UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO

FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA MECÁNICA ELÉCTRICA

Análisis fluidodinámico de la incineración de residuos urbanos sólidos utilizando combustión en lecho fluidizado en la ciudad de Chiclayo

TESIS PARA OPTAR EL TÍTULO DE

INGENIERO MECÁNICO ELÉCTRICO

AUTOR

Joel Jose Timana Silva

ASESOR

Jony Villalobos Cabrera https://orcid.org/0000-0003-3643-5498

Chiclayo, 2022

Análisis fluidodinámico de la incineración de residuos urbanos sólidos utilizando combustión en lecho fluidizado en la ciudad de Chiclayo

PRESENTADA POR

Joel Jose Timana Silva

A la Facultad de Ingeniería de la Universidad Católica Santo Toribio de Mogrovejo para optar el título de

INGENIERO MECÁNICO ELÉCTRICO

APROBADA POR

William Fernando Villarreal Albitres PRESIDENTE

Juan Carlos Vives Garnique SECRETARIO Jony Villalobos Cabrera VOCAL

Dedicatoria

A Dios, por haberme permitido llegar hasta este punto y haberme dado salud para lograr mis objetivos.

A mis padres., por haberme apoyado en todo momento, por sus consejos, sus valores, por la motivación constante que me ha permitido ser una persona de bien, pero más que nada, por su amor.

A mi Asesor, por haberme apoyado en los momentos más difíciles durante todo el desarrollo de este trabajo de investigación.

Agradecimientos

Agradezco a todas las personas que me apoyaron incondicionalmente durante el desarrollo de este proyecto.

TESIS ANÁLISIS FLUIDODINÁMICO DE LA INCINERACIÓN DE RESIDUOS URBANOS SÓLIDOS UTILIZANDO COMBUSTIÓN EN LECHO FLUIDIZADO EN LA CIUDAD DE CHICLAYO

INFORME DE ORIGINALIDAD

	1% 11% 2% PUBLICACIONES	2% TRABAJOS DEL ESTUDIANTE
FUENTE	5 PRIMARIAS	
1	hdl.handle.net Fuente de Internet	2%
2	tesis.usat.edu.pe Fuente de Internet	1 %
3	qdoc.tips Fuente de Internet	1 %
4	www.ptolomeo.unam.mx:8080	1 %
5	repositorio.unac.edu.pe	1 %
6	updocs.net Fuente de Internet	1 %
7	repositorio.uns.edu.pe	<1%
8	zaguan.unizar.es	<1%

Resun	nen	13
Abstro	act	14
<i>I. I</i>	NTRODUCCIÓN	15
1.1.	. REALIDAD PROBLEMÁTICA Y JUSTIFICACIÓN DEL PROBLEMA	16
Sit	ituación problemática	
Ju	ustificación	
Fc	ormulación de hipótesis	17
O	bjetivos	17
М	1etodología	17
<i>II</i> .	Marco Teórico	19
2.1	Antecedentes	19
2.2	Aplicaciones de la fluidización para la conversión de energía.	27
2.	.2.1 Gasificadores de lecho fluidizado	27
2.	.2.2 Calderas de Lecho Fluidizado	28
2.3	Comparación entre las diferentes tecnologías de combustión	
2.4	Comportamiento Hidrodinámico del lecho fluidizado	
2.	.4.1 Fluidización	
2.	.4.2 Partículas solidas	40
2.	.4.3 Regímenes de fluidización	47
2.	.4.4 Lecho fluidizado rápido	55
2.	.4.5 Estructura hidrodinámica de los lechos rápidos	59
2.5	Transferencia de Calor en las calderas de lecho fluidizado	68
2.	.5.1 Transferencia calor gas-partícula	
2.	.5.2 Transferencia de calor desde el lecho hasta la pared	74
2.	.5.3 Intercambiador de calor de lecho fluidizado externo (FBHE)	
2.	.5.4 Transferencia de calor en el tamaño comercial CFB Calderas	
2.	.5.5 Transferencia de calor en ciclón	
2.6	Combustión	96
2.	.6.1 Combustión en los lechos fluidizados circulantes	
2.7	Emisión y captura de los gases de combustión	114
2.	.7.1 Emisión de Dióxido de Azufre	114
2.	.7.2 Emisión de óxido de Nitrógeno	127
2.	.7.3 Emisión de óxido nitroso	129
2.	.7.4 Emisión de carbono	130
<i>III.</i>	Caracterización de los residuos sólidos	
3.1	Residuos	
3.	.1.1 Residuos Líquidos	131
3.	.1.2 Residuos gaseosos	131
3.	.1.3 Residuos Sólidos	131
3.2	Clasificación de residuos	132
3.	.2.1 Residuos Según su origen	132
3.	.2.2 Residuos según su peligrosidad	133

Índice

3	.3	Generación de residuos sólidos en el mundo	135
3	.4	Generación de residuos sólidos en el Perú	139
3	.5	Generación de residuos Sólidos en el departamento de Lambayeque	141
	3.5.1	Ubicación	141
	3.5.2	Población	142
	3.5.3	Generación de residuos	142
IV.		MODELO DE CÁLCULO	150
л	1	Consideraciones para el análicis hidrodinámico	150
4	• ⊥ //1/1	Mínima velecidad de fluidización (H_{c})	151
	4.1.1	$ Minima velocidad de hurbuieo (U_m). $	151
	4.1.2	Mínima velocidad de slugging (H_{el})	152
	414	Transición a fluidización turbulenta	153
	4.1.5	Velocidad terminal de la partícula	155
	4.1.6	Velocidad de trasporte	155
	4.1.7	' Velocidad de ahogamiento y vacío en el lecho	155
	4.1.8	Vacío en la salida del horno	156
	4.1.9	Vacío medio axial por encima del nivel de aire secundario.	157
	4.1.1	0 Vacío sobre la altura de inyección de aire secundario.	157
	4.1.1	1 Vacío en la pared sobre la altura de inyección de aire secundario.	158
	4.1.1	2 Cantidad de partículas Sólidas en el horno	158
4	.2	Consideraciones para el análisis de transferencia de calor	159
	4.2.1	Transferencia de calor gas - partícula	159
	4.2.2	Transferencia de calor del lecho hacia la pared de agua	162
4	.3	Consideraciones para el análisis de la combustión.	169
	4.3.1	. Relación ${\it Ca/S}$ inherente en el combustible	171
	4.3.2	Cantidad de sorbente requerido para una captura de azufre del 90%	171
	4.3.3	Valor de calentamiento superior	172
	4.3.4	Valor de calentamiento inferior	172
	4.3.5	Aire teórico con captura de azufre	172
	4.3.6	Aire seco total	173
	4.3.7	' Aire húmedo total	173
	4.3.8	Emisión de nitrógeno	173
	4.3.9) Emisión de vapor de agua	174
	4.3.1	0 Emisión de dióxido de carbono	174
	4.3.1	1 Emisión de dióxido de azufre	175
	4.3.1	2 Emisión de oxigeno	175
	4.3.1	3 Peso de los gases de combustión	175
	4.3.1	4 Peso del sorbente agotado.	176
	4.3.1	5 Fracción de masa de los gases de combustión	176
	4.3.1	b Fracción de volumen de los gases de combustión	178
	4.3.1	/ Iviasa molecular de los gases de combustion	179
	4.3.1	8 Densidad del aire	1/9
-	4.3.1	9 Densidaracionas para el enélisis de la contrure de la fra	180
4	.4	Consideraciones para el analisis de la captura de azutre	181
	4.4.1	Azutre equivalente en el combustible	182
	4.4.2	Enciencia dei sordente requerido segun el limite dado	182

