UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO FACULTAD DE MEDICINA ESCUELA DE ENFERMERÍA

REVISIÓN CRÍTICA: EVIDENCIAS EN LA UTILIZACIÓN DE EQUIPOS DE PROTECCIÓN PARA REDUCIR LA RADIACIÓN EN EL PERSONAL DE SALA DE OPERACIONES

TRABAJO ACADÉMICO PARA OPTAR EL TÍTULO DE SEGUNDA ESPECIALIDAD PROFESIONAL EN ENFERMERÍA EN CENTRO QUIRÚRGICO

AUTOR JACQUELINE GIOVANNA CERDAN TELLO

ASESOR
MAGALY DEL ROSARIO CHU MONTENEGRO

https://orcid.org/0000-0002-7707-1937

Chiclayo, 2020

REVISIÓN CRÍTICA: EVIDENCIAS EN LA UTILIZACIÓN DE EQUIPOS DE PROTECCIÓN PARA REDUCIR LA RADIACIÓN EN EL PERSONAL DE SALA DE OPERACIONES

PRESENTADA POR JACQUELINE GIOVANNA CERDAN TELLO

A la Facultad de Medicina de la Universidad Católica Santo Toribio de Mogrovejo para optar el título de

SEGUNDA ESPECIALIDAD PROFESIONAL EN ENFERMERÍA EN CENTRO QUIRÚRGICO

APROBADA POR:

Nelly Guillermina Sirlopú Garcés
PRESIDENTE

Socorro Guzmán Tello

Magaly Del Rosario Chu Montenegro

SECRETARIO

VOCAL

Dedicatoria

Este trabajo investigativo va dedicado al ser que guía mis acciones y las motiva de una manera positiva y que está en todas partes cuidándome y protegiéndome, Dios.

A mis padres, quienes me enseñaron desde pequeña a luchar para alcanzar mis metas, por su apoyo incondicional, quienes me sirvieron de fuente de inspiración y motivación. Mi triunfo es el de ustedes.

Agradecimientos

A Dios todo poderoso por bendecirme con el maravilloso ser de la vida, por mostrarme día a día que con humildad, paciencia y sabiduría todo es posible.

A mis padres por el apoyo incondicional, a mi familia que de una u otra manera me brindaron tiempo y paciencia para poder lograr mi meta.

A las docentes de la especialidad, por todo el tiempo y conocimiento que nos impartieron en las aulas, las más sinceras gracias.

A mi asesora Lic. Magaly Del Rosario Chu Montenegro, que con su conocimiento me supo guiar a la consecución de este trabajo de investigación.

REVISIÓN CRÍTICA: EVIDENCIAS EN LA UTILIZACIÓN DE EQUIPOS DE PROTECCIÓN PARA REDUCIR LA RADIACIÓN EN EL PERSONAL DE SALA DE OPERACIONES

INFORME DE ORIGINALIDAD	
41% 40% 5% INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES	15% TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS	
hdl.handle.net Fuente de Internet	12%
repositorio.uwiener.edu.pe Fuente de Internet	9%
tesis.usat.edu.pe Fuente de Internet	5%
4 www.scielo.edu.uy Fuente de Internet	4%
alicia.concytec.gob.pe Fuente de Internet	2%
6 mriuc.bc.uc.edu.ve Fuente de Internet	1 %
es.slideshare.net Fuente de Internet	1 %
aprenderly.com Fuente de Internet	1 %

ÍNDICE

RESUMEN	5
ABSTRACT	6
INTRODUCCIÓN	7
REVISIÓN DE LA LITERATURA	8
MATERIALES Y MÉTODOS	10
RESULTADOS Y DISCUSIÓN	22
CONCLUSIONES	31
RECOMENDACIONES	32
REFERENCIAS BIBLOGRÁFICAS	33
ANEXOS	38

RESUMEN

El trabajo académico denominado "Evidencias en la Utilización de Equipos de Protección para reducir la Radiación en el Personal de Sala de Operaciones", tuvo como objetivo: describir la utilización de los equipos de protección en la reducción de los niveles de radiación en el personal de sala de operaciones. Se desarrolló un tipo de investigación secundaria con una metodología de Enfermería Basada en Evidencias, formulando la pregunta clínica PICOT: ¿Cuáles son las evidencias en la utilización de los equipos de protección para reducir los niveles de radiación en el personal de sala de operaciones? Para la búsqueda bibliográfica se emplearon buscadores como Pubmed, Science, Google Académico y SciELO, encontrando un total de 10 investigaciones que fueron evaluadas a través de la guía de validación de Gálvez Toro, seleccionando el estudio Eficacia del uso de Protectores para reducir los niveles de Radiación en el Personal de Sala de Operaciones, evaluada con la guía PRISMA para determinar su calidad metodológica. En respuesta a la pregunta clínica, se encontró evidencia de que el empleo correcto y completo de gorros, gafas, collarines tiroideos, mandiles son eficaces para la radioprotección en el personal de salud. Existe también evidencia del empleo de protección pélvica plomada en el paciente sometido a cirugía, con el objetivo de reducir la radiación dispersa. Según la clasificación SIGN, la revisión tuvo un nivel de evidencia I -, dado a la poca información de sesgos en el estudio, además tuvo un grado de recomendación A, en base al sistema de clasificación GRADE.

Palabras claves: evidencia, equipos de protección, radiación, sala de operaciones.

ABSTRACT

The academic work called "Evidence in the Use of Protective Equipment to reduce Radiation Levels in Operating Room Personnel", aimed to describe the use of protective equipment in reducing radiation levels in the Operating room staff A type of secondary research was developed with an Evidence-Based Nursing methodology, formulating the PICOT clinical question: What are the evidences in the use of protective equipment to reduce radiation levels in operating room personnel? Search engines such as Pubmed, Science, Google Scholar and SciELO were used for the literature search, finding a total of 10 investigations that were evaluated through the validation guide of Gálvez Toro, selecting the study Efficacy of the use of Protectors to reduce the levels of Radiation in the Operating Room Personnel, evaluated with the PRISMA guide to determine its methodological quality. In response to the clinical question, evidence was found that the correct and complete use of caps, glasses, thyroid collars, aprons are effective for radiation protection in health personnel. In addition, the use of pelvic protection was found in the patient undergoing surgery, with the aim of reducing the scattered radiation, produced by the rebound effect of the radiation received by the patient. There is also evidence of the use of leaded pelvic protection in the patient undergoing surgery, with the aim of reducing scattered radiation. According to the SIGN classification, the review had a level of evidence I - given the little bias information in the study, it also had a grade of recommendation A, based on the GRADE classification system.

Keywords: evidence, protective equipment, radiation, operating room.

INTRODUCCIÓN

Las radiaciones ionizantes técnicamente utilizadas, suministran grandes beneficios a la humanidad. Sin embargo, el uso inapropiado de las mismas puede acarrear un riesgo de exposición elevada, con la consecuente probabilidad de producir enfermedad aguda o crónica y aún más la muerte.¹

Los efectos biológicos producidos por las radiaciones ionizantes son consecuencia de la transferencia de energía a las moléculas constitutivas de la célula. De acuerdo con el componente celular dañado se pueden inactivar directamente diversos mecanismos celulares o producir perjuicios en el material genético ².

La radioprotección se define como un conjunto de actividades a realizar para detectar oportunamente el efecto de los rayos X sobre la salud del personal ocupacionalmente expuesto a través de la recolección, análisis, e interpretación de la información epidemiológica, con el propósito de realizar la detección precoz de los casos y dar inicio a las actividades de promoción, prevención y control.

Entre los riesgos de exposición encontrados en el personal se encuentran enfermedades que van desde las lesiones de la piel hasta distintos tipos de neoplasias que pueden estar relacionadas con las radiaciones ionizantes. Tal es el caso de la retinoblastoma hereditaria, tumores óseos, de tiroides y pulmonares, así como la leucemia cuyo período de latencia es de 2 años, con un pico máximo de 7-12 años.³

Tal como lo refiere el párrafo anterior, la exposición radiológica posee un riesgo de cáncer comprobado, es así, que existen datos estadísticos que demuestran un 5% la posibilidad de sufrir cáncer después de una exposición médica importante. Referente a ello, se calcula que en EE. UU se presentarán un aproximado 29,000 nuevos casos de cáncer vinculados a la exposición radiológica de tomografías computarizadas ².

De lo analizado en estudios de los daños que se producen por las radiaciones, surge la necesidad de protegerse. Con base en estos conocimientos de los posibles daños como de las medidas de protección ya probadas, es conveniente que las instituciones que usan radiaciones establezcan el sistema de vigilancia en radioprotección para el control de este factor de riesgo, sin embargo,

no existen protocolos desarrollados en radioprotección en diversas instituciones de salud a nivel internacional y local.

REVISIÓN DE LA LITERATURA

Un informe realizado en Argentina, de 62 instituciones, apenas ocho declararon utilizar dosímetros tanto en médicos de planta permanente como en residentes. En el 80% de los casos, eran medidos mensualmente por empresas tercerizadas y sólo se registró un caso donde la exposición superaba el valor máximo permitido; así mismo no se notificaron casos de enfermedad asociada a la radiación³.

Estar expuesto a esta radiación aumenta la probabilidad de efectos adversos sobre el personal de salud en sala de operaciones. Las medidas de radioprotección convencionales son muy efectivas para reducir la radiación; sin embargo, los operadores que realizan procedimientos de larga duración que implican una alta exposición a las radiaciones ionizantes aumentan el riesgo biológico, particularmente en las zonas menos protegidas (cabeza, cuello y extremidades), lo que constituye una preocupación mayor de la medicina ocupacional.⁴

Actualmente, como herramientas de protección radiológica, se utilizan delantales, collares, lentes plomados y el hábito de distanciarse del equipo emisor de radiación. Sin embargo, su uso no se ha difundido masivamente, no existe la conciencia de la exposición a la radiación y de los niveles permitidos internacionalmente y no todas las instituciones cuentan con la capacidad de implementar las medidas descritas.²

Se ha evidenciado en algunos hospitales de la región en donde la exposición a radiaciones ionizantes en salas de procedimientos y sobre todo en sala de operaciones son frecuentes, siendo el personal de salud el más susceptible a los efectos adversos de esta exposición, pues no existen protocolos de actuación y control en el manejo de radiación ionizante, donde en algunos casos, no cuentan con todas las medidas de radio protección, como el uso de lentes plomados e inclusive, no existe la suficiente cantidad de dosímetros para el uso por el personal de salud, además algunos de estos equipos ya se encuentran desgastados y no cuentan con evaluación de calidad continua para medir su correcto desempeño.

Por otro lado, las áreas del cuerpo que se encuentran desprotegidas como la cabeza, cuello y extremidades, siguen siendo vulnerables a la exposición y son zonas de alto riesgo de desarrollo de enfermedades neoplásicas, en las cuales no se establece el nivel de exposición, por lo que no se puede determinar el nivel de daño producido por la radiación.

En el Perú no existen muchos trabajos de investigación que evalúen la efectividad de los medios de Radioprotección en el personal ocupacionalmente expuesto a radiaciones ionizantes, como una manera de medir la correcta aplicación de los protocolos de Radioprotección, lo cual hace complicado tener datos reales acerca de la magnitud del daño en el personal radio expuesto.

Otra de las problemáticas evidenciadas es que las entidades de salud no proporcionan evaluaciones periódicas al personal radioexpuesto, mientras que otros no cuentan con los insumos necesarios para la realización de estas evaluaciones, por lo que no se tiene un dato real de exposición del personal que labora en estas áreas, así como del posible daño orgánico establecido. El desarrollo de estas evaluaciones, además, puede permitir determinar qué tan efectivos son los equipos de protección en el personal de salud en la reducción de la radioexposición, dado que no existen medios de cómo determinar la efectividad de estos equipos en las entidades sanitarias.

La revisión tuvo como objetivo describir la utilización de los equipos de protección en la reducción de los niveles de radiación en el personal de sala de operaciones.

La investigación se justifica porque es necesario que el personal de salud que asiste en procedimientos con intervención radiológica en Sala de Operaciones conozca que tan protegido se encuentra y qué tan eficaces son los equipos de protección empleados para reducir los niveles de radiación recibida.

Se evidenció además, que durante la realización de intervenciones quirúrgicas con equipos radiológicos, existían partes del cuerpo que no eran protegidos por los dispositivos actualmente empleados, como lentes, gorros, collarines, volviéndolos susceptibles al desarrollo de enfermedades discapacitantes y mortales, tal es así que en un informe de la OMS, expresa que entre los efectos producidos por la exposición a radiación ionizante se encuentra el enrojecimiento de la piel, caída del cabello, quemaduras por radiación, síndrome de irradiación aguda y entre los riesgos más dañinos, se menciona el desarrollo de cáncer, el cuál usualmente es producido a largo plazo.

La revisión servirá además como sustento teórico en la implementación de protocolos de radioprotección en el personal que labora en Sala de Operaciones, lo que permitirá la adopción de buenas prácticas para evitar la presencia de enfermedades ocupacionales y desarrollo de patologías prevenibles en el personal de salud.

MATERIALES Y MÉTODOS

1. Tipo de investigación

La revisión se desarrolló bajo el tipo de investigación secundaria, ya que gran parte del estudio estuvo basado en la búsqueda de pruebas y de las mejores evidencias disponibles sobre la investigación sanitaria tratada, con el objetivo de responder a cuestiones o planteamientos concretos, siguiendo una metodología explícita y rigurosa⁵.

La validez de este tipo de fuentes, se basa en el hecho de que son obtenidas por fuentes fidedignas de revistas y previamente evaluadas por comités especializados, así como de instituciones públicas y algunos especialistas en los temas, antes de que puedan concretarse como fuentes secundarias⁶. Es así, que las investigaciones secundarias interpretan y analizan fuentes primarias. Las fuentes secundarias son textos basados en fuentes primarias, e implican generalización, análisis, síntesis, interpretación o evaluación.

