bifásico 10 A Bticino	1	unidad	S/ 34,90	S/ 34,90	
	20	Interruptor Diferencial Salvavida Bticino	1	unidad	S/ 119,90	S/ 119,90	
	21	Estructura Cubierta Metálica 4 ud KH915 60 mm	1	unidad	S/ 568,45	S/ 568,45	
		SUBTOTAL SIN IGV				S/ 15,729,52	
Envío de equipos (5% del SUBTOTAL SIN IGV)							
Instalación de equipos (13% del SUBTOTAL SIN IGV)							
NUEVO SUBTOTAL SIN IGV							
Monto por imprevistos (5% del NUEVO SUBTOTAL SIN IGV)							
COSTO TOTAL SIN IGV							
		COSTO TOTAL CON IGV (18%)				S/ 19,488,88 S/ 22,996,87	

Tabla 144: Precio del balón de gas en la provincia de Ferreñafe.

LAMBAYEQUE	▼ FERREÑAFE ▼ Seleccione Distrito-	▼ 10 Kg	•
------------	------------------------------------	---------	---

Distrito	Marca	Establecimiento	Dirección	Teléfono	Precio de Venta (Soles)
PUEBLO NUEVO	Lima Gas	GIL VASQUEZ MARCOS ANTONIO	CAL. MIGUEL PASCO 296	994146322	32.50
PITIPO	Sipan Gas	OLGA LIDIA ALVARADO RAMOS	CALLE LUIS HEYSEN N° 208		34.00
PITIPO	Sipan Gas	LABRIN LUCERO ANDY LEONARDO	CALLE LA CONSTRUCCIÓN NRO. 224 - CASERÍO BATANGRANDE		35.00
FERREÑAFE	Sipan Gas	ROSA CATALINA GARCIA DE CAMPOS	CALLE SANTA ROSA Nº 1070 U.V. SAN JUAN BOSCO	074287031	35.00
FERREÑAFE	Masgas	PISCOYA ROMERO JORGE GIOVANNI	CAL. ILO CENTRO 117	978100064	35.00
FERREÑAFE	Sipan Gas	YOVANA CRUZADO MANOSALVA DE DÁVILA	CA. SAN MARTÍN 1133 - PJ. SEÑOR DE LA JUSTICIA	074208141	35.00
PUEBLO NUEVO	Costa Gas	VERA GUEVARA NIDIA RAQUEL	CAL. BRITALDO GONZALES NRO. 511	949355342	35.00
FERREÑAFE	Masgas	JOSE MANUEL CIEZA GONZALES	JR. PROLONGACION TRES MARIAS N° 105-B		35.00
FERREÑAFE	Sipan Gas	MARCO ANTONIO TORRES AYUDANTE	CALLE SUCRE № 427		35.00
FERREÑAFE	Costa Gas	MOCARRO CORNETERO DE CAJUSOL JESUS YOLANDA	AV. TACNA 1079 P.J. SAN JUAN BOSCO	949355342	36.00
PUEBLO NUEVO	Masgas	DISTRIBUIDORA "ROSVI"	CAL. CASIMIRO CHUMAN 755	074286025	36.00
PITIPO	Sipan Gas	TOMAS CESPEDES FERNANDEZ	AV. INCAHUASI N° 236 - CASERIO LA TRAPOSA		36.00
PITIPO	Masgas	FANY YOANY SOPLAPUCO OLAZABAL	CASERIO LA ZARANDA		36.00
INCAHUASI	Lima Gas	PEDRO DILMER LUCERO BERNILLA	AV. JUAN MIGUEL BERNILLA S/N CP UYURPAMPA		37.00
PITIPO	Solgas	FANY YOANY SOPLAPUCO OLAZABAL	CASERIO LA ZARANDA		38.00
PUEBLO NUEVO	Lima Gas	COMERCIAL SANCHEZ	AV. V. R. HAYA DE LA TORRE N° 115		38.00
INCAHUASI	Solgas	VICTOR MIGUEL REYES BERNILLA	CALLE 6 MZNA Z1 LOTE 105	973091544	39.00

Tabla 145: Precio del balón de gas en la provincia de Lambayeque.