4	4.4.3 Densidad promedio del lecho	182
4	4.4.4 Captura de azufre	183
V.	ANALISIS Y DISCUSIÓN DE RESULTADOS	184
5.1	1 Análisis de los regímenes de fluidización en etapa cautiva utilizando difere	ntes
tan	maños de partículas y densidades	184
5.2	2 Análisis del lecho fluidizado rápido	202
5.3	Análisis de la estructura de lecho rápido	223
5	5.3.1 Análisis de la estructura del lecho con una velocidad de circulación de 30 kg/m2 s	224
5	5.3.2 Análisis de la estructura del lecho con una velocidad de circulación de 30 kg/m2 s	229
5	5.3.3 Análisis de la estructura del lecho con una velocidad de circulación de 50 kg/m2 s	233
5	5.3.3.1 Análisis de una partícula con una densidad de1350 kg/m3 y un tamaño de 100 um	233
5.4	4 Análisis de trasferencia de calor	236
5	5.4.1 Análisis del tiempo en el que la partícula llega a calentarse hasta un 99% de la temperatura	del lecho.
5	5.4.2 Análisis del coeficiente global de trasferencia de calor hacia las paredes.	
5.5	5 Análisis de la combustión	240
VI.	CONCLUSIONES	247
VII.	RECOMENDACIONES	249
BIBLI	IOGRAFÍA	250
ANEX	XOS	251
Me	emoria de cálculo de la parte hidrodinámica	251
Cál	Iculo de velocidades de trasporte	254
Cál	lculos de fracción de vacíos dentro del lecho	256
Me	emoria de cálculo para trasferencia de calor	257
Me	emoria de cálculo para la combustión	261
Tab	blas utilizadas para los diferentes cálculos	262
-	•	

Lista de tablas

Tabla 1 variables dependientes e independientes	18
Tabla 2 Algunas condiciones de la combustión del carbón para la producción de e	energía
	20
Tabla 3 Diferentes aplicaciones de la fluidización.	
Tabla 4 Ventajas y desventajas de la combustión en lecho fluidizado burbujeante.	29
Tabla 5 Combustibles quemados en calderas de lecho fluidizado circulante	32
Tabla 6. Tabla 6Características físicas de los diferentes sistemas de combustión en	1 lecho
fluidizado	37
Tabla 7 Características de las partículas sólidas de diferentes grupos	42
Tabla 8 Constantes de Howard para el coeficiente de arrastre. Fuente: Prabir Bas	u. 44
Tabla 9 Respuesta de las variables dependientes a los cambios en los parámet	tros de
funcionamiento.	65
Tabla 10 Regímenes de la combustión del Char.	102
Tabla 11 Reactividad de algunas piedras calizas en m3 por Kmol de calcio en el so	rbente
por segundo.	122
Tabla 12 Emisión de óxidos de nitrógeno de tres tipos de calderas de carbón y de re	esiduos
industriales.	127
Tabla 13 Proyección de la generación de residuos per cápita para el 2025.Fuente:	Banco
Mundial.	137
Tabla 14 Generación de residuos per cápita del año 2012.Fuente: Banco Mundial.	137
Tabla 15 Generación de residuos proyectada al 2025 teniendo en cuenta los in	igresos
económicos. Fuente: Banco Mundial	138
Tabla 16 Número de distritos del departamento de Lambayeque. Fuente: INEI	142
Tabla 17 Población en Lambayeque según censos nacionales. Fuente: INEI	142
Tabla 18 Generación per cápita del año 2012.Fuente: PIGARS Chiclayo	143
Tabla 19 Generación de residuos Sólidos en la provincia de Chiclayo. Fuente: PI	GARS
Chiclayo	144
Tabla 20 Generación de residuos Sólidos en la provincia de Chiclayo. Fuente: PI	GARS
Chiclayo	145
Tabla 21 Generación de residuos sólidos no domiciliarios en la provincia de Ch	iclayo.
- Fuente: PIGARS (Ton/año)	146

 Tabla 22 Generación de residuos sólidos totales en la provincia de Chiclayo. Fuente:
 PIGARS Chiclayo......147 Tabla 23 Composición física de los residuos sólidos en la ciudad de Chiclayo. Fuente:

 Tabla 25 Masa molar de los productos de la combustión.
 170

 Tabla 26 Datos para el análisis del lecho fluidizado en etapa cautiva de una partícula. Tabla 27 Comportamiento hidrodinámico de una partícula de 200 um de diámetro utilizando diferentes densidades donde AT: alta temperatura, BT: baja temperatura. 185 Tabla 28 Comportamiento hidrodinámico de una partícula de 200 um de diámetro utilizando diferentes densidades donde AT: alta temperatura, BT: baja temperatura. Segunda parte. Tabla 29 Comportamiento hidrodinámico de una partícula de 100 um de diámetro Tabla 30 Comportamiento hidrodinámico de una partícula de 100 um de diámetro utilizando diferentes densidades. (AT: alta temperatura, BT: baja temperatura)...... 190 Tabla 31 Comportamiento hidrodinámico de una partícula de 2500 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja Tabla 32 Comportamiento hidrodinámico de una partícula con 1350 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja Tabla 33 Comportamiento hidrodinámico de una partícula con 4000 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja Tabla 34 Disminución de la velocidad terminal de la partícula debido al cambio de régimen de flujo. 201 Tabla 36 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 100 (µm) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad. 203 Tabla 37 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (µm) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad. 203