2. Metodología EBE

La metodología aplicada fue la Enfermería Basada En Evidencia (EBE), que implica investigar para introducir cambios en la práctica, utilizando los hallazgos de la investigación para fundamentar la gestión de los cuidados de enfermería, además la EBE es la aplicación consciente, explícita y juiciosa de la mejor evidencia científica disponible relativa al conocimiento enfermero para tomar decisiones sobre el cuidado de los pacientes, teniendo en cuenta sus preferencias y valores, e incorporando la pericia profesional en esta toma de decisiones⁷.

La aplicación de la EBE se desarrolla en cinco fases integradas dentro de un proceso dinámico y continuo que surge de la interacción paciente-enfermera. El punto de inicio es la definición

de la pregunta de investigación. La adecuada formulación de la pregunta evita que se pierda mucho tiempo en la búsqueda de la evidencia. Después de identificar la evidencia científica disponible, se lleva a cabo una lectura crítica para valorar la calidad de los estudios. Las fases prácticas de la EBE son la implementación de los cambios y su posterior evaluación⁷.

En la primera etapa, la formulación de la pregunta estructurada surgió de una motivación personal evidenciada en la práctica clínica, donde se observó que el profesional de sala de operaciones cuando realiza cirugías con exposición a radiaciones ionizantes solo emplea para su protección un mandilón, collarín y dosímetro y en otras ocasiones, simplemente trata de alejarse del área pues no contaban con el equipo de protección, del cual también se cuestiona cuán efectivo era.

En la segunda fase de búsqueda bibliográfica, se procedió a visitar diversas fuentes de información (investigaciones primarias), consultando bases de datos como de Pubmed, Science, Google Académico y Scielo, se tuvo en cuenta las publicaciones desde el 2013 al 2018, de donde se obtuvieron 10 investigaciones que pudieran dar respuesta a la pregunta clínica.

En la tercera fase, mediante la lectura crítica se valoró la metodología y el diseño de la investigación sujeta a revisión. Con la lectura crítica se objetiva la relevancia de los estudios lo que puede llevar a plantear su posterior aplicación. Es por este motivo que la lectura crítica tiene especial relevancia dentro de la práctica de la EBE.

La cuarta fase se dirige a la aplicación de las conclusiones a nuestra práctica, teniendo en consideración los riesgos y beneficios, las expectativas, preferencias de los pacientes y sus necesidades emocionales y finalmente como quinta fase, la Evaluación del rendimiento de esta aplicación.

Cabe referir que las dos últimas fases de la EBE no serán realizadas en la revisión.

3. Formulación de la Pregunta según esquema PICOT

	Cuadro N.º 01: Formulación	n de la Pregunta y Viabilidad
P	Paciente o Problema	Complicaciones secundarias a la
		radioexposición como, enrojecimiento
		de la piel, caída del cabello, quemaduras
		por radiación, síndrome de irradiación
		aguda y entre los riesgos más dañinos, se
		menciona el desarrollo de cáncer. Poca
		información respecto al empleo de
		equipos de radioprotección por el
		personal de enfermería de Sala de
		Operaciones, así como la carencia de
		protocolos para su empleo por el
		personal de salud.
I	Intervención	Se evidencia el empleo de mandilón y
		collarín cervical plomados durante las
		intervenciones con exposición a
		radiación, colocando dosímetros por
		debajo de los mandilones.
C	Comparación o Control	Desarrollo e implementación de
		protocolos de actuación, cumpliendo
		estándares de calidad en el empleo de
		medidas de radioprotección, lo que
		incluya el uso completo de los equipos,
		como los lentes y protectores de cabeza,
		sumando a ello, las evaluaciones
		periódicas que permitan determinar la
		efectividad de la radioprotección
		empleada por el personal de salud.
0	Outcomes o Resultados	Reducir la radioexposición y efectos
		nocivos en el personal de salud.

T	Tipo de Diseño de Investigación	Cuantitativa
	(Oxford-Centre of Evidence Based Medicine.

Finalmente se llegó a la Formulación de la Siguiente Pregunta Clínica: ¿Cuáles son las evidencias en la utilización de los equipos de protección para reducir los niveles de radiación en el personal de sala de operaciones?

4. Viabilidad y pertinencia de la pregunta

La investigación es viable pues existen diversos estudios actualizados e internacionalmente reconocidos en revistas científicas, que permitirán responder a la pregunta clínica formulada y a los objetivos de la investigación, siendo además pertinente en la medida que se ha demostrado que la exposición a la radiación tiene efectos negativos no solo sobre la superficie corporal expuesta, sino además a nivel sistémico afectando el estado de salud y produciendo enfermedades discapacitantes y con un alto costo económico, por lo que, demostrar cuáles son las mejores evidencias en la utilización de equipos radio protectores, tendrá un impacto positivo en la salud y seguridad ocupacional de los trabajadores expuestos a radiaciones ionizantes, contribuyendo a desarrollar protocolos para su utilización así como generar nuevas y mejores políticas de salud en defensa de los trabajadores continuamente radioexpuestos.

5. Metodología de Búsqueda de Información

Para la búsqueda de la información, en primera instancia se procedió a la búsqueda de palabras claves (Equipos de Protección, Radiación, Evidencia, Sala de Operaciones), para posteriormente ser traducidas al inglés y portugués, las mismas que fueron empleados mediante operadores boléanos en buscadores en línea como Pubmed, Science, Google Académico y Scielo, encontrando un total de 10 investigaciones que concordaban con los objetivos de la investigación.

Una de las limitantes para la búsqueda, fue la poca cantidad de investigaciones en español, siendo en su mayoría estudios en inglés, para lo cual también fue dificultoso por el poco manejo de idioma.

En las siguientes tablas se resume la metodología de búsqueda y se señala además las investigaciones encontradas en la revisión:

Cuadro N°02: Elección de las palabras claves						
Palabra Clave	Inglés	Portugués	Sinónimo			
Equipos de	Protection	Equipos de	Equipos de seguridad			
Protección	equipment	Protección				
Radiación	Radiation	Radiação	Radiación			
Evidencia	Evidence	Evidencia	Evidencia			
Sala de Operaciones	Operations room	Sala de operações	Quirófano			
			Sala Quirúrgica			

Cuadro N° 03: Registro escrito de la búsqueda					
Base de datos consultada	Fecha de la búsqueda	Estrategia para la búsqueda o Ecuación de búsqueda	Nº de artículos encontrados	%º de artículos seleccionados	
Pubmed	09/10/18	Protection equipment and Radiation	215	2.8%	
Science	10/10/18	Radiation and Operations room	103	0.97%	
Google Académico	11/10/18	Equipos de Protección and Radiación	1200	0,17%	
Scielo	12/10/18	Evidencia and Equipos de Protección	49	2%	

Cuadro N° 04: Ficha para recolección Bibliográfica					
Autor (es)	Título Articulo	Revista (Volumen,	Link	Idioma	Método
		año, número)			
	Evaluación de nuevos	AJR Am J Roentgenol.	https://www.ncbi.nl	Inglés	
	dispositivos de protección	2013 Apr;200(4)	m.nih.gov/pubmed/		Estudio Cuantitativo
	contra la radiación ligeros		23521470		de diseño Ensayo
Uthoff H, et al.	y desechables en un				aleatorio controlado.
	entorno de radiología				
	intervencionista: un				
	ensayo controlado				
	aleatorio.8				
	Protección radiológica		https://www.ajronli		
Meisinger, et	para el Operador y	AJR:207, October	ne.org/doi/full/10.2	Inglés	Revisión
al.	personal de fluoroscopia ⁹	2016	214/AJR.16.16556		Bibliográfica
	Importancia de la	Repositorio	http://riuc.bc.uc.ed		
Acosta L, et al.	Protección Radiológica	Institucional de	u.ve/bitstream/123	Español	Documental
	en los Servicios de	Universidad de	456789/6538/1/jobl		bibliográfico
	Imagenología. ¹⁰	Carabobo; 2013.	anco.pdf		

Azriel B, et al.	Reducción de la exposición a la radiación del operador durante los procedimientos coronarios transradiales utilizando un simple rectángulo de plomo ¹¹	Heliyon Volume 3, Issue 2, February 2017	https://www.scienc edirect.com/science /article/pii/S240584 401631739X	Inglés	Estudio prospectivo, observacional
Montoya Gutierrez, Glendy Viena Saavedra, Romina Paola	Eficacia Del Uso De Protectores Para Reducir Los Niveles De Radiación En El Personal De Sala De Operaciones ¹	2017	http://repositorio.u wiener.edu.pe/bitstr eam/handle/123456 789/1413/TITULO %20- %20Montoya%20 Gutierrez%2C%20 Glendy.pdf?sequen ce=1&isAllowed=y	Español	Revisión Sistemática
	Una comparación prospectiva de casos y controles del sistema				

Haussen DC,	ZeroGravity versus un	J Neurointerv Surg.	https://www.ncbi.nl		Estudio Comparado
Van Der Bom	delantal de guía estándar	2016 Oct;8(10)	m.nih.gov/pubmed/	Inglés	de Casos y Controles
IM, Nogueira	como estrategia de		26491039		
RG.	protección radiológica en				
	procedimientos				
	neuroendovasculares. ¹²				
	Exposición a radiación		https://www.jvascs		
	del personal de la sala de		urg.org/article/S07		
Mohapatra A,	operaciones y pacientes	J Vasc Surg. 2013	41-5214(13)00330-	Inglés	Estudio Prospectivo
et al.	durante procedimientos	Sep;58(3)	3/fulltext		
	endovasculares ¹³				
	Evaluación de la				
	Efectividad de los medios				
	de Radioprotección en el				
	personal de Imagenología		http://cybertesis.un		Cuantitativo,
	del Hospital Nacional de		msm.edu.pe/bitstre		prospectivo,
Yovera J.	Policía ocupacionalmente		am/handle/cybertes	Español	transversal,
	expuestos a radiaciones	2015	is/4283/Yovera_aj.		observacional.
	ionizantes en el periodo		pdf?sequence=1		

	de enero 2011 a Junio del				
	2011 ²				
	Exposición a la radiación				
	de los médicos en el				
Ingwersen M,	laboratorio de	JACC Cardiovasc	https://www.ncbi.nl		Estudio Comparativo,
et al.	cateterización: ¿el tipo de	Interv. 2013 Oct;6(10)	m.nih.gov/pubmed/	Inglés	prospectivo
	procedimiento es		24156970		
	importante? ¹⁴				
	Protección radiológica al		http://www.scielo.e		
	primer operador en	Rev.Urug. Cardiol.	du.uy/scielo.php?sc		Estudio randomizado,
Trujillo P, et al.	procedimientos	vol.30 no.2	ript=sci_arttextπ	Español	prospectivo
	coronarios por acceso	Montevideo ago. 2015	d=S1688-		
	radial derecho ⁴		042020150002000		
			05		

1.6. Síntesis de la Evidencia encontrada a través de la Guía de Validez y utilidad aparentes de Gálvez Toro

Cuadro N° 06 Síntesis de la Evidencia través de la guía de Gálvez Toro					
Título del Artículo	Tipo de	Resultado	Decisión		
	Investigación-				
	Metodología				
Evaluación de nuevos	Estudio	Responde 4 de las	No se puede		
dispositivos de	Cuantitativo de	5 preguntas	emplear		
protección contra la	diseño Ensayo				
radiación ligeros y	aleatorio				
desechables en un	controlado.				
entorno de radiología					
intervencionista: un					
ensayo controlado					
aleatorio.8					
Protección radiológica	Revisión	Sólo responde 3	No se puede		
para el Operador y	Bibliográfica	de las 5	emplear		
personal de fluoroscopia ⁹					
Importancia de la	Documental	Sólo responde 2	No se puede		
Protección Radiológica	bibliográfico	de las 5	emplear		
en los Servicios de					
Imagenología. ¹⁰					
Reducción de la	Estudio	Responde todas	Para pasar		
exposición a la radiación	prospectivo,	las preguntas	lista		
del operador durante los	observacional				
procedimientos					
coronarios transradiales					
utilizando un simple					
rectángulo de plomo ¹¹					
Eficacia Del Uso De	Revisión	Responde todas	Para pasar		
Protectores Para Reducir	Sistemática	las preguntas	lista		
Los Niveles De					

Radiación En El Personal			
De Sala De Operaciones ¹			
Una comparación	Estudio	Sólo responde 3	No se puede
prospectiva de casos y	Comparado de	de las 5	emplear
controles del sistema	Casos y Controles		
ZeroGravity versus un			
delantal de guía estándar			
como estrategia de			
protección radiológica en			
procedimientos			
neuroendovasculares. ¹²			
Exposición a radiación	Estudio	Sólo responde 2	No se puede
del personal de la sala de	Prospectivo	de las 5	emplear
operaciones y pacientes			
durante procedimientos			
endovasculares ¹³			
Evaluación de la	Cuantitativo,	Sólo responde 1	No se puede
Efectividad de los medios	prospectivo,	de las 5	emplear
de Radioprotección en el	transversal,		
personal de Imagenología	observacional.		
del Hospital Nacional de			
Policía ocupacionalmente			
expuesto a radiaciones			
ionizantes ²			
Exposición a la radiación	Estudio	Sólo responde 2	No se puede
de los médicos en el	Comparativo,	de las 5	emplear
laboratorio de	prospectivo		
cateterización: ¿el tipo de			
procedimiento es			
importante? ¹⁴			

Protección radiológica al	Estudio	Responde todas	Para pasar
primer operador en	randomizado,	las preguntas	lista
procedimientos	prospectivo		
coronarios por acceso			
radial derecho ⁴			

1.7. Listas de chequeo específicas a emplear para los trabajos seleccionados

Cuadro N°07: Determinación de Lista de Chequeo según metodología				
Título del Artículo	Tipo de Investigación-	Lista a emplear		
	Metodología			
Reducción de la exposición				
a la radiación del operador				
durante los procedimientos	Estudio prospectivo,			
coronarios transradiales	observacional	STROBE		
utilizando un simple				
rectángulo de plomo ¹¹				
Eficacia Del Uso De				
Protectores Para Reducir				
Los Niveles De Radiación	Revisión Sistemática	PRISMA		
En El Personal De Sala De				
Operaciones ¹				
Protección radiológica al				
primer operador en	Estudio randomizado,	STROBE		
procedimientos coronarios	prospectivo	SIKUDE		
por acceso radial derecho ⁴				

8. Nivel de evidencia y grado de recomendación / utilidad

Cuadro N° 08: Nivel de evidencia y grado de recomendación / utilidad						
Título de la	Tipo de	Metodología	Nivel de	Grado de		
Investigación	Investigación		Evidencia	Recomendación		
Eficacia Del Uso						
De Protectores						
Para Reducir Los		Revisión				
Niveles De	Cuantitativa	Sistemática	I	A		
Radiación En El						
Personal De Sala						
De Operaciones ¹						

RESULTADOS Y DISCUSIÓN

1. El Artículo para Revisión

a. Título de la Investigación secundaria que desarrollará:

EVIDENCIAS EN LA UTILIZACIÓN DE EQUIPOS DE PROTECCIÓN PARA REDUCIR LA RADIACIÓN EN EL PERSONAL DE SALA DE OPERACIONES.