Distrito	Marca	Establecimiento	Dirección	Teléfono	Precio de Venta (Soles)
LAMBAYEQUE	Flama Gas	COMERCIAL CINDY ROSS EIRL	CALLE EMILIANO NIÑO MZA H LOTE1 P.J. SAN MARTIN		33.00
LAMBAYEQUE	Masgas	NEGOCIOS Y SERVICIOS ANFERD C & J E.I.R.L.	CA LAS DUNAS S/N PPJJ SANTA ROSA	979450065	33.00
LAMBAYEQUE	CALI GAS	ARTURO PEREZ HURTADO	CALLE SUCRE MZ 14 LTE 13 P.J SAN MARTIN		34.00
SAN JOSE	Sipan Gas	JULIA ASUNCIONA CEPEDA LEON DE CHAYAN	MZ. C LT. 02 CPM. EL NAZARENO		34.00
LAMBAYEQUE	Flama Gas Corp.	COMERCIAL CINDY ROSS EIRL	CALLE EMILIANO NIÑO MZA H LOTE1 P.J. SAN MARTIN		35.00
ILLIMO	Sipan Gas	MARIA ROSA SANCHEZ SANTAMARIA	CARRETERA PANAMERICANA № 535 - CERCADO		35.00
моснимі	Sipan Gas	DISTRIGAS PAICO E.I.R.L.	CALLE SAN MARTIN 875 - 899		35.00
LAMBAYEQUE	CALIGAS	AMILKAR HOMAR RUBIO LOZANO	CALLE SUCRE MZ 14 LTE 13 P.J SAN MARTIN		35.00
TUCUME	Sipan Gas	VASQUEZ HOYOS JEINER	AV. FEDERICO VILLARREAL 498	933940942	35.00
MORROPE	Lima Gas	CORREA CHERO OLGA MARIA	MZA. I LOTE. 4 A.H. 25 DE FEBRERO		35.00
OLMOS	Llama Gas	EL PESO EXACTO AL PRECIO JUSTO	CALLE SANTO DOMINGO Nº 613	074777473/971623236/944621260	35.00
OLMOS	Sipan Gas	MUÑOZ VILLAR CELIA ROSANA	AV. VICTOR RAUL 598 P.J. SANTA ISABEL	074208142	35.00
ILLIMO	Masgas	INVERSIONES LATIN BUSINESS S.A.C.	CAL. PROGRESO CENTRO ILLIMO 1313	992915504	35.00
LAMBAYEQUE	Flama Gas Corp.	COMERCIAL CINDY ROSS EIRL	CALLE LOPEZ VIDAURRE NRO. 968	996663140	35.00
OLMOS	Llama Gas	SEÑOR CAUTIVO DE AYABACA	CALLE SANTA MARTHA N° 559	074318564	35.00
моснимі	Sipan Gas	DISTRIGAS PAICO E.I.R.L.	CA. 28 DE JULIO 679	074208141	35.00
ILLIMO	Masgas	CENTURION AGUILAR DARWIN PABEL	CAL. VICTOR RAUL HAYA DE LA TO CENTRO DE ILLIMO SN	961548758	35.50
ILLIMO	Solgas	INVERSIONES LATIN BUSINESS S.A.C.	CAL. PROGRESO CENTRO ILLIMO 1313	992915504	36.00
PACORA	Pecsagas	GERARDO MONTERO RIVERA	AV. SAN PABLO Nº 133		36.00
LAMBAYEQUE	Solgas	CORPORACION HTB S.A.C.	MZ W LT 25 AH NUEVO MOCCE	940370480	36.00
JAYANCA	Sipan Gas	MARIA IRENE FLORES SANTOS	MZ. A S/N CASERÍO EL ARENAL		36.00
SAN JOSE	Sipan Gas	DEYSI MARIBEL LLENQUE PINGO	CALLE FRANCISCO BOLOGNESI 218		36.00
OLMOS	Masgas	EFIGENIO PAQUIRACHI GUEVARA	CA SAN MARTIN S/N PPJJ SANTA ANA		36.00
LAMBAYEQUE	Abastible- Gas	HENRY SANDOVAL VILLEGAS	CALLE SAN ANTONIO N° 427 - PP.JJ. SAN MARTIN	996663140	36.00
MORROPE	Sipan Gas	MARIA ENMA SANTISTEBAN ZEÑA	AV. TAHUANTINSUYO N° 303		36.00

Tabla 146: Precio del balón de gas en la provincia de Chiclayo.