 Tabla 38 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500
 (µm) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad.
 Tabla 39
 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de
 100 (μm) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad. Tabla 40 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (um) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad. .. 206 Tabla 41 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500 (µm) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad. 206
 Tabla 42 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de
 100 (µm) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad. Tabla 43 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (µm) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad. Tabla 44 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500 (µm) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad.
 Tabla 45
 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350)
 kg/m3 de densidad con una velocidad de circulación G = 30kg/m2 s) frente al cambio en Tabla 46 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500 kg/m3 de densidad con una velocidad de circulación G = 30kg/m2 s) frente al cambio en su
 Tabla 47 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000)
 kg/m3 de densidad con una velocidad de circulación G = 30kg/m2 s) frente al cambio en Tabla 48 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350 kg/m3 de densidad con una velocidad de circulación G = 50 kg/m2 s frente al cambio en

Tabla 49 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500
kg/m3 de densidad con una velocidad de circulación $G = 50 \text{kg/m2 s}$ frente al cambio en
su tamaño
Tabla 50 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000
kg/m3 de densidad con una velocidad de circulación $G = 50 kg/m2 s$) frente al cambio en
su tamaño
Tabla 51 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350)
kg/m3 de densidad con una velocidad de circulación ${ m G}$ = 100 kg/m2 s) frente al cambio en
su tamaño
Tabla 52 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500
kg/m3 de densidad con una velocidad de circulación ${ m G}$ = 100 kg/m2 s) frente al cambio en
su tamaño
Tabla 53 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000)
kg/m3 de densidad con una velocidad de circulación ${ m G}$ = 100 kg/m2 s) frente al cambio en
su tamaño
Tabla 54 Velocidad de ahogamiento de una partícula evaluada con tres tamaños diferentes
la cual tiene una velocidad de circulación de 30 kg/m2 s
Tabla 55 Velocidad de ahogamiento de una partícula evaluada con tres tamaños diferentes
la cual tiene una velocidad de circulación de 30 kg/m2 s
Tabla 56 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una
velocidad de circulación solida Gs= 30kg/m2 s
Tabla 57 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una
velocidad de circulación solida Gs= 50 kg/m2 s
Tabla 58 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una
velocidad de circulación solida Gs= 50 kg/m2 s
Tabla 59 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 56 Datos
obtenidos del análisis de la estructura del lecho rápido utilizando una velocidad de
circulación solida Gs= 30kg/m2 s. con una velocidad de circulación solida de 30 kg/m3
Tabla 60 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 57) con una
velocidad de circulación solida de 50 kg7m3239
Tabla 61 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 56) con una
velocidad de circulación solida de 50 kg7m3239

Tabla 62	Composición de los MSW en base seca.	240
Tabla 63	Aire necesario para la combustión con un exceso de 20% para los MSW	241
Tabla 64	Emisiones producto de la combustión de los MSW.	241
Tabla 65	Masa molecular de los gases de combustión generados por los MSW	242
Tabla 66	Densidad del aire y los gases de combustión de los MSW	242
Tabla 67	Temperatura mínima de operación para la calcinación del sorbente	242
Tabla 68	Composición del papel en base húmeda.	243
Tabla 69	Aire necesario para la combustión del papel y el cartón con un exceso d	le aire
de 20% p	ara el papel y el cartón	244
Tabla 70	Emisiones producto de la combustión del papel.	244
Tabla 71	Masa molecular de los gases de combustión	245
Tabla 72	Temperatura mínima de operación para la calcinación del sorbente	245
Tabla 73	Composición de los residuos de comida en base humeda	246
Tabla 74	Composición de los residuos de comida en base húmeda	246

Resumen

En el presente trabajo de investigación se presentara el análisis fluidodinámico de la incineración de residuos sólidos utilizando combustión en lecho fluidizado para esto primero se caracterizaran los residuos sólidos generados por las actividades humanas en la ciudad de Chiclayo para así determinar que residuos se podrían incinerar utilizando información brindada por el PIGARS, se obtuvo que el 50.65% está conformado por residuos orgánicos, el material reciclable que se puede utilizar para la combustión (plásticos, papel, cartón) se encuentra en un 13.8% y las telas conforman un 2.28% del total. El análisis fluidodinámico y el de trasferencia de calor se hizo para determinar la densidad de suspensión de los sólidos y el coeficiente de trasferencia de calor mediante la utilización de ecuaciones deducidas y empíricas, para un tamaño de partícula de 250 μm se obtuvo una densidad de suspensión de 5.38 Kg/m3, una velocidad de fluidización de 8 m/s y un coeficiente global de trasferencia de calor hacia las paredes de 0.191 KW/m2 K. El análisis de la combustión se realizó con el fin de encontrar las cantidades de emisiones generadas al quemar los residuos urbanos sólidos para eso se utilizó la composición química de los residuos y el cálculo estequiométrico de la combustión teniendo en cuenta la adición del sorbente, esto nos muestra que se puede obtener un Nivel de emisión de SO_x de 0.039 g/MJ utilizando piedra caliza para la captura del mismo, esta tiene una eficiencia de captura de azufre del 90% debido a la relativamente baja temperatura de operación del lecho (800850°C). La velocidad de alimentación de la caliza que se necesita por cada t/h de residuos sólidos es aproximadamente 0.97 Kg/h.

Palabras claves: Análisis, combustión, fluidodinámico, velocidad, residuos, caldera, lecho, fluidización

Abstract

In the present research work the fluid dynamics analysis of solid waste incineration using fluidized bed combustion will be presented. First, the solid waste generated by human activities in the Chiclayo City will be characterized to determine which waste could be incinerated, using information given by PIGARS, it was found that 50.65% is made up of organic waste, the recyclable material that can be used for combustion (plastics, paper, cardboard) is 13.8% and fabrics make up 2.28% of the total.

The fluid dynamics analysis and the heat transfer analysis were done to determine the suspension density of the solids and the heat transfer coefficient by using deduced and empirical equations, for a particle size of 250 μ m a suspension density was obtained of 5.38 Kg / m3, a fluidization velocity of 8 m / s and an overall coefficient of heat transfer to the walls of 0.191 KW / m2 K.