- b. Revisor(es): Lic. Enf. Jacqueline Giovanna Cerdán Tello
- c. Institución: Escuela de Enfermería: Universidad Católica Santo Toribio de Mogrovejo.
 Chiclayo Perú.
- d. Dirección para correspondencia: Jacqui15_92@hotmail.com
- e. Referencia completa del artículo seleccionado para revisión:

Montoya G, Viena R. Eficacia del uso de Protectores para reducir los Niveles de Radiación en el Personal de Sala de Operaciones. 2017. [Consultado el 09 de octubre del 2018]. Disponible en: http://repositorio.uwiener.edu.pe/bitstream/handle/123456789/1413/TITULO%20%20 Montoya%20Gutierrez%2C%20Glendy.pdf?sequence=1&isAllowed=y

f. Resumen del artículo original:

El **objetivo** fue evaluar la eficacia del uso de protectores para reducir los niveles de radiación en el personal de sala de operaciones.

Los materiales y métodos de investigación se basaron en una revisión sistemática de 09 artículos con una antigüedad no mayor de 10 años de investigaciones de diseño tipo descriptivo, prospectivo y ensayos aleatorizados, la búsqueda se ha restringido a artículos con texto completo y los seleccionados se sometieron a una lectura crítica, analizándolos y utilizando el sistema GRADE para asignar la fuerza de recomendación. Los resultados fueron que del total de artículos analizados 90% (8/9) afirma la eficacia del uso de protectores como mandiles, gorros, collarín y gafas para reducir los niveles de radiación en el personal de Sala de Operaciones durante las cirugías intervencionistas. De los cuales 60% (4/9) artículos han demostrado el uso eficaz de gorros y 40% (2/9) artículos analizados han demostrado la eficacia del uso de las gafas plomadas como protectores indispensables para reducir la radiación.

En conclusión, los Protectores son eficaces para reducir los niveles de radiación en el Personal de sala de operaciones dentro las cirugías intervencionistas¹.

Entidad financiadora de la investigación y declaración de conflictos de interés: Ninguna.

Declaración de conflictos de interés: No declara conflictos de intereses.

E-mail de correspondencia de los autores del artículo original: No refieren

Palabras claves: Eficacia, protectores, radiación ionizante.

2. Comentario Crítico

Posterior a la validación de las 10 investigaciones seleccionadas mediante el empleo de la Guía de validez de Gálvez Toro, se procedió a seleccionar la investigación titulada "Eficacia del uso de Protectores para reducir los Niveles de Radiación en el Personal de Sala de Operaciones. 2017".

Dado que la investigación seleccionada se trató de una revisión sistemática, se determinó un nivel de evidencia I y grado de recomendación A según la clasificación GRADE¹⁵, y a quien se aplicará para el desarrollo y análisis del comentario crítico la Guía de declaración PRISMA¹⁶, la cual está diseñada para mejorar la integridad de las publicaciones de revisiones sistemáticas y metaanálisis. Para ello se dispone de 27 ítems que permitirán evaluar la calidad metodológica

de la Investigación, clasificándose en siete secciones (introducción, métodos, resultados y discusión) con dos secciones previas (título y resumen) y una posterior (financiación)¹⁷.

Respecto a las revisiones sistemáticas, estas son investigaciones científicas donde la unidad de análisis son los estudios originales primarios, utilizada para sintetizar diversas investigaciones disponibles, incrementar la validez de las conclusiones de estudios individuales e identificar áreas de incertidumbre donde sea necesario realizar investigación¹⁸. El principal beneficio de las revisiones sistemáticas, es que proporciona un alto nivel de evidencia sobre la eficacia de las intervenciones en temas de salud¹⁹.

En cuanto a la evaluación metodológica de la Revisión, la primera sección de la Guía PRISMA aborda lo referente a la redacción del **título**, en el cual debe identificar si se trata de un metaanálisis o de una revisión sistemática, sin embargo, el título de la investigación seleccionada no plantea ninguna de las opciones de la declaración. El artículo propone un título atractivo para los lectores, resume la idea principal de la investigación e identifica la variable y su relación con el trabajo de investigación, utiliza términos sencillos, claros y precisos para el lector. Cabe precisar que el título del trabajo de investigación es largo, porque excede las 15 palabras, pues está constituido por 21 palabras lo cual está fuera del rango permitido.

En cuanto a la redacción del **resumen** del artículo principal nos permite identificar de manera rápida y exacta el contenido básico, además es claro y fácil de entender, no excede las 250 palabras permitidas. El resumen incluye el objetivo detallado de una manera clara y precisa, material y método, diseño de investigación, resultado y conclusión. El resumen explica claramente en el primer párrafo el objetivo de la investigación, pero éste no menciona antecedentes de la revisión, fuente de datos, criterios de elegibilidad seleccionados, participantes e intervenciones, evaluación de los estudios y métodos de síntesis, limitaciones encontradas durante la búsqueda, así como el número de registro de la revisión sistemática, tal y como lo recomienda PRISMA. Es así que de esta manera no facilita un resumen estructurado para el artículo.

La introducción es la "puerta de entrada" de un trabajo. Una buena introducción sirve de presentación para que el lector obtenga una visión general del escrito. Cuando se realiza un trabajo escrito es necesario contar con una introducción, la utilidad de esta estructura gramatical es la de presentar al lector el tema que será tratado, exponiendo las causas que dan origen al

resto del texto o presentando los antecedentes necesarios para que el resto del documento pueda ser comprendido²⁰.

En cuanto a la **introducción**, los autores realizan una descripción amplia del problema analizado en el medio, tanto internacional como local, que incluye datos estadísticos y contraste con otros estudios, refiere el objetivo de la investigación, empieza hablándonos sobre los beneficios que trajo el descubrimiento de la radiación ionizante es estudiar estructuras del cuerpo humano, pero también los efectos indeseables que producen este tipo de radiaciones, como riesgo carcinogénico comprobado, después de una exposición sin las medidas adecuadas, por ello la importancia de utilizar las medidas de radioprotección que son efectivas para reducir la radiación.

En relación a la justificación, el autor realiza el estudio por los diversos beneficios que conlleva proteger al individuo, a su descendencia y a la población en general, de los riesgos de la utilización de equipos o materiales, que produzcan radiación ionizante, mediante el empleo de medidas de protección tales como collarín, lentes, delantales, etc. que protejan mayor parte del cuerpo.

Para la formulación de los objetivos de la revisión, los investigadores plantearon la interrogante ¿Cuál es la eficacia del uso de protectores para reducir los niveles de radiación en el personal de Sala de Operaciones? basada en el esquema PICO, que permitió direccionar la búsqueda que diera respuesta a los objetivos de la investigación. El objetivo plantea de forma explícita las preguntas en relación a los participantes (personal de Sala de Operaciones), las intervenciones como recudir los niveles de radiación, haciendo comparaciones en cuanto si son eficaces el uso de protectores para reducir niveles de radiación en el personal de sala de operaciones.

En la evaluación metodológica, la investigación describe el tipo de investigación abordada, la cual fue descriptiva, retrospectiva y prospectiva, siguiendo la línea de las revisiones sistemáticas, al recopilar información de fuentes primarias, sin embargo, no dispone de un protocolo de revisión, así como el número de registro del protocolo empleado para la selección de estudios. La importancia de que la investigación sujeta a estudio sea una revisión sistemática, es que este tipo de metodología constituye el más alto nivel de evidencia dentro de la jerarquía de la evidencia, la cual recoge información de investigaciones primarias, quienes siguen un

proceso de rigurosa evaluación, las mismos que son sometidos a análisis críticos y estadísticos de la información, para finalmente exponer los resultados de los trabajos²⁵.

Al respecto Vidal, et al, refiere que las revisiones sistemáticas son estudios muy útiles en la aplicación de la evidencia para la toma de decisiones en la administración en salud; se toman como base para la confección de guías de práctica clínica o análisis económicos, de decisión o evaluación del riesgo. En general en estudios de calidad y evaluación de tecnologías se incluyen las revisiones sistemáticas como parte de la evaluación de eficacia clínica de algunas tecnologías²⁶.

En cuanto a las fuentes de información, se tomaron un total de 09 investigaciones, cuyos criterios de búsqueda se basaron en estudios obtenidos de bases de datos en internet (Scielo, Pubmed, Medline, Elsevier, Cochrane Plus), con una antigüedad no mayor a los 10 años y publicados en idioma español, inglés y portugués. Estas descripciones son necesarias en las revisiones sistemáticas, dado que deben cumplir con el criterio de rigurosidad, el cual plantea describir los criterios de elegibilidad, inclusión, así como nivel de evidencia y calidad.

Se tomaron como criterios de elegibilidad a todos los estudios nacionales como internacionales que tuvieron como tema principal la eficacia del uso de mandiles, gorros, collarín y gafas plomadas para reducir los niveles de radiación en Sala de Operaciones; de todos los artículos que se encontraron, se incluyeron los más importantes según nivel de evidencia y se excluyeron los menos relevantes. Se estableció la búsqueda siempre y cuando se tuvo acceso al texto completo del artículo científico, para ello se formularon ecuaciones de búsqueda Eficacia AND mandiles plomados AND radiación, Eficacia AND gafas plomadas AND radiación, Gorros AND radiación AND quirófano, Collarín plomo AND radiación OR sala de operaciones. Deben ser mencionados además las fechas en las que se realizaron la recopilación, pese a ello, la investigación no ofrece información respecto a las fechas de búsqueda.

Referente a las medidas de resumen, la investigación empleó la metodología de razón de riesgos, definida como la comparación de resultados respecto al desarrollo de un evento en un grupo de sujetos expuestos al factor de exposición o factor de riesgo en relación con el grupo no expuesto²¹. En base a ello, el estudio realizó tablas resúmenes sobre los resultados de la exposición a radiación y la eficacia de cada una de las medidas de radioexposición empleada.

Para la evaluación del nivel de riesgo de sesgo de las investigaciones seleccionadas, se tuvo en cuenta la Clasificación GRADE^{27,28} para determinar los niveles de evidencia y recomendación que le permita dar mayor peso a los estudios que intervinieron en la revisión. Este tipo de clasificación otorga el nivel de evidencia respecto al tipo de metodología empleada en el estudio, así además el nivel de recomendación se apoya no solo en la calidad de la evidencia, sino en una serie de factores como son el balance entre riesgos y beneficios, los valores y preferencias de pacientes y profesionales, y el consumo de recursos o costes.

Otro de los limitantes encontrados en la revisión, es que no se describen con exactitud la cantidad de investigaciones encontradas y las variables encontradas que eliminaron el resto de los estudios.

Respecto a los resultados, las revisiones sistemáticas, deben de presentar un diagrama de flujo que permita la fácil identificación del número total de artículos encontrados, así como cada una de las variables que dieron la eliminación de los estudios hasta completar la totalidad de investigaciones sujetas a evaluación, sin embargo, esto no es presentado en el estudio. Al respecto Ferreira, et al¹⁸., refiere que es importante tener en cuenta que todo el proceso de localización y selección de estudios se ha de reportar correctamente, indicando en un diagrama de flujo los artículos identificados en cada fase, así como los eliminados y las causas de su eliminación.

Los resultados fueron presentados mediante tablas, resaltando las principales características de cada estudio, los mismos que incluyeron los siguientes datos de publicación: Autor, título, año de la publicación, link de la investigación, volumen y número de la revista, tipo y diseño, muestra, instrumentos, aspectos éticos, resultados y conclusiones, sin embargo, no se describen los principales riesgos de sesgo de cada investigación, lo cual reduce la confiabilidad de la revisión.

La revisión no presentó los resúmenes de las investigaciones seleccionadas, así como la estimación del efecto con su intervalo de confianza. Al respecto la guía PRISMA, aconseja que los intervalos de confianza deben ser presentados idealmente de forma gráfica, mediante un diagrama de bosque. Este gráfico es una especie de bosque donde los árboles serían los estudios primarios del metaanálisis y donde se resumen todos los resultados relevantes de la síntesis

cuantitativa. Así, cada estudio se representa por un cuadrado cuya área suele ser proporcional a la contribución de cada uno al resultado global²².

Referente a la Discusión de los resultados, estos resaltan la importancia de los diversos elementos de radioprotección, que aseguren el mantenimiento de la salud en el personal asistencial, pero no ofrece información respecto a las limitaciones del estudio, así como los riesgos de sesgos de los resultados encontrados.

Los resultados demostraron que de un total de 9 artículos (9/8) realizados coinciden que el uso de protectores, son eficaces para proteger la salud y la seguridad del personal que labora en Sala de Operaciones. Estos resultados también coinciden con las investigaciones realizadas por Uthoff H, et al⁸, Acosta L, et al¹⁰, Trujillo P, et al⁴, los cuales recalcan el empleo de gorros, gafas, collarines tiroideos, mandiles y protectores pélvicos para la radioprotección en cirugías intervencionistas y sobre todo el correcto empleo de estos para reducir la radioexposición.

Otro de los resultados relevantes, fue el uso de los gorros con materiales radio protector (con sulfato de bario-óxido de bismuto equivalente a 0,5 mm de Plomo), el cual resulta uno de los más eficaces en reducir la radiación, dado que gran parte del equipo de salud no empleaba este tipo de implementos, demostrándose la gran exposición que tenía esta cavidad durante los procedimientos, resultando importante el empleo de gorros para reducir los niveles de daño¹.