Distrito	Marca	Establecimiento	Dirección	Teléfono	Precio de Venta (Soles)
LA VICTORIA	INTI GAS	FABIO RICARDO AVALOS MUÑIZ	PUEBLO JOVEN SEÑOR DE LA MISERICORDIA MZ. B LT. 1		30.00
CHICLAYO	Llama Gas	LLAMA GAS S.A.	AV. ELVIRA GARCÍA Y GARCÍA Nº 230 JOSE OLAYA	074209393	30.80
LA VICTORIA	Masgas	LIZANA ROMERO RAMIRO	CPM ANTONIO RAYMONDI MZA. C LOTE 5	943906976	31.00
LA VICTORIA	Z Gas	NELSON DELGADO CHENTA	PUEBLO JOVEN 7 DE AGOSTO MZ. A LT. 29		31.00
LA VICTORIA	Costa Gas	DIAZ ROJAS CESAR AUGUSTO	AV. LOS INCAS 814	950881029	32.00
JOSE LEONARDO ORTIZ	Llama Gas	YVON YNELDA VENTURA SIESQUEN	CALLE LUIS HEYSEN N° 199		32.50
LAGUNAS	Masgas	BODEGA BOTICA SANTA LUCIA	CAL. BOLOGNESI MOCUPE 350		33.00
CHICLAYO	Masgas	DISTRIBUIDORA ADELITA EIRL	CAL. CONTUMAZA 100 URB. UCHOFEN		33.00
CHICLAYO	Caserito de Lima Gas	DISTRIBUIDORES AIME CARLOS E.I.R.L.	CAL, JUAN FRANCISCO UGAZ NRO. 100 P.J. SUAZO		33.00
PATAPO	Z Gas	SEGUNDO GILBERTO BUSTAMANTE CIEZA	CALLE ALAMEDA Nº 10 POSOPE ALTO	979905213	34.00
PATAPO	Llama Gas	ERMILANO DELGADO QUINTANA	AV. CHOTA N° 02 POSOPE ALTO	074428241	34.00
REQUE	Caserito de Lima Gas	DISTRIBUIDORA LA COLMENA	AV. MARISCAL CASTILLA N° 608	074458976	34.00
LA VICTORIA	Econo Gas	JOSE SANCHEZ ARCILA	AV. PACHACUTEC 1990	979076543	34.00
TUMAN	Inti Gas Corp	CENTRO POLICOMERCIAL ESO GAS SALDAÑA	SECTOR EL NARANJO 601 - MZ. G, LOTE 1	074417868	34.00
CHICLAYO	Sipan Gas	CENTRO GAS CAMPODONICO	AV ARICA 1885 CAMPODONICO	074207140	34.00
LA VICTORIA	Caserito de Lima Gas	DISTRIBUIDORA DE GAS CAMIZAN	CALLE MANCO INCA N° 381	074270058	34.00
REQUE	SANTOGAS	MARINA MEGO CARUAJULCA	CALLE MARISCAL CASTILLA N° 560		34.00
PIMENTEL	Flama Gas Corp.	MULTISERVICIOS CAX & HC S.A.C.	PARAJE LOS ARENALES N° 09		34.00
JOSE LEONARDO ORTIZ	Costa Gas	SÁNCHEZ CORONEL ELIZABETH	CAL. ANTENOR ORREGO 743 P.J. NUEVO SAN LORENZO	981199150	34.00
PATAPO	Llama Gas	MARINA CELINDA RUPAY VASQUEZ	CALLE MIGUEL GRAU S/N	969606383	34.00
LA VICTORIA	Solgas	ISAC LEONEL TIRADO ROJAS	AV. GRAN CHIMU N°1820	074208524	34.00
CHICLAYO	Flama Gas Corp.	MULTISERVICIOS CAX & HC S.A.C.	P.J NUEVO SAN LORENZO AV. MARIANO CORNEJO 554	996663140	34.00
LA VICTORIA	Masgas	HANNAH GAS E.I.R.L.	AVENIDA GRAN CHIMU NRO 648	074601172	34.00
LAGUNAS	Z Gas	DEMETRIO GARCIA CACHO	CALLE CHICLAYO Nº 358		34.00
CHICLAYO	Lima Gas	DISTRIBUIDORES AIME CARLOS E.I.R.L.	CAL. JUAN FRANCISCO UGAZ NRO. 100 P.J. SUAZO		34.00