The analysis of the combustion was carried out in order to find the amounts of emissions generated by burning solid urban waste. For that, the chemical composition of the waste and the stoichiometric calculation of the combustion were used, taking into account the addition of the sorbent. Shows that an emission level of SO_x of 0.039 g / MJ can be obtained using limestone to capture it, this has a sulfur capture efficiency of 90% due to the relatively low bed operating temperature (800-850 ° C). The limestone feed rate needed for each t / h of solid waste is approximately 0.97 Kg / h,

Keywords: Analysis, combustion, fluid dynamics, velocity, waste, boiler, bed, fluidization

I. INTRODUCCIÓN

Actualmente uno de los grandes problemas que afecta a todas las sociedades es la acumulación de residuos urbanos solidos (RUS,). En muchos países estos residuos van hacia un lugar llamado vertedero o relleno sanitario, este lugar es donde se acumulan grandes cantidades de residuos sólidos urbanos de distinta naturaleza. Los vertederos además de afectar la calidad de vida de las personas contribuyen al calentamiento global debido a los altos índices de generación de metano ya que este es uno de los principales gases que contribuyen al cambio climático. En países como China, EE.UU, Reino Unido, Alemania, etc. optan por la incineración de RUS. La generación de residuos sólidos según el Banco Mundial fue en el 2012 de 1.3 billones de toneladas y se proyectó que en el año 2025 sería de 2.2 billones de toneladas, cada persona generaría de 1.2 a 1.42 kg de residuos sólidos en los próximos 15 años a partir del 2012.

En este trabajo de investigación se propone el uso de las calderas en lecho fluidizado para la incineración de los residuos, para eso primero se analizará la hidrodinámica del lecho fluidizado utilizando partículas de diferentes tamaños y diámetros. Luego se aplicará el método de renovación de racimos propuesto por Prabir Basu para calcular el coeficiente de trasferencia de calor hacia las paredes, se realizarán varios análisis con diversos tamaños y densidades de partículas para su respectiva comparación y discusión.

Por último, se realizará el análisis de combustión teniendo en cuenta la captura del azufre mediante la adición de piedra caliza, para el análisis se utilizará la composición química de los residuos sólidos en base seca y en base húmeda, además se calculará la mínima temperatura a la cual puede comenzar la calcinación de la caliza respecto al combustible utilizado.

1.1. REALIDAD PROBLEMÁTICA Y JUSTIFICACIÓN DEL PROBLEMA

Situación problemática

La acumulación de los residuos sólidos urbanos que se generan en las ciudades tanto en el Perú como en otras partes del mundo es uno de los principales problemas que se presentan hoy en día en la sociedad, algunas ciudades en el mundo incineran estos residuos utilizando quemadores de parrilla los cuales generan mucha contaminación, otros países como es el caso del Perú depositan estos residuos sólidos en vertederos los cuales pueden generar enfermedades, malos olores además también estos generan metano, el cual es un gas de efecto invernadero que contribuye al calentamiento global, es por eso que se buscan diferentes maneras de poder eliminar estos residuos, en este caso se optara por la incineración de estos residuos utilizando combustión en lecho fluidizado, en este tipo de calderas cierta parte de la combustión se realiza de manera subestequeometrica por debajo del nivel de inyección de aire secundario esto se debe a que en la parte inferior del lecho la densidad de suspensión de partículas es mayor , es por eso que en este trabajo de investigación se abordara el análisis fluidodinámico de la partícula para así saber cuál es la distribución axial de las partículas dentro del horno y saber el tipo de partícula a utilizar.

Justificación

La contaminación por residuos urbanos solidos es uno de los principales problemas que se sufre actualmente, la acumulación de esta daña la calidad de vida de las personas, es por eso que este proyecto de investigación se propone el uso de la combustión en lecho fluidizado para mitigar su aumento.

Con el desarrollo de este proyecto podremos erradicar los grandes cúmulos de residuos sólidos que se generan en la ciudad de Chiclayo producto de las diferentes actividades humanas de una manera en la que el medio ambiente no se vea afectado, además se pretende generar una nueva fuente de generación de energía.

Formulación de hipótesis.

¿Sera posible hacer el análisis fluido dinámico de la incineración de residuos urbanos solidos utilizando la combustión de lecho fluidizado para poder hallar los correctos parámetros con los cuales se tiene que trabajar para hacer una correcta combustión de estos?

Objetivos

Objetivo general:

Analizar fluido dinámicamente la incineración de residuos urbanos solidos utilizando combustión en lecho fluidizado.

Objetivos específicos:

Caracterizar los residuos urbanos solidos que se van a utilizar.

Analizar la combustión en lecho fluidizado utilizando residuos sólidos.

Determinar los parámetros para la correcta combustión de los residuos sólidos.

Metodología

Los principales métodos que se utilizan para la investigación es lógico-deductivo y modelamiento matemático.

El presente trabajo se realiza utilizando una serie ecuaciones deducidas y empíricas, así como también modelos de análisis propuesto por Prabir Basu para el cálculo de la trasferencia de calor utilizando el método de los racimos.

Primero se modifican las diferentes variables como por ejemplo el diámetro y el tamaño de la partícula, esto hace que surjan una serie de datos los cuales influyen en el cambio del proceso ya sea para bien o para mal.

Luego se repite el paso anterior utilizando las mismas variables, pero con diferentes magnitudes para así después hacer comparaciones del comportamiento del cambio variables.

Al final se eligen las variables con las cuales el proceso tubo un mejor comportamiento.

También tenemos que caracterizar los residuos sólidos provenientes de la cuidad de Chiclayo, tanto la caracterización de los residuos y el modelamiento matemático se muestran en lo capitulo III y IV respectivamente.

Variables

Las variables independientes para la mayoría del análisis son el tamaño y la densidad de la partícula.

Tabla 1 variables dependientes e independientes

Variables dependientes	Variables independientes
	velocidad (m/s)
Densidad v tamaño de la	fracción de vacío (adimensional)
partícula	coeficiente de trasferencia de calor (h)
	tiempo de calentamiento (s)

Fuente: Elaboración propia.

II. Marco Teórico

2.1 Antecedentes.

Víctor Manuel Barrera Moreno en abril del 2007 hizo un estudio hidrodinámico de un lecho fluidizado utilizando un parámetro característico el cual es la velocidad mínima de fluidización. El utilizo un lecho a pequeña escala utilizando método de desviación típica de las fluctuaciones de presión y el método de la perdida de carga en el lecho. Implemento un sistema de adquisición de datos (tarjeta de adquisición), para una partícula de arena el obtuvo a una altura del lecho de Z1 = 0,062 m una velocidad mínima de fluidización de 0.356 m/s, para una altura Z2 = 0,107 m el valor de la velocidad fue de 0.378 m/s [1].