Se resalta también el empleo de gafas plomadas en las distintas cirugías Intervencionistas, dado que el globo ocular al ser un tejido blando, es muy susceptible a recibir daños secundarios a la radiación, siendo una de las estructuras más propensas, el cristalino, dado que dosis excesivas en el cristalino, sufre el riesgo de aparición de cataratas, muerte celular o inclusive mutación, ya que es la parte más radio sensible y que generalmente el algunos casos por no contar con el dispositivo o simplemente por incomodidad, no lo usan, haciendo que la dosis recibida en cada misión vaya en aumento y sobre pasando los límites normales que es de 20 (mSv)¹.

Se describen también, el uso de pollera pélvica plomada envolvente en el paciente está basada en el concepto de que la misma bloquea la emisión de radiación dispersa desde la zona pélvica. La radiación dispersa o secundaria, es la que se produce una vez que el haz primario de rayos x interactúa con el paciente esta hace un efecto rebote en el cuerpo y sale disparada en muchas direcciones al azar²³, el efecto de la pollera pélvica, es reducir la disipación de estos haces hacia

el mismo paciente y hacia el personal de salud, lo cual resulta bastante efectiva como medida de radioprotección.

Uno de los estudios recalcó el uso de un blindaje completo del cirujano y el personal a fin cuando haya la realización de procedimientos con fluoroscopia, la cual debe incluir mandil plomado que se solape en la zona delantera para formar una pantalla de 0,50mm, protector de tiroides y gafas plomadas con protección frontal y lateral como equipo básico. Sobre la Fluoroscopia, es un método de obtención de imágenes de rayos X en tiempo real, lo que es especialmente útil para guiar una gran variedad de exámenes diagnósticos e intervenciones.

Estos resultados concuerdan con los hallazgos de la investigación titulada, Protección radiológica para el Operador y personal de fluoroscopia, la misma que concluye que entre las prendas radioprotectoras que deben emplearse se encuentran los mandilones, collarines tiroidales, gafas plomadas, las cuales deben de cumplir con diseños ergonómicos que permitan el mejor desenvolvimiento del personal, así como el ajuste exacto al cuerpo para evitar la radiación dispersa⁹.

Si bien la exposición de los rayos X necesaria para producir una imagen fluoroscópica es baja (en comparación con la de una radiografía), los niveles de exposición de los pacientes pueden ser altos por la duración de las series de imágenes que habitualmente se toman en las exploraciones de fluoroscopia. Por lo tanto, el tiempo total de fluoroscopia es uno de los factores más importantes de la exposición del paciente en esta técnica²⁴. Es así que los niveles de radiación recibida por el personal de salud con técnica de fluoroscópica serán equivalentes al tiempo de exposición, es por ello que se recalca el uso de un blindaje completo para reducir los niveles de radiación.

Finalmente, respecto a las conclusiones, estas proporcionan una interpretación general de los resultados en el contexto de otras evidencias, pero no resalta el interés por investigar otra área de estudio respecto a la radioprotección. Al ser una investigación autofinanciada, no se describen roles de los financiadores.

3. Importancia de los resultados

La revisión demostró que el uso de protectores, son eficaces e importantes para proteger la salud y la seguridad del personal que labora en Sala de Operaciones, resultando imprescindible el empleo completo y correcto de los equipos de radioprotección, que reduzcan los efectos perjudiciales de la radiación. Estos datos servirán además de sustento técnico para promover la adquisición de equipos de radioprotección completos por la parte gerencial de las entidades hospitalarias.

4. Nivel de Evidencia

La determinación del nivel de evidencia se basó en la propuesta diseñada por el Scottish Intercollegiate Guidelines Network (SIGN), el cual pone énfasis en el análisis cuantitativo que aportan las Revisiones Sistemáticas; y otorga además importancia a la reducción del error sistemático o sesgo^{29, 30}. El estudio tuvo un nivel de evidencia de I , dado que se basó en una Revisión sistemática de ensayos clínicos o ensayos clínicos con alto riesgo de sesgos, dado que no se encontró información respecto a las limitaciones del estudio, así como los riesgos de sesgos de los resultados encontrados.

CONCLUSIONES

La revisión concluye dando una respuesta a la pregunta formulada que fué ¿Cuáles son las evidencias en la utilización de los equipos de protección para reducir los niveles de radiación en el personal de sala de operaciones? Dentro de las evidencias encontradas en la revisión, el 90 % de los artículos analizados recalcan el empleo de gorros, gafas, collarines tiroideos, mandiles para la radio protección en cirugías intervencionistas y sobre todo el correcto empleo de estos para reducir los niveles de radiación

Se encontraron además investigaciones que mencionan el empleo de protección pélvica plomada en el paciente sometido a cirugía, con el objetivo de reducir la radiación dispersa, producida por el efecto rebote sobre la radiación recibida por el paciente. El estudio demostró una reducción del 76% en la exposición a la radiación del operador en el grupo de protección de plomo, frente al grupo que no tuvo protección pélvica³¹.

RECOMENDACIONES

A las instituciones de salud, quienes deben de proveer de todos los insumos y equipos necesarios presentados en la actual revisión, que aseguren la protección en el personal de salud de sala de operaciones y reduzcan el riesgo de enfermedades ocupacionales por radiación.

Comunicación de los resultados al personal de las instituciones de salud que realicen procedimientos mediante el empleo de radiación en sala de operaciones, en quienes se deberá promover el uso completo y correcto de los equipos de radio protección.

A las instituciones de educación superior, para que desarrollen investigaciones primarias que busquen conocer la efectividad de los equipos de radio protección en la prevención de enfermedades en el personal de salud.

REFERENCIAS BIBLOGRÁFICAS

- Montoya G, Viena R. Eficacia del uso de Protectores para reducir los Niveles de Radiación en el Personal de Sala de Operaciones. 2017. [Consultado el 09 de Octubre del 2018] Disponible en: http://repositorio.uwiener.edu.pe/bitstream/handle/ 123456789/1413/TITULO%20%20Montoya%20Gutierrez%2C%20Glendy.pdf?seque nce=1&isAllowed=y
- 2. Yovera J. Evaluación de la Efectividad de los medios de Radioprotección en el personal de Imagenología del Hospital Nacional de Policía ocupacionalmente expuesto a radiaciones ionizantes en el periodo de Enero 2011 a Junio del 2011. 2015. [Consultado el 09 de octubre del 2018] Disponible en: http://cybertesis.unmsm.edu.pe/bitstream/handle/cybertesis/4283/Yovera_aj.pdf?sequence=1
- MINSA. Enfermedades Ocupacionales por Radiaciones Ionizantes. [Consultado el 10 de Octubre del 2018]. Disponible en: ftp://ftp2.minsa.gob.pe/docconsulta/documentos/ CT/nuevaversion/parte17.pdf
- 4. Trujillo P, et al. Protección radiológica al primer operador en procedimientos coronarios por acceso radial derecho. RevUrug Cardiol [Revista Online]; 2015. [Consultado el 09 de Octubre del 2018] 30. Disponible en: http://www.scielo.edu.uy/scielo.php? script=sci_arttext&pid=S1688-04202015000200005
- 5. Martín E, et al. Investigación secundaria: la revisión sistemática y el meta análisis. medes [Revista On-line]; 2008. [Consultado el 17 de octubre del 2018] 34(1). Disponible en: https://medes.com/publication/56932
- Marry karrier . Estudios en Enfermería. Avances de Enfermera Basada en la Evidencia.
 Canadá: Elsevier; 2015.
- Coello P, et al. Enfermería Basada en evidencia. Hacia la excelencia de los cuidados.
 [consultado el 17 de octubre del 2018]. Disponible en: https://bibliovirtual.files.wordpress.com/2012/03/enfermeriabasadaevidencia.pdf

- 8. Uthoff H, et al. Evaluación de nuevos dispositivos de protección contra la radiación ligeros y desechables en un entorno de radiología intervencionista: un ensayo controlado aleatorio. AJR [Revista online]; 2013. [Consultado el 18 de Octubre del 2018] 200(4). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23521470
- 9. Meisinger, et al. Protección radiológica para el Operador y personal de fluoroscopia. AJR. [Revista Online]; 2016. [Consultado el 18 de octubre del 2018] (207). Disponible en: https://www.ajronline.org/doi/full/10.2214/AJR.16.16556
- 10. Acosta L, et al. Importancia de la Protección Radiológica en los Servicios de Imagenología. [Consultado el 18 de octubre del 2018] Disponible en: http://riuc.bc.uc.edu.ve/bitstream/123456789/6538/1/joblanco.pdf
- 11. Azriel B, et al. Reducción de la exposición a la radiación del operador durante los procedimientos coronarios transradiales utilizando un simple rectángulo de plomo. Heliyon [Revista online]; 2017. [Consultado el 18 de octubre del 2018] 3(2) Disponible en: https://www.sciencedirect.com/science/article/pii/S240584401631739X
- 12. Haussen D, Van Der Bom I, Nogueira R. Una comparación prospectiva de casos y controles del sistema ZeroGravity versus un delantal de guía estándar como estrategia de protección radiológica en procedimientos neuroendovasculares. J Neurointerv Surg. [Revista online]; 2016. [Consultado el 18 de Octubre del 2018] 8(10). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26491039
- 13. Mohapatra A, et al. Exposición a radiación del personal de la sala de operaciones y pacientes durante procedimientos endovasculares. J Vasc Surg. [Revista online] [Consultado el 18 de octubre del 2018] 58(3). Disponible en: https://www.jvascsurg.org/article/S0741-5214(13)00330-3/fulltext
- 14. Ingwersen M, et al. Exposición a la radiación de los médicos en el laboratorio de cateterización: ¿el tipo de procedimiento es importante? JACC Cardiovasc Interv. [Revista online]. [Consultado el 18 de octubre del 2018] 6(10). Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24156970

- 15. Aguayo J, et al. Sistema GRADE: clasificación de la calidad de la evidencia y graduación de la fuerza de la recomendación. ELSEVIER [Revista Online]; 2014. [Consultado el 24 de setiembre del 2019] 92(2). Disponible en: https://www.elsevier.es/es-revista-cirugia-espanola-36-articulo-sistema-grade-clasificacion-calidad-evidencia-S0009739X13003394
- 16. Hutton B, et al. La extensión de la declaración PRISMA para revisiones sistemáticas que incorporan metaanálisis en red: PRISMA-NMA. ELSEVIER [Revista Online]; 2016. [Consultado el 24 de setiembre del 2019] 147(6). Disponible en: https://www.elsevier.es/es-revista-medicina-clinica-2-articulo-la-extension-declaracion-prisma-revisiones-S0025775316001512
- 17. Welch V, et al. Extensión PRISMA-Equidad 2012: guías para la escritura y la publicación de revisiones sistemáticas enfocadas en la equidad en salud. Rev Panam Salud Publica. [Revista Online]; 2013. [Consultado el 01 de octubre de 2019] 34(1). Disponible en: https://www.paho.org/journal/sites/default/files/09--SPEC--Welch--60-67_RD6.pdf
- 18. Ferreira I. Revisiones sistemáticas y metaanálisis: bases conceptuales e interpretación. Revista Española de Cardiología. [Revista Online]; 2011. [Consultado el 01 de octubre de 2019] Disponible en: https://www.revespcardiol.org/es-revisionessistematicas-metaanalisis-bases-conceptuales-articulo-S0300893211004507?redirect=true
- 19. Vidal M. Revisiones sistemáticas. Educ Med Super. [Revista Online]; 2015. [Consultado el 01 de octubre de 2019] 29(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid= S0864-21412015000100019
- 20. Tello R. Beneficios de las Medias de Compresión Graduada en la Prevención de la Trombosis Venosa Profunda y la Comodidad del Paciente Sometido a Cirugía. 2017. [Tesis]. Chiclayo: Universidad Católica Santo Toribio de Mogrovejo; 2017.
- 21. Dagnino J. Riesgo Relativo. Rev. chil. anest. [Revista Online]; 2015. [Consultado el 09 de octubre de 2019] 43(4). Disponible en: http://revistachilenadeanestesia.cl/riesgo-relativo-y-razon-de-ventajas/

- 22. Arias M. Aspectos metodológicos del metaanálisis. Rev Pediatr Aten Primaria. [Revista Online]; 2018. [Consultado el 09 de octubre de 2019] Disponible en http://archivos.pap.es/Empty/PAP/front/Articulos/Imprimir/_OrCjUxDG4croFblaIuW JH2fF0HqiaKTEU8xQBE28BbI
- 23. Radioblog Rx. Radiación dispersa en pruebas de servicio de radiodiagnóstico. 2015 [Consultado el 09 de octubre de 2019] Disponible en: http://radioblogrx.blogspot.com/2015/03/radiacion-dispersa-en-pruebas-de.html
- 24. IAEA. Fluoroscopia. [Consultado el 09 de octubre de 2019] Disponible en: https://rpop.iaea.org/RPOP/RPoP/Contentes/InformationFor/HealthProfessionals/1_Radiology/Fluoroscopy.htm
- 25. Moreno B, et al. Revisiones Sistemáticas: definición y nociones básicas. Scielo. [Revista Online]; 2018. [Consultado el 22 de noviembre de 2019] 11(3) Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0719-01072018000300184
- 26. Vidal M, et al. Revisiones Sistemáticas. Scielo [Revista Online]; 2015. [Consultado el 22 de noviembre de 2019] 29(1). Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21412015000100019
- 27. Aguayo, et al. Sistema GRADE: clasificación de la calidad de la evidencia y graduación de la fuerza de la recomendación. ELSEVIER [Revista Online]; 2014. Consultado el 22 de noviembre de 2019. Disponible en: https://www.elsevier.es/es-revista-cirugia-espanola-36-articulo-sistema-grade-clasificacion-calidad-evidencia-S0009739X13003394
- 28. Sanabria A, et al. Sistema GRADE: metodología para la realización de recomendaciones para la práctica clínica. ELSEVIER [Revista Online]; 2015. [Consultado el 22 de noviembre de 2019]. Disponible en; https://www.sciencedirect.com/science/article/pii/S0212656714000493

- 29. Monterola C, Asenjo C, Otzen T. Jerarquización de la evidencia. Niveles de evidencia y grados de recomendación de uso actual. Rev. chil. infectol. [Revista Online]; 2014 [Consultado el 20 de noviembre de 2019] 31(6). Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182014000600011
- 30. Gálvez Toro, A. Enfermería Basada en la Evidencia. Cómo incorporar la investigación a la práctica de los cuidados. Fundación Index: Granada. 2017.
- 31. Ashraf, et al. Protección contra la radiación con un protector de plomo para el paciente y una gorra quirúrgica libre de plomo para los operadores que realizan angiografía o intervención coronaria. 2015. [Consultado el 20 de noviembre de 2019]. Disponible en: http://circinterventions.ahajournals.org/content/8/8/e002384.full

ANEXOS

ANEXO 01

	CUADRO N°01 I	DESCRPCION DEL PROBLEMA
1	Contexto -Lugar	Sala de Operaciones
2	Personal de Salud	Equipo de Salud de Centro Quirúrgico
3	Paciente	
4	Problema	Radioexposición del personal de salud, falta de equipos de protección, inexistencia de protocolos de radioprotección y evaluación del personal de salud, uso inadecuado de los equipos de radioprotección, así como el incumplimiento en su empleo.
4.1	Evidencias internas: Justificación de práctica habitual	El personal no cuenta con el equipo completo de radioprotección incurriendo en algunas oportunidades, al alejamiento del área durante la toma de rayos x. No existen evaluaciones periódicas en el personal radioexpuesto para determinar la magnitud de daño ocasionado por la radiación.
4.2	Evidencias internas: Justificación de un cambio de práctica	Evaluación periódica de la efectividad de los equipos de radioprotección que permitan establecer el nivel de daño y desarrollar estrategias para la prevención de riesgos y enfermedades discapacitantes en el personal de sala de operaciones. Desarrollo de protocolos basados en la evidencia y normativas legales, que permitan la implementación de estándares de calidad en el empleo de medidas de radioprotección en el personal radioexpuesto.