Figura 79: Diagrama unifilar del sistema fotovoltaico para la Unidad Médica Móvil I.

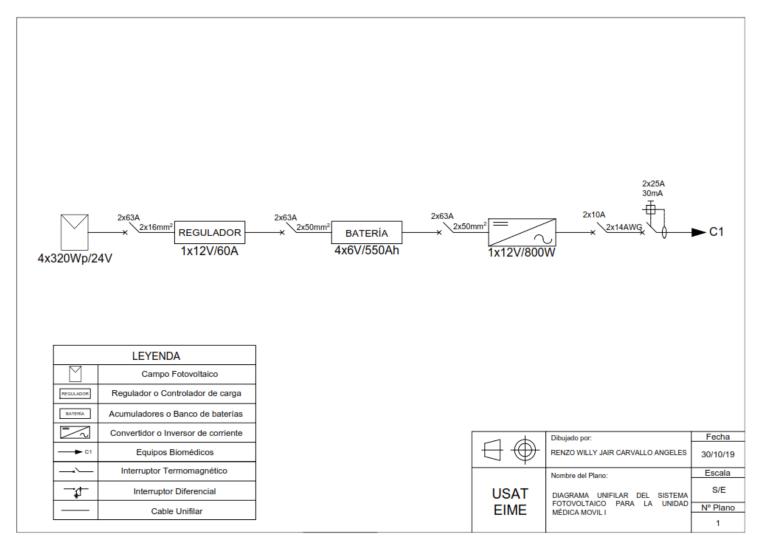


Figura 80: Diagrama de montaje del sistema fotovoltaico para la Unidad Médica Móvil I.

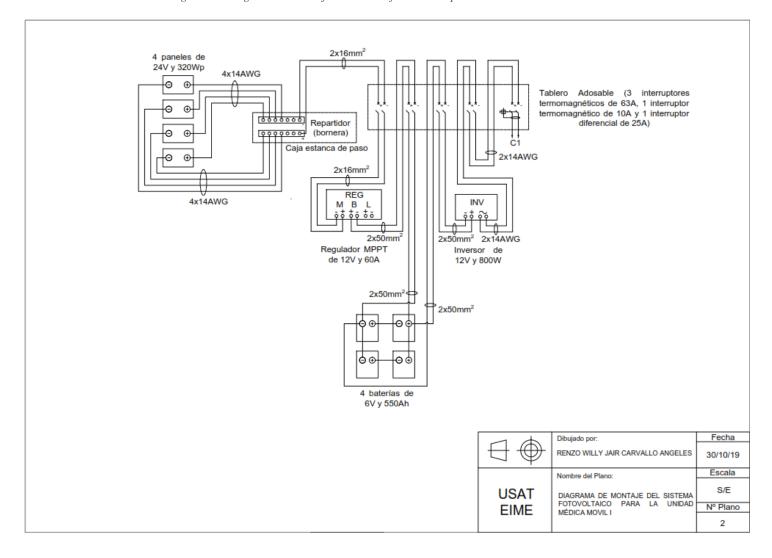


Figura 81: Campo Fotovoltaico.