Zhang Man, Bie Rushan y Wang Fengjun propusieron el diseño de una caldera de lecho fluidizado circulante utilizando los residuos de lavado del carbón (Ganga y la lechada), la mezcla de esos dos productos tiene alto contenido de cenizas , alta húmedas y bajo valor calorífico. Las calderas que han quemado este tipo de combustibles han sido operadas en china, llegaron al conclusión que en una caldera de gran tamaño el lecho no se puede aglomerar debido al uso de la lanza de inyección por lo que las partículas del lecho pueden arder de manera estable, además dicen que esta tecnología tiene una amplia perspectiva. [2]

Zhiwei Wang, Jianhua Yang y Qinghai Li analizan el coeficiente de trasferencia de calor en una caldera de lecho fluidizado circulante. Examinan la relación entre el coeficiente de transferencia de calor a la unidad de carga, la temperatura del lecho, la velocidad del lecho y la densidad de la suspensión; la relación lineal podría ser aceptada para el diseño comercial de CFB, proponen una nueva forma de cálculo y simple para el coeficiente de transferencia de calor de la caldera CFB para el diseño de la caldera CFB. Obtuvieron como resultado una densidad de suspensión en la parte superior del horno de entre 1.5-4.5Kg/m3 además de un coeficiente de trasferencia de calor de 80-125 W/(m2°C). [2]

El uso de combustibles fósiles nos ha llevado a un gran desarrollo industrial y tecnológico, debido a eso otras fuentes alternativas de energía o de generación de energía han dejado de investigarse.

Mayormente en diferentes partes del mundo para la producción de energía se utilizaba carbón, pero este no cumplía una serie de condiciones.

Tabla 2 Algunas condiciones de la combustión del carbón para la producción de energía

EN EL NIVEL DE COMBUSTIÓN EN LAS CENTRALES ELÉCTRICAS

Combustión de carbones con altos Eficiencia térmica global de la caldera contenidos de humedad hasta 66 %

Combustión de diversos desechos, Obtener una alta disponibilidad de la biomasa, desechos industriales, residuos planta. sólidos.

Obtener una combustión muy eficiente.

Generar un nivel de contaminación bajo

(Nox < 200 mg / m3).

Fuente: Fluidized Bed Combustion. Simeon N.Oka.

Al querer competir con otras fuentes de energía, cumpliendo con los requerimientos anteriormente mencionados esta era relativamente cara es por eso que utilizaban otras fuentes de energía como el petróleo y el gas.

Actualmente hay calderas de 2000 MWth que tiene una eficiencia de combustión de 99% y una eficiencia global mayor a 90 %, pero están no cumplen con los estándares ambientales requeridos, además que los equipos para la limpieza de gases de combustión son muy caros. [3]

Luego se utilizaron calderas de rejillas, estas eran demasiado ineficientes, además que los equipos con los cuales se limpiaban los gases de combustión era aún más caro que las calderas normales mencionadas anteriormente. El precio en el mercado no podía competir con otras fuentes de generación energía.

Una nueva tecnología se abrió paso el 16 de diciembre de 1921, esto cambiaria a la industria energética en general. El alemán Fritz Winkler puso solidos de coque en el fondo de un crisol y le introdujo gases de combustión, esto dio como resultado la primera gasificación de carbón en lecho fluidizado. Por primera vez se vio como todas las partículas se levantaban y parecían un líquido hirviendo, a esto fenómeno se le denomina fluidización.

El proceso de fluidización no se utilizó directamente en la combustión, fue utilizado en la gasificación del carbón, torrefacción de pirita y el sulfito de Zinc, craqueo catalítico de los hidrocarburos, secado y procesos de mezcla. La combustión en lecho fluidizado (FBC) primero se utilizó en procesos físicos y químicos después de la segunda guerra mundial.

Antes de descubrir este método desde en el año 1911 se utilizaba las calderas de carbón pulverizado (PC), estas funcionaron sin competencia hasta los años 60 en donde por primera vez aparecieron las calderas de lecho fluidizado burbujeante (BFB). En los años 50 y 60 la National Coal Board de gran Bretaña comenzó con estudios de la combustión del carbón el lecho fluidizado, ellos trataban de buscar la manera de consumir sus reservas de carbón [3].

En 1938 Warrent Lewis y Edwin Gilliland en el Massachusetts Institute of Technology están tratando de encontrar una manera de contacto entre el gas y el sólido para el craqueo catalítico, por error encontraron el proceso de fluidización rápida que da como resultado la combustión en lecho fluidizado circulante. Este proceso también se utilizó primero en las industrias petroquímicas. [3]

Figura 1. Caldera de carbón pulverizado. Fuente: Phabir Buzu

Figura 2. Caldera de lecho fluidizado burbujeante para quema del carbón. Fuente: Phabir Busu

Figura 3. Caldera de lecho fluidizado circulante. Fuente Prabir Busu

Lurgi fue el primero en investigar el comportamiento de la combustión en lecho fluidizado circulante, el encontró una manera de utilizar solidos finos con una alta velocidad.

El grupo Ahlstrom en Finlandia en los años 60, encontró una manera de mejorar el rendimiento de las calderas de lecho fluidizado burbujeante, este consistía en poner un ciclón para capturar los sólidos que salían del lecho y asi reciclar dichas partículas.

La primera caldera CFB fue construida en Alemania en el año 1982 en Luenen, genero

84 MW totales (9 MW de energía eléctrica, Vapor del proceso 31MW, Sal fundida 44MW), utilizando residuos de lavado de carbón de baja calidad. [4]

Este proceso también fue utilizado en la precalcinacion de Clinker de cemento (su formación se da luego de calcinar la caliza y la arcilla), aquí se demuestra que este tipo de combustión tiene una gran eficiencia para la utilización del carbón. Figura 4

En Finlandia se construyó una caldera de 15 MW (térmica), la cual fue adoptada a una caldera de aceite, para así poder cambiar el petróleo por turba. Las primeras calderas fueron diseñadas para utilizar cortezas, turba y deshechos de maderas, luego se construyeron solo y exclusivamente para carbón.

En 1980 el instituto de ciencias nucleares de VINCA de Belgrano construyo dos caldera de lecho fluidizado burbujeante, una tenía una capacidad de 2kw th mientras que la otra era de 200kwth. En 1986 el VINCA construyo su primera caldera industrial de 10 MW th. [3]

En los lechos fluidizados burbujeantes (primera generación) (BFB) se han hecho diferentes estudios como:

- Investigación hidrodinámica, trasferencia de calor y combustión de lechos fluidizados en hornos experimentales.
- Construcción de plantas piloto.
- Construcciones platinas industriales, así como investigación con esta escala.
- Comercialización de los diferentes parámetros de funcionamiento.

Figura 4. Lecho fluidizado circulante para la producción de cemento, generación de electricidad y calefacción de espacios.