5	Motivación del problema	Inexistencia de protocolos de actuación frente a
		la exposición de radiación en el equipo de salud
		de sala de operaciones.
		Alto riesgo en el desarrollo de enfermedades
		oncológicas y teratogénicas en el personal de
		salud expuesto a radiación ionizante.
		Déficit en las evaluaciones médicas en el personal
		de salud expuesto.

Cuadro	N° 05: Cuadro de r	egistro Bil	oliográfico		I	Г		I		
País, año	Título del artículo	Autor (es)	Revista (Volumen, año, número)	Link	Objetivo	Participan tes	Metodología y tipo de investigación y abordaje	Principale resultados		Conclusión
Estados	Evaluación de	Uthoff	AJR Am J	https://w	Evaluar la	Se asignó	Estudio	Se evaluare	on	Los casquillos
Unidos	nuevos	H, et al.	Roentgenol.	ww.ncbi.	efectividad y	al azar a	Cuantitativo	gorras		desechables
	dispositivos de		2013	nlm.nih.g	el confort de	dos	de diseño	desechables		livianos y los
	protección contra		Apr;200(4)	ov/pubme	los tapones y	operadores	Ensayo	livianas	у	collares de
	la radiación			d/235214	collares de	intervencio	aleatorio	collares	de	tiroides
	ligeros y			70	tiroides	nistas para	controlado.	tiroides		hechos de
	desechables en un				hechos de un	que usaran		hechos	de	XPF se
	entorno de				material	collares de		material lige	ro	consideraron
	radiología				desechable,	tiroides		como		cómodos de
	intervencionista:				liviano y sin	estándar.		cómodos	de	usar y brindan
	un ensayo				plomo (XPF)			usar,	у	protección
	controlado				para la			proporcional	1	contra la
	aleatorio.8				protección			protección		radiación
					radiológica			contra	la	similar a la de
					ocupacional			radiación		los collares de

					en un			similar a la de	tiroides
					entorno			collares	equivalentes
					clínico.			tiroidales de	de plomo
								plomo	estándar de
								equivalente a	0,5 mm.
								0,5 mm.	
Estados	Protección	Meising	AJR:207,	https://w	Los	No se	Revisión	Entre las	Los
Unidos	radiológica para	er, et al.	October	ww.ajronl	propósitos de	describe en	Bibliográfica	prendas	operadores y
	el Operador y		2016	ine.org/d	este artículo	el artículo		radioprotec	el personal de
	personal de			oi/full/10.	son revisar			toras que	fluoroscopia
	fluoroscopia ⁹			2214/AJ	los datos			deben	pueden
				R.16.165	disponibles			emplearse	reducir
				56	con respecto			se	considerable
					a la gama de			encuentran	mente su
					dispositivos			los	exposición a
					de			mandilones	la radiación
					protección y			, collarines	al usar
					prendas con			tiroidales,	prendas
					un enfoque			gafas	protectoras
					en la			plomadas,	que se ajusten

					protección			las cuales	correctamente
					ocular y			deben de	, colocar
					resumir las			cumplir con	dispositivos
					técnicas para			diseños	de protección
					reducir la			ergonómic	para bloquear
					exposición a			os que	la radiación
					la radiación			permitan el	dispersa y
					dispersa.			mejor	cumplir con
								desenvolvi	las buenas
								miento del	prácticas de
								personal,	radiación.
								así como el	
								ajuste	
								exacto al	
								cuerpo para	
								evitar la	
								radiación	
								dispersa.	
Venezu	Importancia de la	Acosta	Repositorio	http://riuc	Promover las	-	Documental	El artículo	Es de suma
ela	Protección	L, et al.	Institucional	.bc.uc.ed	conductas		bibliográfico	hace	importancia el
	Radiológica		de	u.ve/bitstr	radioéticas,			referencia	uso de

en los Servicios	Universidad	eam/1234	reduciendo	que para	protectores en
de	de	56789/65	así los	evitar	los exámenes
Imagenología. ¹⁰	Carabobo;	38/1/jobl	niveles de	riesgos de	radiológicos
	2013.	anco.pdf	exposición a	exposición,	tanto para el
			la radiación	se debe	especialista
			tanto para los	hacer uso	como para los
			pacientes	de diversos	pacientes
			como para el	medios de	para evitar
			personal que	protección	efectos
			allí labora.	como	nocivos para
				blindajes	la salud.
				plomados	
				para sí	
				mismo y	
				para los	
				pacientes,	
				así	
				también, es	
				indispensab	
				le el	
				conocimien	

									to de la	
									operación	
									de estos	
									implement	
									os y la	
									aplicación	
									de	
									conductas	
									radioeficie	
									ntes	
									obtenidos	
									mediante la	
									oportuna y	
									correcta	
									capacitació	
									n en	
									protección	
									radiológica.	
Israel	Reducción de la	Azriel	Heliyon	https://w	Evaluar	la	26	Estudio	Entre los 26	La
	exposición a la	B, et al.	Volume 3,	ww.scien	eficacia	de	operadores	prospectivo,	pacientes	protección
	radiación del		Issue 2,	cedirect.c	un atenu	ador	estándar	observacional	asignados	adicional

operador durante	February	om/scien	de plomo en		al	con el uso
los	2017	ce/article/	la reducción		atenuador	de un
procedimientos		pii/S2405	de la		de plomo,	atenuador-
coronarios		84401631	exposición a		hubo una	rectángulo
transradiales		739X	la radiación		reducción	de plomo,
utilizando un			durante la		significativ	redujo
simple rectángulo			PCI		a en la	significativ
de plomo ¹¹			transradial.		radiación	amente la
					medida del	exposición
					94,5% (p	a la
					<0,0001),	radiación
					en	del
					comparació	operador
					n con el	primario,
					atenuador	que puede
					de plomo.	conferir
						beneficios
						a largo
						plazo en la
						reducción
						de lesiones

									inducidas
									por
									radiación.
Perú	Eficacia Del Uso	Montoy	2017	http://rep	Evaluar la	ι 09	Revisión	Ocho de los	Los
	De Protectores	a		ositorio.u	eficacia de	l Artículos	Sistemática	nueve	Protectores
	Para Reducir Los	Gutierre		wiener.ed	uso de	seleccionad		artículos	son eficaces
	Niveles De	z,		u.pe/bitstr	protectores	os		analizados	para reducir
	Radiación En El	Glendy		eam/hand	para reduci	r		demostraro	los niveles de
	Personal De Sala	Viena		le/123456	los			n que el uso	radiación en el
	De Operaciones ¹	Saavedr		789/1413	niveles de			adecuado	personal de
		a,		/TITULO	radiación e	n		de los	sala de
		Romina		%20-	el persona	1		protectores	operaciones
		Paola		%20Mont	de sala de			como	dentro las
				oya%20G	operaciones			mandil,	cirugías
				utierrez%				collarín,	intervencionis
				2C%20Gl				gorros y	tas.
				endy.pdf?				gafas, por	
				sequence				el personal	
				=1&isAll				de Sala de	
				owed=y				Operacione	
								s en las	

								diversas	
								cirugías	
								intervencio	
								nistas es	
								eficaz para	
								disminuir	
								las dosis de	
								radiación	
								en el	
								cuerpo.	
Estados	Una comparación	Haussen	J	https://w	Comparar el	Dos	Estudio	La dosis	El sistema
Unidos	prospectiva de	DC, Van	Neurointerv	ww.ncbi.	rendimiento	operadores	Comparado de	máxima en	de
	casos y controles	Der	Surg. 2016	nlm.nih.g	del sistema	realizaron	Casos y	la piel a la	protección
	del sistema	Bom	Oct;8(10)	ov/pubme	ZeroGravity	un total de	Controles	cabeza del	contra la
	ZeroGravity	IM,		d/264910	(ZG)	122		operador	radiación
	versus un delantal	Nogueir		39	(sistema de	procedimie		con AL fue	ZG
	de guía estándar	a RG.			protección	ntos		2.1 veces	conduce a
	como estrategia				contra la	durante el		mayor	una
	de protección				radiación	período de		(3380 vs	exposición
	radiológica en				compuesto	estudio.		1600 μSv),	a la
	procedimientos				por un traje	_		mientras	radiación

neuroendovascul	de plomo	que la	sustancial
ares. ¹²	suspendido)	tiroides fue	mente
	con el uso de	13.9 (4460	menor para
	protección	vs 320	el operador
	estándar	μSv), el	en
	(delantal de	mediastino	procedimie
	plomo (LA),	infinitamen	ntos
	escudo de	te (520 vs 0	neurointerv
	tiroides,	μSv) y el	encionales.
	anteojos de	pie 3.3	
	plomo,	veces	
	faldas de	mayor	
	mesa y	(4870 vs	
	protector de	1470 μSv)	
	techo	en	
	suspendido)	comparació	
	en	n con el	
	procedimient	operador	
	os de	ZG, lo que	
	neuroangiog	lleva a una	
	rafía.	dosis	

								acumulada	
								general 4	
								veces	
								mayor.	
Estados	Exposición a	Mohapat	J Vasc Surg.	https://w	Caracterizar	Se usó la	Estudio	El	El
Unidos	radiación del	ra A, et	2013	ww.jvasc	la exposición	dosimetría	Prospectivo	dosímetro	dosímetro
	personal de la	al.	Sep;58(3)	surg.org/a	a la radiación	en tiempo		en el	en el
	sala de			rticle/S07	en pacientes	real para		equipo de	equipo de
	operaciones y			41-	y personal de	medir las		anestesia	anestesia
	pacientes durante			5214(13)	quirófano	dosis a los		recibió 143	registró las
	procedimientos			00330-	durante los	operadores,		μSv (38-	dosis más
	endovasculares ¹³			3/fulltext	procedimient	a la		247) más	altas
					os	enfermera		radiación	atribuibles
					fluoroscópic	de lavado,		por caso	a un
					os.	al		que el	apantallam
						tecnólogo		operador	iento
						radiológico		promedio,	ineficaz.
						(RT) y al		y la	Los
						anestesiólo		enfermera	operadores
						go en 39		de lavado y	pueden
						casos de		RT	reducir la

			reparación	recibier	on	dosis
			de	106	μSv	efectiva
			aneurisma	(66-146	6) y	para ellos
			aórtico.	100	μSv	mismos, el
				(55-145	5)	paciente y
				menos,		otro
				respect	iva	personal al
				mente.	Al	minimizar
				ajustar	los	el uso de la
				delanta	les	resta
				protect	ores	digital,
				de pl	lomo	evitando la
				según	la	angulación
				metodo	ologí	lateral,
				a	de	usando
				Webste	er, el	niveles de
				operad	or	aumento
				promed		más altos
				recibió	una	cuando sea
				dosis		posible, y
						siendo

									efe	ectiva de	dilige	entes
									38	μSv.	en e	l uso
									La	tasa de	de bl	indaje
									dos	sis	duran	ite
									pro	omedio	casos	de
									par	a un	fluoro	oscopi
									ope	erador	a.	
									fue	e de 1.78		
									(1	37- 2.31)		
									vec	ces más		
									alta	a en una		
									pro	yección		
									late	eral que		
									en	una		
									pro	yección		
									pos	sterior-		
									ant	erior.		
Perú	Evaluación de la	Yovera	2015	http://cyb	Evaluar	la	46	Cuantitativo,	Al	procesar	La	
	Efectividad de los	J.		ertesis.un	efectivid	ad	trabajadore	prospectivo,	los		autoev	aluació
	medios de			msm.edu.	de	los	S	transversal,	cues	tionarios	n de	emostró
	Radioprotección			pe/bitstre	medios	de	ocupaciona	observacional.	con	el	que	los

en el personal de	am/handl	Radioprotec	lmente	software SPSS	trabajadores
Imagenología del	e/cyberte	ción en el	expuestos.	encontramos	poseen un
Hospital	sis/4283/	personal de		conocimientos	excelente
Nacional de	Yovera_a	Imagenologí		que se	conocimiento
Policía	j.pdf?seq	a del		presentan	y aplicación
ocupacionalment	uence=1	Hospital		agrupados de	de las normas
e expuesto a		Nacional de		acuerdo a las	de
radiaciones		Policía		actividades	radioprotecció
ionizantes en el		ocupacional		profesionales	n,
periodo de Enero		mente		que realizan.	observándose
2011 a Junio del		expuesto a		La	en ellos la
2011 ²		radiaciones		responsabilida	posesión de
		ionizantes en		d del auxiliar	actitudes
		el periodo de		de radiología	idóneas para
		Enero a junio		es diferente al	el trabajo en el
		del 2011.		del Tecnólogo	servicio de
				médico o al	Imagenología
				del Médico.	del Hospital.
				Claramente se	
				aprecia que los	
				auxiliares de	