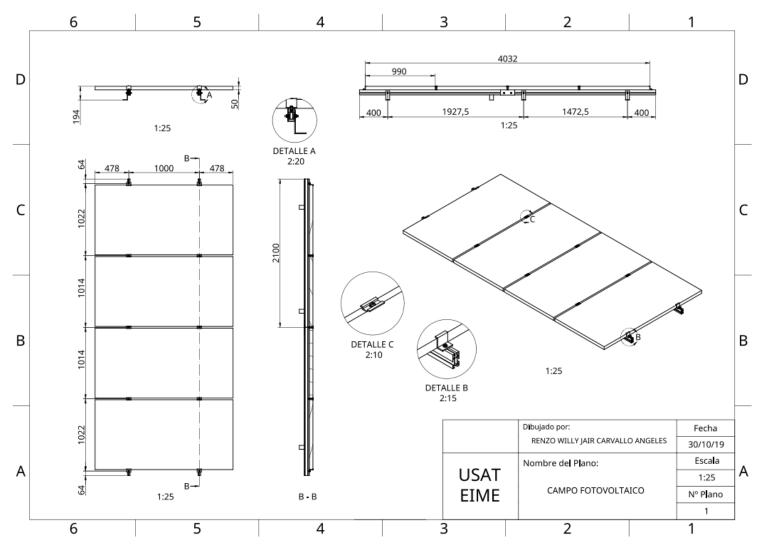


Figura 82: Vista de Explosión del Campo Fotovoltaico.

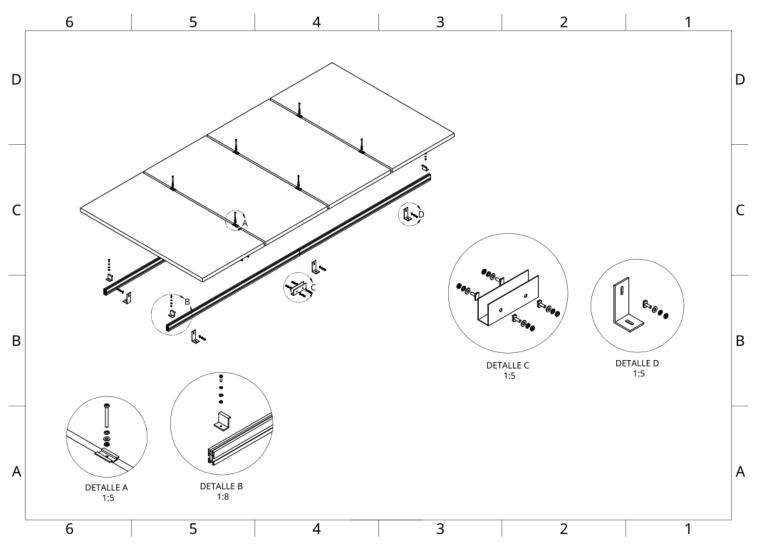
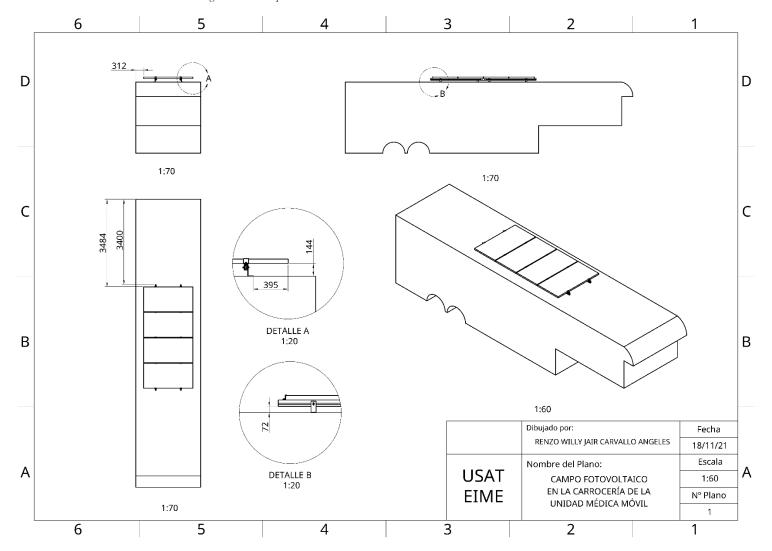



Figura 83: Campo Fotovoltaico en la carrocería de la Unidad Médica Móvil.