Tabla 3 Diferentes aplicaciones de la fluidización.

Conversión Procesos Procesamiento Química y Procesamiento de energía petroquímicos de minerales farmacéutica químico

Generación de vapor	Unidades de craqueo catalítico fluido	Calcinación de alúmina	Anhídrido ftálico de naftaleno	El secado
Gasificación	Síntesis de	Tostado de	Descomposición	Revestimiento
	Fischer-	minerales	de sulfato,	de partículas
	Tropsch		cloruro.	
Incineración		Pre-reducción de minerales de hierro. Pre Calcinación para la Fabricación de cemento	Conversión de metanol a olefinas La oxidación de Butano en anhidrido maleico	Intercambiador de calor y limpieza de gases de combustión Tratamiento termico

Fuente: Combustion and Gasification in Fluidized Beds. Prabir Basu.

2.2 Aplicaciones de la fluidización para la conversión de energía.

2.2.1 Gasificadores de lecho fluidizado.

Esta fue una de las aplicaciones comerciales más importantes que se le dio por su gran capacidad para la mezcla solida debido al contacto gas-solido. A continuación, se muestra un gasificado típico. El carbón triturado se alimenta en un lecho fluidizado burbujeante de sólidos calientes a 950°C. El vapor, el medio de gasificación principal, es alimentado a la base del lecho fluidizado a través de un distribuidor de tipo tubo de espray. Esto fluidiza el carbón crudo a lo largo de sólidos calientes en el lecho. Los productos de gasificación dejan la cama desde arriba. El gas se limpia y se utiliza. [4]

Figura 5. Gasificador de lecho fluidizado de alta temperatura. Fuente: Prabir Basu

2.2.2 Calderas de Lecho Fluidizado.

Es un dispositivo que genera calor donde el combustible se quema a través del contacto gas-solido, hay varios tipos de calderas de esta naturaleza las cuales utilizan diferentes tipos de contacto gas-solido, de ahí es de donde nacen los diferentes tipos de calderas de lecho fluidizado las cuales son: Calderas de carbón pulverizado, calderas de lecho de burbujeo y calderas de lecho fluidizado circulante.

Estas calderas contienen solidos granulares de entre 0.1-1.0 mm dependiendo de su tipo, son llamados materiales del lecho los cuales pueden estar conformados por arena o grava, caliza fresca o Cenizas de carbón. [4]

Las partículas antes mencionadas constituyen una fracción menor a (1-3%) de la masa total de los materiales del lecho por lo cual estos no presentan gran impacto en la Hidrodinámica del lecho. [5]

2.2.2.1 Caldera de Lecho Fluidizado Burbujeante.

Las calderas de lecho fluidizado burbujeante o también llamados calderas de combustión de lecho fluidizado de primera generación, está conformada por una rejilla fluidificante por donde pasa el aire primario de combustión y un recipiente hecho de tubos refractarios. (*Figura 6*).El espacio por encima del lecho es llamado Francorbo y se encuentra entre tubos de absorción de calor, el aire secundario es inyectado en esta zona. [4]

Figura 6. Caldera de lecho fluidizado burbujeante. Fuente Simeón N. Oka

La velocidad del aire es menor que la velocidad de transporte de las partículas. [3]

Las calderas de lecho fluidizado burbujeante sin recirculación de partículas alcanzan una eficiencia de combustión de 90%, cuando recirculan estas partículas se puede llegar a obtener una eficiencia de 98%. [3]

Este tipo de caldera reduce la emisión de NOx hasta 300 mg/m³ (calderas convencionales se les permite una emisión de hasta 2000 mg/m³), no debe de tener emisiones mayores a 400mg/m³. [3]

Ventajas	Desventajas
Se pueden utilizar combustibles de baja calidad.	Erosión de las superficies de trasferencia de calor sumergida.
Baja temperatura de combustión.	Niveles relativos altos de emisiones de SO2 y NOX.
Bajas emisiones de Nox.	Requieren un gran número de puntos de alimentación de combustible.
Quemado de biomasa y combustibles fósiles.	Elutriacion de partículas finas del lecho produce una eficiencia relativamente baja (90%).
Alta eficiencia de combustión.	
Control eficaz emisiones de SO2 en el horno.	
<i>Altos coeficientes de trasferencia de calor.</i>	

 Tabla 4 Ventajas y desventajas de la combustión en lecho fluidizado burbujeante

Fuente: Fluidized Bed Combustion. Simeon N.Oka.Pag

2.2.2.2 Caldera de lecho fluidizado circulante.

Caldera de lecho fluidizado circulante o de segunda generación surge con el afán de mejorar la combustión, consiste en hacer recircular las partículas no quemadas para así obtener una mayor eficiencia de combustión, esto primero se hizo en calderas de primera generación y dio como resultado una eficiencia de combustión de 95%(este proceso permite mayor retención de SO₂ y una mejor utilización de piedra caliza). [3]

Una caldera de lecho fluidizado circulante opera en una condición hidrodinámica especial, aquí el combustible se quema en un régimen de fluidización rápida. La condición hidrodinámica de la que se habla anteriormente surge de la combinación de la velocidad del gas, velocidad de recirculación de sólidos, características de los sólidos, inventario de sólidos y geometría del sistema, esto hace que las partículas sólidas sean fluidizadas a una velocidad mayor a la velocidad terminal (*Figura 7*). [5]

En este tipo de hornos al ser la velocidad alta expulsa todos los sólidos, estos son capturados por un separador de gas-sólido y recirculados al lecho a una velocidad alta para producir un grado mínimo de reflujo. [5]

Este tipo de caldera presenta el siguiente comportamiento: Se inyecta aire de combustión primario a través de la rejilla del horno y el aire secundario por los lados a una cierta altura por encima de la rejilla (completar combustión),esto hace que la combustión se mantenga uniforme entre una temperatura de 800-900°C.El combustible de alimentación entra por la parte inferior del horno donde se quema para generar calor, una parte de dicho calor es absorbida por la superficie refrigerada con agua y la otra fracción es absorbida por la sección conectiva conocida como Back Pass [4]

Una caldera de lecho fluidizado circulante se divide en dos secciones. La primera de ellas es el bucle mientras que la otra es el back pass, el cual está conformado por recalentador, sobre calentador, economizador y precalentador de aire, estos absorben el calor restante del gas de combustión. [4]

El bucle está conformado por horno, separador gas-solido (ciclón o separador de impacto), dispositivo de reciclaje sólido (sello de bucle, pote o válvula L), intercambiador externo (*Figura 8*), todos estos componentes forman un circuito en el que se quema el combustible, el recinto del horno al estar conformado por tubos de agua absorbe una parte del calor generado. [4]

Los residuos sólidos de menor diámetro que se generan por la combustión y desulfuración salen del horno, pero son atrapados por un precipitador electrostático.