								radiología,	
								cumplen al	
								100% con los	
								conocimientos	
								que dan	
								soporte a sus	
								actividades	
								profesionales	
								de esta unidad	
								de	
								competencia.	
Canadá	Exposición a la	Ingwers	JACC	https://w	Evaluar las	Las dosis	Estudio	El tipo de	Los
	radiación de los	en M, et	Cardiovasc	ww.ncbi.	diferencias	de	Comparativo,	procedimie	procedimiento
	médicos en el	al.	Interv. 2013	nlm.nih.g	en la	radiación	prospectivo	nto, el	S
	laboratorio de		Oct;6(10)	ov/pubme	exposición a	de 3		índice de	endovasculare
	cateterización:			d/241569	la radiación	operadores		masa	s para la
	¿el tipo de			70	del operador	se midieron		corporal del	enfermedad
	procedimiento es				según el tipo	por		paciente y	pélvica, de las
	importante? ¹⁴				de	dosimetría		el tiempo	extremidades
					procedimient	en tiempo		de	superiores y
					o de	real para el		fluoroscopi	debajo de la

					laboratorio	cuerpo, el		a se	rodilla se
					de	cuello y la		asociaron	acompañan de
					cateterizació	mano		de forma	una mayor
					n.	durante		independie	exposición al
						284		nte con la	operador por
						procedimie		exposición	radiación que
						ntos en 281		a la	con los
						pacientes		radiación	procedimiento
						durante un		del	s coronarios.
						período de		operador.	
						14			
						semanas.			
Urugua	Protección	Trujillo	Rev.Urug.Ca	http://ww	Evaluar el	Se incluyó	Estudio	El uso de	En este
у	radiológica al	P, et al.	rdiol. vol.30	w.scielo.e	efecto del	un total de	randomizado,	protección	escenario del
	primer operador		no.2	du.uy/sci	uso de 4P	100	prospectivo	pélvica	mundo real, el
	en		Montevideo	elo.php?s	sobre la	pacientes		plomada	uso de 4P no
	procedimientos		ago. 2015	cript=sci_	radiación			aplicada al	se asoció con
	coronarios por			arttext&p	recibida por			paciente	una
	acceso radial			id=S1688	el PO en			(4P), no se	disminución
	derecho ⁴			-	procedimient			asoció con	de la DPO en
				04202015	os de AC con			una	procedimiento

		00020000	O	sin		disminució	s de AC con o
		5	angioplas	tia		n de la	sin ATC ni
			(ATC)	por		Dosimetría	con un cambio
			ARD.			del primer	en la relación
						operador	PKA-DPO en
						(DPO) ni	procedimiento
						con un	s de AC o
						cambio en	ATC por
						la relación	ARD,
						producto	realizados por
						KERMA	operadores
						(KineticEn	con valores
						ergyReleas	promedio de
						ed in a	radiación
						Material)	aceptables
						en	internacional
						procedimie	mente.
						ntos de	
						Angiografí	
						a Coronaria	
						О	

				Angiografí
				a coronaria
				con
				angioplasti
				a por
				acceso
				radial
				derecho,
				realizados
				por
				operadores
				con valores
				promedio
				de
				radiación
				aceptables
				internacion
				almente.

ANEXO 02

ARTÍCULO 01 Validez y utilidad aparentes según Gálvez Toro Título de la investigación a validar: Evaluación de nuevos dispositivos de protección contra la radiación ligeros y desechables en un entorno de radiología intervencionista: un ensayo controlado aleatorio. Metodología: Ensayo aleatorio controlado. Año:2013 Descripción Respuesta* **Pregunta** ¿Cuáles son los resultados evaluaron investigación gorras o los hallazgos? realiza un estudio desechables livianas y collares de tiroides hechos de material comparativo entre ligero como cómodos de usar. el uso de collares y proporcionan protección tiroideos contra la radiación similar a la materiales ligeros de collares tiroidales de plomo encontrando equivalente a 0,5 mm. similares datos de protección, la cual resulta ser efectiva baja por la radiación recibida. Lo resuelve ¿Parecen útiles El estudio nos muestra la los hallazgos para mi efectividad de la protección parcialmente problema? mediante el uso de collarines tiroidales, pero no expresa la protección efectuada por el equipo completo. Al referir que los equipos de ¿Son aplicables los Puedo aplicarlo resultados protección de material ligeros para la resolución del problema en son efectivos en reducir el tu medio? grado de exposición a nivel tiroideo, estas medidas podrían ser adaptadas nuestro medio hospitalario ya que si se dispone de estos equipos y sería más rentable para la entidad hospitalaria. ¿Son seguras las evidencias Antes de la participación de Si los sujetos de investigación, se para el paciente? pidió la firma del consentimiento informado. ¿Son válidos los resultados Los datos fueron Comparado Si y los hallazgos? usando un estudiante sin pareja de dos caras Prueba t,

prueba chi-cuadrada o Mannno paramétrica Whitney U prueba según sea apropiado. Aparte de la evaluación Para no inferioridad, todas las pruebas de significación fueron bilaterales, y valores de p <0,05 fueron considerados para indicar significación estadística.

El protocolo de estudio fue aprobado por la junta de revisión institucional y la Normas de reporte de los Estándares Consolidados de declaración de ensayos de información.

* Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 02

Título de la investigación a validar: Protección radiológica para el Operador y personal de fluoroscopia

Metodología: Revisión Bibliográfica

Año: 2016

Pregunta	Descripción	Respuesta*
¿Cuáles son los resultados o los hallazgos?	Entre las prendas radioprotectoras que deben emplearse se encuentran los mandilones, collarines tiroidales, gafas plomadas, las cuales deben de cumplir con diseños ergonómicos que permitan el mejor desenvolvimiento del personal, así como el ajuste exacto al cuerpo para evitar la radiación dispersa.	Se describen los principales equipos de radioprotección que deben ser empleados por el personal de salud los cuales se contrastan con la actual bibliografía.

¿Parecen útiles los hallazgos para mi problema? ¿Los hallazgos dan respuesta explícita a su problema o no?	Se determinó qué medio de radioprotección deben ser empleados por el personal expuesto a radiación intervencionista.	Lo resuelve
¿Son aplicables los resultados para la resolución del problema en tu medio?	Se detallan equipos y materiales cuya implementación podría justificarse para el empleo por el personal de salud en la entidad hospitalaria.	Puedo aplicarlo
¿Son seguras las evidencias para el paciente?	No se refieren en el artículo	No
¿Son válidos los resultados y los hallazgos?	No se refieren en el artículo	No

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes s	Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 03						
Título de la investigación a Servicios de Imagenología. Metodología: Documental Bib	validar: Importancia de la Protecco	ción Radiológica en los					
Año:2013							
Pregunta	Descripción	Respuesta*					
¿Cuáles son los resultados o los hallazgos?	El artículo hace referencia que para evitar riesgos de exposición, se debe hacer uso de diversos medios de protección como blindajes plomados para sí mismo y para los pacientes, así también, es indispensable el conocimiento de la operación de estos implementos y la aplicación de conductas radio eficientes obtenidos mediante la oportuna y correcta capacitación en protección radiológica.	Se describen las diferentes medidas que deben ser adoptados por el personal para reducir la radioexposición, así como el riesgo sobre el estado de salud en los trabajadores.					
¿Parecen útiles los hallazgos para mi problema?	Se determinó que los medios de radioprotección son imprescindibles en los servicios de imagenología y su aplicación debe ser éticamente obligatoria.	Lo resuelve					

¿Son aplicables los resultados para la resolución del problema en tu medio?	El estudio describe la importancia que tiene el empleo de las correctas medidas de radioprotección, mas no orienta los cuidados que deben realizarse durante la exposición a radiación.	No puedo aplicarlo
¿Son seguras las evidencias para el paciente?	Dado al diseño de investigación, no se realizó pruebas ni estudios sobre humanos.	Si
¿Son válidos los resultados y los hallazgos?	No se describe la metodología de búsqueda empleada.	No

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gá	lvez Toro	ARTÍCU	JLO 04
Título de la investigación a validar:	Reducción de la	evnosición	a la rad

Título de la investigación a validar: Reducción de la exposición a la radiación del operador durante los procedimientos coronarios transradiales utilizando un simple rectángulo de plomo.

Metodología: Estudio prospectivo, observacional.

Año	.20	17
AIIO	- 40	

Ano:2017		
Pregunta	Descripción	Respuesta*
¿Cuáles son los resultados o los hallazgos?	La protección adicional con el uso de un atenuador-rectángulo de plomo, redujo significativamente la exposición a la radiación del operador primario, que puede conferir beneficios a largo plazo en la reducción de lesiones inducidas por radiación.	Se demuestra una mayor reducción de la exposición, añadiendo un atenuador rectángulo de plomo.
¿Parecen útiles los hallazgos para mi problema?	En el estudio se postuló el uso (además de los equipos de protección), de un rectángulo de plomo el cual contribuye a una mayor eficacia en la reducción de la radioexposición.	Lo resuelve
¿Son aplicables los resultados para la resolución del problema en tu medio?	En este estudio hemos demostrado que un atenuador de plomo no desechable redujo significativamente la dosis de radiación al operador primario. Un rectángulo de plomo rentable	Puedo aplicarlo

	colocado sobre el abdomen inferior y superior del paciente y los muslos, redujeron la radiación medida en> 94%	
¿Son seguras las evidencias para el paciente?	El estudio fue aprobado por el comité de revisión institucional de Helsinki, aplicando el consentimiento informado a los pacientes y operador primario.	Si
¿Son válidos los resultados y los hallazgos?	Se utilizaron análisis de variante para comparar variables continuas. La prueba X2 se utilizó para comparar variables categóricas. Una p2 <0.05 fue considerada estadísticamente significativa.	Si

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 05		
Título de la investigación a validar: Eficacia Del Uso De Protectores Para reducir Los Niveles De Radiación En El Personal De Sala De Operaciones.		
Metodología: Revisión Sistem	ática	
Año:2017		
Pregunta	Descripción	Respuesta*
¿Cuáles son los resultados o los hallazgos?	Ocho de los nueve artículos analizados demostraron que el uso adecuado de los protectores como mandil, collarín, gorros y gafas, por el personal de Sala de Operaciones en las diversas cirugías intervencionistas es eficaz para disminuir las dosis de radiación en el cuerpo.	Las revisiones demostraron que el empleo de los equipos de protección reduce significativamente la exposición a radiación.
¿Parecen útiles los hallazgos para mi problema? ¿Los hallazgos dan respuesta explícita a su problema o no?	El estudio demuestra que el uso completo y correcto de los equipos de protección, favorecen la reducción de la exposición en el personal de salud.	Lo resuelve parcialmente
¿Son aplicables los resultados para la resolución del problema en tu medio?	Los resultados pueden ser trasladados a la realidad y basados en la evidencia,	Puedo aplicarlo

	solucionar el problema de exposición a radiación.	
¿Son seguras las evidencias para el paciente?	El estudio refiere que para la selección de los artículos de investigación, se comprobó que cada una de ellas haya cumplido a rigurosidad con los principios éticos planteados a nivel internacional y no se haya expuesto a ningún ser humano durante los estudios.	Si
¿Son válidos los resultados y los hallazgos?	Revisión sistemática de 09 artículos con una antigüedad no mayor de 10 años de investigaciones de diseño tipo descriptivo, prospectivo y ensayos aleatorizados, la búsqueda se ha restringido a artículos con texto completo y los seleccionados se sometieron a una lectura crítica, utilizando el sistema GRADE para asignar la fuerza de recomendación.	Si

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 06		
	ralidar: Una comparación prospecta s un delantal de guía estándar como neuroendovasculares.	•
Metodología: Estudio Compar	rado de Casos y Controles	
Año: 2016		
Pregunta	Descripción	Respuesta*
¿Cuáles son los resultados o los hallazgos?	El sistema de protección contra la radiación ZG conduce a una exposición a la radiación sustancialmente menor para el operador en procedimientos neurointervencionales.	Si bien se trata de un estudio comparado entre los equipos de protección tradicional y el sistema ZeroGravity, el estudio demuestra eficacia en la radioprotección, siendo el último,

		sustancialmente más eficaz que el primero.
¿Parecen útiles los hallazgos para mi problema? ¿Los hallazgos dan respuesta explícita a su problema o no?	Los estudios comparativos demuestran la eficacia de los equipos de radioprotección, lo cual sirve de base para responder a la pregunta clínica de la investigación.	Lo resuelve
¿Son aplicables los resultados para la resolución del problema en tu medio?	El estudio hace referencia a la reducción sustancial de la exposición con el uso del sistema ZeroGravity en comparación con los delantales normalmente usados, por lo cual la implementación de este sistema no sería económicamente sustentable en nuestra realidad por los pocos beneficios ofrecidos.	No puedo aplicarlo
¿Son seguras las evidencias para el paciente?	El artículo refiere que el estudio fue aprobado por la junta de revisión institucional, sin embargo, no hace referencia a cómo fueron aplicados los principios bioéticos.	No
¿Son válidos los resultados y los hallazgos?	Se realizaron comparaciones entre grupos para las variables continuas / ordinales con la prueba t de Student, Mann-Whitney U o ANOVA, según corresponda. Las variables categóricas fueron comparadas por x2 o Fisher exacto prueba, según corresponda.	Si

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 07

Título de la investigación a validar: Exposición a radiación del personal de sala de operaciones y pacientes durante procedimientos endovasculares.

Metodología: Estudio Prospectivo.