Figura 7. Movimiento del gas-solido resultado en una alta velocidad de deslizamiento entre partículas. Fuente: Prabir Basu.

Figura 8. Secciones de una caldera de lecho fluidizado circulante. Fuente: Prabir Basu.

A continuación, se presentan las ventajas de usar este tipo combustión:

a) Flexibilidad del combustible.

Es uno de sus grandes beneficios al usar esta tecnología. Las partículas de combustible ocupan de 1-3% en peso del número de sólidos totales que están dentro del lecho del horno, el resto de solidos lo conforman los solventes, cenizas de combustible o arena. La flexibilidad del combustible en esta tecnología se da por una gran inercia térmica y una mezcla excelente de las partículas (partículas de combustible y partículas de residuos sólidos) por ende se quemen diferentes tipos de combustible sin cambiar de manera importante la configuración de la caldera. [4]

Al aplicarse la condición de lecho rápido la mezcla de gas-solido es muy buena, las partículas de combustible se mezclan rápidamente con las partículas sólidas y esto hace que se mantenga una uniforme temperatura en el lecho debido a que las partículas se calientan por encima de su temperatura de ignición. [5]

Combustibles primarios	Combustibles de deshecho
Coque de Petróleo	Antracita
Antracita	Bituminoso GOB
Carbón Bituminoso	Rechazo y desechos de lavado de carbón
Carbón Sub-Bituminoso	Lodos de depuradora
Carbón marrón	Basura industrial clasificada
Lignito	Pulpas de las industrias del papel
Turba	Residuos agrícolas.
Petróleo de esquisto	Residuos y cadáveres de animales.
Madera y otras biomasas	Des incrustación de lodos de papel
Betunes y asfáltenos	Neumáticos desmenuzados

Tabla 5 Combustibles quemados en calderas de lecho fluidizado circulante

Combustibles derivados de la basura (RDF)	Gasificador de residuos (carbono no quemado)
Aserrín y corteza	Cajas de batería (con el plomo eliminado)
Gases naturales	Residuos de madera de la demolición y traviesas de ferrocarril

Aceite incluyendo el fondo de la refinería de Plásticos petróleo pesado

GOB (Basura de bituminosas). Residuos de la explotación minera que comprenden carbón, esquisto y subproductos minerales.

Fuente: Circulated Fluidized Beds. Prabir Basu. Pag 8.

b) Alta eficiencia de combustión

La eficiencia de combustión de estas calderas llegan hasta un 99.5%, es mayor a la eficiencia de las calderas de lecho fluidizado burbujeante y casi igual a las carbón pulverizado (PC). [4]

La eficiencia de combustión en las calderas de lecho fluidizado circulante es mayor debido a que se recirculan las partículas que se desprenden producto de la combustión, la zona de combustión es más grande a comparación de las de lecho burbujeante esto hace que las partículas estén más tiempo en la zona de combustión (BFB tienen una profundidad de 0.5-1.5m y las CFB llegan a medir hasta 40m), las partículas reinyectadas no pierden temperatura, se pueden utilizar combustibles con cantidades considerables de partículas finas. [5]

No se llega a tener una eficiencia total de la combustión debido a las pérdidas de partículas muy finas en la zona del ciclón. [5]

Tener en cuenta que la eficiencia de combustión y la térmica dependen del nivel de reactividad de los combustibles. [3]

c) Eliminación de Azufre

La absorción de azufre en estas calderas es mucho más eficiente debido a las bajas temperaturas en la que esta trabaja (800-900°C), esto hace que pueda absorber el azufre durante la combustión utilizando piedra caliza. Una BFB utiliza 2.5 a 3.5 veces la cantidad estequiometria de piedra caliza para 90% de absorción de azufre mientras que una CFB utiliza 2 veces la cantidad de sorbete. El tiempo de residencia y el tamaño del hogar es otro de las ventajas para la captura del azufre (1-2 s en las BFB y 3-6 s en un CFB). [5]

d) Baja Emisión de NO_x

La baja emisión de óxidos de nitrógeno se debe a la baja temperatura de operación y a las etapas de suministro de aire. La emisión de óxido nitroso (N₂O) a partir de calderas de lecho fluidizado es mucho mayor (100 a 200 ppm) en comparación con las calderas de carbón pulverizado, donde la emisión de óxido nitroso es considerablemente más baja debido a su alta Temperatura de combustión (1200 a 1500°C) [4]

Primero se inyecta una cantidad de aire sub-estequiométrico en la parte inferior del horno creando una zona reductora. Al liberarse el combustible no encuentra inmediatamente oxígeno en el hogar, por ende no produce óxidos. Luego el aire secundario con un 20% de exceso de aire inyectado se encuentra con nitrógeno del combustible pero este ya está transformado en nitrógeno molecular, por ende hay una oportunidad limitada para la formación de No_x. Las emisiones de No_x llegan a un rango de 50-150 ppm (Hiltunen y Tang 1988) o 20-150 mg / MJ (Kullendorff et al., 1988). [5].

e) Sección trasversal del horno pequeña.

Las caderas CFB tienen una alta liberación de calor por unidad de sección trasversal, aproximadamente 2.5-4.5 MW/m², esta es cercana o superior a las de carbón pulverizado. *Figura 9*. Las calderas BFB requieren 2-3 veces más de sección trasversal. [5]

Figura 9. Velocidad de liberación de calor de la rejilla en diferente sistema de disparo.

f) Menos puntos de alimentación.

Reduce los puntos de alimentación, estos pueden alimentar a rejillas de un tamaño mayor. [4]

g) Buena Capacidad de retorno y seguimiento de carga.

La alta velocidad de fluidización y un control fácil de la absorción del calor permiten una respuesta rápida de las calderas CFB a cargas variables, se puede alcanzar un seguimiento de carga de 5% de su capacidad máxima continua por minuto. [5]

h) Adecuación para operaciones supercríticas

Las CFB tienen un flujo de calor relativamente uniforme bajo en el horno, esto hace que la generación de vapor supercrítico sea más fácil y viable en comparación a las calderas de carbón pulverizado, las cual no presentan este comportamiento. Las plantas de vapor supercrítico tienen una eficiencia de 45-50% de poder calorífico neto. Mientras que la suscriticas presentan una eficiencia de 38-40%. [5]

Algunas desventajas de esta tecnología (tener en cuenta que estas desventajas fueron dadas en el año 2004). [3]

- a) La fabricación es mucho más compleja que requiere un nivel tecnológico más alto.
- b) La preparación de combustible es más complicada, debido al tamaño con el cual se tiene que trabajar.
- c) Algunos informes dicen que la puesta en marcha sura más tiempo de lo normal.
- d) El autoconsumo de energía eléctrica es más alto que para calderas de primera generación.
- e) Procedimiento arranque prolongado.
- f) La eficacia de los grandes ciclones no está suficientemente investigada y no ha sido verificada.