Año: 2013		
Pregunta	Descripción	Respuesta*
¿Cuáles son los resultados o los hallazgos?	El dosímetro en el equipo de anestesia registró las dosis más altas atribuibles a un apantallamiento ineficaz. Los operadores pueden reducir la dosis efectiva para ellos mismos, el paciente y otro personal al minimizar el uso de la resta digital, evitando la angulación lateral, usando niveles de aumento más altos cuando sea posible, y siendo diligentes en el uso de blindaje durante casos de fluoroscopia.	Dado a la poca efectividad de la radioprotección en el personal de salud, es que el estudio propone medidas que deben ser adoptadas por el personal para reducir la radioexposición.
¿Parecen útiles los hallazgos para mi problema? ¿Los hallazgos dan respuesta explícita a su problema o no?	El estudio refiere que el personal empleó mandilón, collarín protector de tiroides, gafas, escudos transparentes montados en el techo y faldas de plomo de mesa, sin embargo los resultados demostraron una mayor sobreexposición a la radiación por las diversas prácticas empleadas por el personal.	No lo resuelve
¿Son aplicables los resultados para la resolución del problema en tu medio?	Los sesgos encontrados en el estudio, limitan la aplicabilidad al medio.	No puedo aplicarlo
¿Son seguras las evidencias para el paciente?	El artículo refiere que los participantes firmaron un formulario de consentimiento informado, aprobado por la Junta de Revisión de Investigación.	Si
¿Son válidos los resultados y los hallazgos?	El artículo refiere que tuvieron como limitaciones un tamaño de muestra pequeño y restricción a un solo procedimiento, lo que reduce su aplicabilidad a otras situaciones. También refiere la variación de técnicas al momento de realizar los	No

procedimientos, lo que generaba
variaciones en los resultados.

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 08

Título de la Investigación a Validar: Evaluación de la Efectividad de los medios de Radioprotección en el personal de Imagenología del Hospital Nacional de Policía ocupacionalmente expuesto a radiaciones ionizantes en el periodo de Enero 2011 a Junio del 2011.

Metodología: Cuantitativo, prospectivo, transversal, observacional.

Año:2015

Pregunta	Descripción	Respuesta*
		_
¿Cuáles son los resultados o los hallazgos?	La autoevaluación demostró que los trabajadores poseen un excelente conocimiento y aplicación de las normas de radioprotección, observándose en ellos la posesión de actitudes idóneas para el trabajo en el servicio de Imagenología del Hospital.	El estudio hace referencia en cuanto a los conocimientos por parte del personal radioexpuesto a cirugías con empleo de radiación ionizante, mediante la aplicación de un cuestionario.
¿Parecen útiles los hallazgos para mi problema? ¿Los hallazgos dan respuesta explícita a su problema o no?	Los resultados y conclusiones encontradas no responden a los objetivos de la investigación, pues solo está dirigida a determinar el nivel de conocimientos.	No lo resuelve
¿Son aplicables los resultados para la resolución del problema en tu medio?	Los resultados hallados no pueden ser empleados como medidas a aplicar en el medio, por el tipo de metodología empleada y resultados del estudio.	No puedo aplicarlo
¿Son seguras las evidencias para el paciente?	El estudio hace referencia a los principios bioéticos aplicados, basados en la no maleficencia y confidencialidad de los participantes.	Si

¿Son válidos los resultados y	No hace referencia a los No
los hallazgos?	parámetros estadísticos
	empleados en la contrastación
	de hipótesis.

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes según Gálvez Toro ARTÍCULO 09 Título de la investigación a validar: Exposición a la radiación de los médicos en el laboratorio de cateterización: ¿el tipo de procedimiento es importante? Metodología: Estudio Comparativo, prospectivo. Año:2013 Respuesta* **Pregunta** Descripción ¿Cuáles son los resultados o Los procedimientos resultados los los hallazgos? endovasculares encontraron, para describe la cantidad enfermedad pélvica, las extremidades superiores de radiación recibida V de acuerdo a cada debajo de la rodilla se acompañan de procedimiento una mayor exposición al operador por realizado, siendo los radiación procedimientos que con los procedimientos coronarios. coronarios los de menor exposición a la radiación. ¿Parecen útiles los hallazgos El estudio solo compara qué No lo resuelve para mi problema? tipos de intervenciones tienen un mayor grado de exposición, mas no a la eficacia en sí de los equipos de radioprotección. ¿Son aplicables los resultados resultados Los encontrados Puedo aplicarlo la resolución pueden para del ser tomados para problema en tu medio? sustentar las técnicas de radioprotección que deben se al empleo de los sumarse equipos para reducir exposición a radiación. ¿Son seguras las evidencias El estudio no hace referencia a No para el paciente? principios bioéticos aplicados. ¿Son válidos los resultados y Para el análisis descriptivo, e Si los hallazgos? empleó los medios y desviaciones estándar. determinar la asociación entre la dosis efectiva, la dosis ocular o

la dosis de mano y el tipo del procedimiento, se utilizó 3 modelos mixtos con cada tipo de dosis. Las variables estadísticas tuvieron un IC de confianza del 95% y utilizando un nivel de significación del 5%.
--

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

Validez y utilidad aparentes s	según Gálvez Toro ART	TÍCULO 10	
Título de la investigación a validar: Protección radiológica al primer operador en			
procedimientos coronarios por acceso radial derecho. Metodología: Estudio randomizado, prospectivo			
Año: 2015			
Pregunta	Descripción	Respuesta*	
¿Cuáles son los resultados o los hallazgos?	El uso de protección pélvica plomada aplicada al paciente (4P), no se asoció con una disminución de la Dosimetría del primer operador (DPO) ni con un cambio en la relación producto KERMA (Kinetic Energy Released in a Material) área-DPO en procedimientos de Angiografía Coronaria o Angiografía coronaria con angioplastía por acceso radial derecho, realizados por operadores con valores promedio de radiación aceptables internacionalmente.	La inserción de protección plomada a nivel pélvico en pacientes sometidos a procedimientos cardiacos intervencionistas, no resultó ser más eficaz que los equipos de radioprotección normalmente empleados, siendo ambos igualmente efectivos.	
¿Parecen útiles los hallazgos para mi problema?	El estudio refiere que en todos los casos se utilizó: falda, chaleco, protector cervical, lentes, mampara colgante adecuadamente posicionada y cortina bajo mesada, todos de plomo o de material equivalente a 0,5 mm de plomo, añadiendo o no, el uso de 4P, demostrando	Lo resuelve parcialmente	

eficacia en la radioprotección.

¿Son aplicables los resultados para la resolución del problema en tu medio?	Ya que el estudio demostró datos significativamente semejantes en cuanto al uso o no del protector pélvico plomado en radioprotección, esta información puede ser tomada para dejar de lado el empleo de 4P en áreas de procedimientos coronarios.	Puedo aplicarlo
¿Son seguras las evidencias para el paciente?	En todos los casos se obtuvo consentimiento informado escrito del paciente para participar en el estudio	Si
¿Son válidos los resultados y los hallazgos?	randomización: grupo con protección pélvica (grupo 4P) y grupo sin protección pélvica (grupo no 4P)	Si

^{*} Cualquier respuesta negativa o la dificultad de obtener una conclusión clara y explícita tras la lectura de un estudio son suficientes para excluir el estudio. Esta lista de comprobación rápida permite descartar muchos estudios con la simple lectura del resumen.

ANEXO 03:

RESUMEN DE ARTÍCULOS ORIGINALES

ARTÍCULO 01: EVALUACIÓN DE NUEVOS DISPOSITIVOS DE PROTECCIÓN CONTRA LA RADIACIÓN LIGEROS Y DESECHABLES EN UN ENTORNO DE RADIOLOGÍA INTERVENCIONISTA: UN ENSAYO CONTROLADO ALEATORIO.

OBJETIVO. El objetivo de este estudio fue evaluar la efectividad y el confort de los de los tapones y collares tiroidales hechos de un material desechable, liviano y sin plomo (XPF) para la protección de la radiación ocupacional en un entorno clínico.

SUJETOS Y MÉTODOS. Se asignaron al azar hasta dos operadores intervencionistas para usar collares de tiroides estándar equivalentes al plomo de 0,5 mm o collares de tiroides hechos de XPF en 60 procedimientos endovasculares consecutivos que requieren fluoroscopia. Simultáneamente, todos los operadores llevaban una gorra de XPF. Las dosis de radiación se midieron utilizando dosímetros colocados fuera y debajo de las tapas y Collares de tiroides. La comodidad de uso se evaluó al final de cada procedimiento en un análogo visual escala (0–100 [100 = óptimo]).

RESULTADOS. Los datos del paciente y del procedimiento no difirieron entre los grupos protección estándar y la XPF. La dosis de radiación acumulada medida fuera del gorro fue de 15,700 μ Sv y fuera los collares de tiroides 21,240 μ Sv. La atenuación de la radiación medida proporcionada por los casquillos de XPF (n = 70), collares de tiroides XPF (n = 40) y collares de tiroides estándar (n = 38) fue de 85.4% \pm 25.6%, 79.7% \pm 25.8% y 71.9% \pm 34.2%, respectivamente (diferencia de XPF media versus collares de tiroides estándar, 7.8% [95% CI, –5.9% a 21.6%]; p = 0,258).El peso medio del gorro de XPF fue de 144 g (intercuartil rango, 128-170 g), y los collares de tiroides XPF eran 27% más ligeros que los collares de tiroideos estándar (p <0,0001). Los operadores calificaron la comodidad de todos los dispositivos como alta (puntajes promedio para las tapas de XPF y los collares de tiroides de XPF 83.4 \pm 12.7 (SD) y 88.5 \pm 14.6, respectivamente; media puntajes para collares de tiroides estándar 89.6 \pm 9.9) (p = 0.648).

CONCLUSIÓN. Se evaluaron gorras desechables livianas y collares de tiroides hechos de XPF como cómodos de usar, y proporcionan protección contra la radiación similar a la de Collares tiroidales de plomo equivalente a 0,5 mm.

ARTÍCULO 02: PROTECCIÓN RADIOLÓGICA PARA EL OPERADOR Y EL PERSONAL DE FLUOROSCOPIA

Objetivo: Los propósitos de este artículo son revisar los datos disponibles con respecto a la gama de dispositivos de protección y prendas con un enfoque en la protección ocular y resumir las técnicas para reducir la exposición a la radiación dispersa.

Conclusión: Los operadores y el personal de fluoroscopia pueden reducir en gran medida su exposición a la radiación al usar prendas protectoras que se ajusten adecuadamente, colocar dispositivos de protección para bloquear la radiación dispersa y cumplir con las buenas prácticas de radiación. Al comprender lo esencial de la física de la radiación, el equipo de protección y las características de cada sistema de imágenes, los operadores y el personal pueden aprovechar las oportunidades de protección contra la radiación y minimizar la tensión ergonómica. Practicar y promover una cultura de seguridad de la radiación puede ayudar a los operadores de fluoroscopia y al personal a disfrutar de carreras largas y productivas que ayudan a los pacientes.

ARTÍCULO 03: IMPORTANCIA DE LA PROTECCIÓN RADIOLÓGICA EN LOS SERVICIOS DE IMAGENOLOGIA

El presente trabajo de investigación tiene la intencionalidad de ser un recurso de divulgación sobre la importancia del uso de instrumentos radioprotectores en los servicios donde se emplee la radiación ionizante como medio de diagnóstico. El objetivo principal de esta investigación es promover las conductas radioéticas, reduciendo así los niveles de exposición a la radiación tanto para los pacientes como para el personal que allí labora. Los implementos de protección radiológica como el peto plomado, el protector de tiroides y el protector de gónadas, son implementos imprescindibles para la disminución de la radioexposición y de sus posibles efectos biológicos. La metodología empleada en esta investigación es de tipo documental bibliográfica. Los rayos X y gamma son utilizados frecuentemente con fines diagnósticos y terapéuticos en el campo de la medicina, esto en concordancia con el principio "ALARA" (tan bajo como sea razonablemente posible). A pesar de la realidad de los servicios de imagenología a nivel nacional, en la práctica, las medidas de radioprotección resultan esenciales para la eficiente operación del centro. A través de esta investigación se pudo constatar que es de suma importancia el uso de protectores en los exámenes radiológicos tanto para el especialista como para los pacientes para evitar efectos nocivos para la salud.

ARTÍCULO 04: REDUCCIÓN DE LA EXPOSICIÓN A LA RADIACIÓN DEL OPERADOR DURANTE LOS PROCEDIMIENTOS CORONARIOS TRANSRADIALES UTILIZANDO UN SIMPLE RECTÁNGULO DE PLOMO

Objetivos: El acceso transradial para la intervención coronaria percutánea (PCI) reduce las complicaciones del procedimiento, sin embargo, existe una inquietud relativa a la posibilidad de un aumento de la radiación ionizante para el operador primario. Se evaluó la eficacia de un atenuador de plomo en la reducción de la exposición a la radiación en la PCI transradial.

Métodos y resultados: Estudio observacional, aleatorio, prospectivo, Estudio en el cual se incluirá la protección del operador estándar (n = 26) o la adición del atenuador de plomo a través de su abdomen/pelvis (n =26). En el grupo de atenuadores, los pacientes eran relativamente mayores con una mayor prevalencia de enfermedad vascular periférica (67.9 frente a 58.7 p = 0.0292 y 12% frente a 7.6% p <0.001 respectivamente). A pesar de los tiempos de fluoroscopia promedio similares ($12.3 \pm 9.8 \text{ min vs.} 9.3 \pm 5.4 \text{ min, p} = 0.175$) y las dosis de

examen promedio (111866 ± 80790 vs. 91.268 ± 47916 Gycm, p = 0.2688), la exposición total a la radiación del operador, en la tiroides. El nivel fue significativamente más bajo cuando se utilizó el atenuador de plomo (20.2% p <0.0001) en comparación con el grupo de control. Entre los 26 pacientes asignados al atenuador de plomo, hubo una reducción significativa en la radiación medida del 94,5% (p <0.0001), en comparación con el atenuador de plomo.

Conclusiones: La protección adicional con el uso de un atenuador de ángulo vertical redujo significativamente la exposición al operador primario, lo que puede ofrecer beneficios a largo plazo para reducir las lesiones inducidas por la radiación.

ARTÍCULO 05: EFICACIA DEL USO DE PROTECTORES PARA REDUCIR LOS NIVELES DE RADIACIÓN EN EL PERSONAL DE SALA DE OPERACIONES. ARTCULO ORIGINAL

Objetivo: Evaluar la eficacia del uso de protectores para reducir los niveles de radiación en el personal de sala de operaciones.

Materiales y Métodos: Es una revisión sistemática de 09 artículos con una antigüedad no mayor de 10 años de investigaciones de diseño tipo descriptivo, prospectivo y ensayos aleatorizados, la búsqueda se ha restringido a artículos con texto completo y los seleccionados se sometieron a una lectura crítica, utilizando el sistema GRADE para asignar la fuerza de recomendación.

Resultados: Del total de artículos analizados 90%(8/9) afirma la eficacia del uso de protectores como mandiles, gorros, collarín y gafas para reducir los niveles de radiación en el personal de Sala de Operaciones durante las cirugías intervencionistas. De los cuales 60%(4/9) artículos han demostrado el uso eficaz de gorros y 40%(2/9) artículos analizados han demostrado la eficacia del uso de las gafas plomadas como protectores indispensables para reducir la radiación. **Conclusiones:** Los Protectores son eficaces para reducir los niveles de radiación en el Personal de sala de operaciones dentro las cirugías intervencionistas.

ARTÍCULO 06: UNA COMPARACIÓN PROSPECTIVA DE CASOS Y CONTROLES DEL SISTEMA ZEROGRAVITY VERSUS UN DELANTAL DE GUÍA ESTÁNDAR COMO ESTRATEGIA DE PROTECCIÓN RADIOLÓGICA EN PROCEDIMIENTOS NEUROENDOVASCULARES

Antecedentes y propósito: Nuestro objetivo fue comparar el rendimiento del sistema ZeroGravity (ZG) (sistema de protección radiológica compuesto por un traje de plomo suspendido) con el uso de protección estándar (delantal de plomo (LA), escudo de tiroides, anteojos de plomo, faldas de mesa y techo suspendido del escudo) en procedimientos de neuroangiografía.

Materiales y métodos Los datos de exposición a la radiación se recolectaron prospectivamente en procedimientos neuroendovasculares consecutivos entre diciembre de 2014 y febrero de 2015. El operador No 1 fue asignado al uso de una LA (más lentes de plomo, escudo tiroideo y un escudo colgante de 1 mm en la ingle) mientras El operador No 2 utilizó el sistema ZG. Los dosímetros se utilizaron para medir la dosis máxima en la piel para la cabeza, la tiroides y el pie izquierdo. **Resultados:** Los dos operadores realizaron un total de 122 procedimientos durante el periodo de estudio. El operador ZG fue más comúnmente el operador primario en comparación con el operador de LA (85% frente a 71%; p = 0,04). La exposición a la radiación media anterior-posterior (AP), lateral y acumulada del área de dosis (DAP), así como el tiempo medio de fluoroscopia no fueron estadísticamente diferentes entre los casos de los operadores. La dosis máxima en la piel a la cabeza del operador con AL fue 2.1 veces mayor (3380 vs 1600 μSv), mientras que la tiroides fue 13.9 (4460 vs 320 μSv), el mediastino infinitamente (520 vs 0 μSv) y el pie 3.3 veces mayor (4870 vs 1470 μSv) en comparación con el operador ZG, lo que lleva a una dosis acumulada general 4 veces mayor. La proporción de operador acumulativo recibido / DAP acumulativo total fue 2.5 más alta en el operador de LA.

Conclusiones El sistema de protección contra la radiación ZG conduce a una exposición a la radiación sustancialmente menor para el operador en procedimientos neurointervencionales. Sin embargo, aún puede ocurrir una exposición sustancial al nivel de la lente y la tiroides para justificar una protección adicional.

ARTÍCULO 07: EXPOSICIÓN A LA RADIACIÓN AL PERSONAL DE LA SALA DE OPERACIONES Y PACIENTES DURANTE PROCEDIMIENTOS ENDOVASCULARES

Objetivo: caracterizar la exposición a la radiación en pacientes y personal de quirófano durante los procedimientos fluoroscópicos.

Métodos: La información de la dosis del paciente se recogió del equipo de imágenes. Se utilizó dosimetría en tiempo real para medir dosis a los operadores, a la enfermera de lavado, al tecnólogo radiológico (RT) y al anestesiólogo en 39 casos de reparación de aneurisma aórtico toracoabdominal endovascular utilizando endoprótesis fenestradas. Se anotaron las dosis equivalentes globales y las tasas de dosis en los puntos temporales de interés y se compararon con las dosis correspondientes de los pacientes.

Resultados: El dosímetro en el equipo de anestesia recibió 143 mSv (38-247) más radiación por caso que el promedio operador, y la enfermera de lavado y RT recibieron 106 mSv (66-146) y 100 mSv (55-145) menos, respectivamente. Al ajustar los delantales protectores de plomo según la metodología de Webster, el operador promedio recibió una dosis efectiva de 38 mSv. Excepto por la RT, las dosis del personal se correlacionaron bien con la dosis del paciente medida por el producto del área de kerma (KAP) (r =82 para operador promedio, r =85 para la enfermera de fregado y r = 86 para la anestesia; todos p < .001) pero menos bien correlacionados con el tiempo de fluoroscopia o kerma de aire acumulado (CAK). Cuando se realizó una tomografía computarizada de haz cónico preoperatoria, ella dosis equivalente a la RT fue de 1.1 mSv (0.6-1.5) cuando se usó blindaje y de 37 mSv (22-53) cuando no estaba blindado. Las adquisiciones de sustracción digital representaron una gran fracción de las dosis de todos los individuos. Disminuyendo el tamaño del campo (y por lo tanto, aumentando la ampliación) se asoció con una disminución de KAP (r= 47; P < .001) y un aumento de CAK (r = 56; P < .001). El cuadrado del tamaño del campo se correlacionó fuertemente con la relación KAP/CAK (r =99; P <.001). Angulación lateral aumentada del brazo C aumentó tanto el CAK como el KAP (al tamaño del campo, 22 cm; r = 54 y r = 44; ambos P < .001) y la dosis promedio la tasa para un operador fue 1.78 (1.37-2.31) veces más altas en una proyección lateral que en una proyección anterior-anterior.

Conclusiones: Las dosis de personal se correlacionaron mejor con KAP y menos bien con el tiempo de fluoroscopia o CAK. los dosímetros en el equipo de anestesia registraron las dosis más altas atribuibles al blindaje ineficaz. Los operadores pueden reducir la dosis efectiva para ellos mismos, el paciente y otro personal al minimizar el uso de las adquisiciones de sustracción

digital, evitando la angulación lateral, usando niveles de aumento más altos cuando sea posible, y siendo diligentes en el uso de blindaje durante casos de fluoroscopia.

ARTÍCULO 08: EVALUACIÓN DE LA EFECTIVIDAD DE LOS MEDIOS DE RADIOPROTECCIÓN EN EL PERSONAL DE IMAGENOLOGÍA DEL HOSPITAL NACIONAL DE POLICÍA OCUPACIONALMENTE EXPUESTO A RADIACIONES IONIZANTES EN EL PERIODO DE ENERO 2011 A JUNIO DEL 2011

Objetivo: Evaluar la efectividad de los medios de Radioprotección en el personal de Imagenología del Hospital Nacional de Policía ocupacionalmente expuesto a radiaciones ionizantes en el periodo de enero a junio del 2011.

Material y Método: Método observacional. Tipo de estudio realizado: Prospectivo, Diseño de investigación: Transversal. Diseño Cuantitativo desarrollado en el Hospital Nacional de la Policía ubicada en el distrito de Jesús María, departamento de Lima durante el periodo de enero a junio del 2011. Utilizando un cuestionario de autoevaluación a 46 trabajadores ocupacionalmente expuestos a radiaciones de las unidades de radiodiagnóstico y medicina nuclear en el periodo enero 2011 – junio 2011.

Resultados: Al procesar los cuestionarios con el software SPSS encontramos conocimientos que se presentan agrupados de acuerdo a las actividades profesionales que realizan. La responsabilidad del auxiliar de radiología es diferente al del Tecnólogo médico o al del Médico. Claramente se aprecia que los auxiliares de radiología, cumplen al 100% con los conocimientos quedan soporte a sus actividades profesionales de esta unidad de competencia.

Conclusiones: La autoevaluación demostró que los trabajadores poseen un excelente conocimiento y aplicación de las normas de radioprotección, observándose en ellos la posesión de actitudes idóneas para el trabajo en el servicio de Imagenología del Hospital. De esta manera el trabajador mantiene una actitud preventiva de vigilancia periódica del estado de su salud ante los riesgos laborales.

ARTÍCULO 09: EXPOSICIÓN A LA RADIACIÓN DE LOS MÉDICOS EN EL LABORATORIO DE CATETERIZACIÓN: ¿EL TIPO DE PROCEDIMIENTO ES IMPORTANTE?

Objetivos: Este estudio buscó evaluar las diferencias en la exposición a la radiación del operador según el tipo de procedimiento de laboratorio de cateterización.

Antecedentes Los cardiólogos y angiólogos invasores están expuestos a radiación ocupacional a largo plazo y en dosis bajas. El aumento de la carga de trabajo y la especialización requieren un conocimiento más detallado de la magnitud y la causa de la exposición a la radiación.

Métodos: En esta experiencia prospectiva en un solo centro, las dosis de radiación de 3 operadores se midieron por dosimetría en tiempo real para el cuerpo, el cuello y la mano durante 284 procedimientos en 281 pacientes durante un período de 14 semanas. Para determinar la asociación entre el tipo de procedimiento y las dosis y para realizar una comparación por pares entre los procedimientos, se utilizaron 3 modelos mixtos.

Resultados: El tipo de procedimiento, el índice de masa corporal del paciente y el tiempo de fluoroscopia se asociaron de forma independiente con la exposición a la radiación del operador. Según el procedimiento, los operadores fueron expuestos a una dosis media efectiva (E) de 2.2 5.9 mSv. En comparación con la angiografía coronaria, E fue 2.3 veces mayor en los procedimientos pélvicos (intervalo de confianza [IC] del 95%: 1.7 a 3.0, p <0.001), 1.7 veces mayor en los procedimientos de extremidades superiores (IC del 95%: 1.3 a 2.1, p <0.001), y 1.4 veces mayor en los procedimientos debajo de la rodilla (IC del 95%: 1.1 a 2.0, p ¼ 0.023). La dosis media ocular fue de 19.1 37.6 mSv. Las dosis oculares fueron significativamente más altas en procedimientos periféricos que en coronarias. En procedimientos de angiografía, la dosis media manual fue de 99.6 196.0 mSv. Las dosis para las manos fueron significativamente más altas en la pélvica que en la angiografía coronaria, extremidades superiores y procedimientos por debajo de la rodilla.

Conclusiones: Los procedimientos endovasculares para la enfermedad pélvica, de las extremidades superiores y debajo de la rodilla se acompañan de una mayor exposición al operador por radiación que con los procedimientos coronarios. (J Am CollCardiolIntv 2013; 6: 1095–102) a 2013 por la Fundación del Colegio Americano de Cardiología

ARTÍCULO 10: PROTECCIÓN RADIOLÓGICA AL PRIMER OPERADOR EN PROCEDIMIENTOS CORONARIOS POR ACCESO RADIAL DERECHO

Objetivo: el objetivo principal de este estudio fue evaluar el efecto del uso de 4P sobre la radiación recibida por el PO en procedimientos de AC con o sin angioplastia (ATC) por ARD. Los objetivos secundarios son: comparación de las dosis del primer operador recibidas en AC y ATC con valores estándar internacionales y correlación entre la dosis emitida por el angiógrafo y la dosis recibida por el PO en los grupos con y sin 4P.

Método: se realizó un estudio randomizado, prospectivo, sobre pacientes sometidos a AC con o sin ATC, asignados en forma aleatoria a una falda plomada envolvente de 0,5 mm colocada entre la cintura y las rodillas del paciente. Los operadores utilizaron en todos los casos falda, chaleco y protector cervical equivalente a 0,5 mm de plomo, lentes plomados, mampara colgante y cortina plomada bajo mesada. La dosimetría del PO (DPO) fue realizada con un detector DMC 3000 (rango de energía: 15 KeV-7 MeV, rango de medida: 1 mSv-10 Sv), ubicado por fuera y sobre el lado izquierdo del collar de protección cervical del PO. Se registraron variables epidemiológicas y dosis del procedimiento, incluyendo DPO en mSv, producto KERMA (Kinetic Energy Released in a Material) área (PKA) en mGym2, radiación total (RT) en mGy, tiempo de fluoroscopia (TF) en minutos y número de escenas (NE). Se utilizó test de Student para comparación de variables continuas, con un valor a=0,05.

Resultados: se incluyó un total de 100 pacientes. El promedio de edad fue de 64 años y el 39% eran mujeres; 56 pacientes recibieron solo AC y los restantes 44 recibieron ATC adicional. Los valores promedio de TF, NE y la DPO para AC y ATC fueron: 6.9/16.6 minutos, 10/21 escenas y 24/33 mSv, respectivamente, y su comparación con los valores estándar internacionales no mostró diferencias estadísticamente significativas. Se definieron dos grupos de acuerdo a la randomización, 47 pacientes en el grupo con protección pélvica (grupo 4P) y 53 en el grupo sin la misma (grupo no 4P). Las características basales, así como el número de ATC y sus particularidades fueron similares en ambos grupos. Los resultados relacionados con la radiación para el grupo 4P vs no 4P fueron los siguientes: PKA (mGym2) 8374.5 ± 1006 vs 8959.1 p=0,705; DPO (mSv) 40.4 ± 5.9 vs 36.7 ± 5.4 p=0,642; RT (mGy) 1545.3 ± 190.9 vs 1649.6 ± 219.8 , p=0,724; TF (minutos) 11.6 ± 1.4 vs 10.7 ± 1.4 , p=0,654; NE 14 vs 11, p=0,981.

Conclusión: en este escenario del mundo real, el uso de 4P no se asoció con una disminución de la DPO en procedimientos de AC con o sin ATC ni con un cambio en la relación PKA-DPO en procedimientos de AC o ATC por ARD, realizados por operadores con valores promedio de radiación aceptables internacionalmente.