2.2.2.3 Calderas de lecho fluidizado supercrítico y presurizado.

Las centrales convencionales tienen una eficiencia global de 33-36%, estas emiten cantidades altas de gases nocivos por unidad de potencia generada. Las centrales térmicas de alta eficiencia pueden ser ciclo Rankin con caldera supercrítica, ciclo combinado con caldera subcritica y ciclo combinado con calderas supercríticas. [5]

Las calderas de lecho fluidizado circulante como se dijo anteriormente se puede aplicar de manera mal fácil a calderas supercríticas. [4]
2.3 Comparación entre las diferentes tecnologías de combustión.

Este tipo de calderas son muy superiores a todas las otras tecnologías de combustión debido a que se utiliza carbón de baja calidad, biomasa y otros combustibles residuales. [3]

En esta sección compararemos tecnologías de la misma naturaleza con diferente régimen de funcionamiento como por ejemplo calderas de lecho fluidizado burbujeante, circulante, pulverizado, etc.

Tabla 6. Tabla 6Características físicas de los diferentes sistemas de combustión en lecho fluidizado

Características	stoker	Burbujeante	Circulante	Pulverizado
Altura del lecho o zona de quema de combustible (m)	e 0.2	1-2	10-30	27-45
Velocidad Superficial (m/seg)	1-2	1.5-2.5	3-5	4-6
Exceso de aire (%)	20-30	20-25	10-20	15-30
Grado de liberación de calor	0.5-	0.5-1.5	3-4.5	4-6
(MW/m ²)	1.5			
Tamaño del carbón (mm)	32-6	6-0	6-0	< 0.1
Relación rechazo	4:1	3:1	3-4:1	3:1
Eficiencia de combustión (%)	85-90	90-96	95-99.5	99-99.5
Óxido de nitrógeno en ppm	400- 600	300-400	50-200	400-600
Dióxido sulfúrico capturado en el horno (%)	Nada	80-90	80-90	nada

Fuente: Combustion and Gasification in Fluidized Beds. Prabir Basu. pág. 6

2.4 Comportamiento Hidrodinámico del lecho fluidizado.2.4.1 Fluidización

La fluidización es definida como el proceso en el cual los sólidos finos actúan como si fuera un fluido, estos permanecen semi-suspendidos debido al contacto gas-solido, este genera un arrastre y contrarresta el efecto de la gravedad. [5]

El lecho fluidizado tiene características similares a la de un fluido es por eso que se presentan a continuación algunas de ellas.

- a) Una partícula de mayor densidad se hundirá por ende la de menor densidad flotará dentro del lecho. (*Figura 10* a) [5]
- b) La mezcla gas-solido puede ser drenada como si se tratase de un líquido común y corriente. (*Figura 10* b) [5]
- c) La superficie del lecho mantiene un nivel horizontal y adopta la forma del recipiente. (*Figura 10* c) [5]

La mezcla liquido-solido mantiene una temperatura casi uniforme cuando se le suministra una temperatura en cualquier lado del lecho

Figura 10. Lecho fluidizado demostrando todas las características de un fluido. Fuente: Prabir Basu

La hidrodinámica de los lechos fluidizados circulantes trata en parte de la suspensión de gas-solido con un cierto rango de concentración de partículas (porosidad: 0.70.9999) .En las calderas de lecho fluidizado circulante o en cualquier otro tipo de caldera de esta naturaleza ya sea calderas pulverizadas o calderas de lecho fluidizado burbujeante, el análisis hidrodinámico nos ayuda a predecir el correcto funcionamiento de esta al analizar cada uno de sus regímenes para la cual está diseñada, por ende si funciona a regímenes distintos su rendimiento se ve afectado significativamente. [6]

Para los ingenieros el estudio de la hidrodinámica de una caldera de lecho circulante nos brinda información muy importante para el correcto funcionamiento de esta, así como también para su óptimo diseño (diámetro de las columnas, la forma de la pared, la estructura de salida, los dispositivos de separación y reciclado de sólidos, etc.), además también nos da información sobre el consumo de energía auxiliar, la absorción de calor, la distribución de la temperatura, la condición de la combustión, numero de partículas en el lecho, etc.

Es por eso que en esta sección se hablaran sobre los diferentes regímenes de fluidización.

- a) Para caudales bajos, el gas pasa por el espacio de entre las partículas, las partículas permanecen estáticas, este régimen es llamado lecho fijo. (*Figura 11* a) [7]
- b) Si se incrementa el caudal se llega al punto en el cual las partículas ya se encuentren suspendidas, por ende el espacio de entre ellas aumenta. Este régimen es llamado lecho incipiente o uniforme. (*Figura 11b*) [7]
- c) Para mayores caudales empieza aparecer un nuevo fenómeno debido a la inestabilidad del lecho, esta cusa la aparición de burbujas, por ende este régimen toma el nombre de lecho fluidizado burbujeante. (*Figura 11c*) [7]
- d) Al incrementarse el caudal del gas, más aun si las columnas son largas y estrechas se comienza a formar los slugg, estos se forman por la unión de varias burbujas y ocupan todo el área trasversal del lecho. (*Figura 11d*) [7]

- e) Si mayor es el número de Reynolds llegamos a un punto en el cual las partículas están totalmente desordenadas, se caracteriza por la existencia de fugas irregulares del tipo slugg. [7]
- f) Para caudales relativamente altos este régimen se denomina lecho rápido (*Figura 11e*). Si las partículas se renuevan continuamente se alcanza el trasporte neumático. [7]

Tener en cuenta que en la fluidización de los sistemas de partículas liquidas generalmente no se forman burbujas mientras aumente la velocidad (*Figura 11* d), las partículas relativamente pequeñas son difíciles de fluidificar. [7]

Figura 11. Estados de fluidización; (A) cama fija, (b) incipiente, (c) burbujeo, (d) slugging, (e) transporte, (F) líquido-sólido. Fuente: Álvarez cuenca.

2.4.2 Partículas solidas

Las partículas sólidas son rígidas y tienen una forma, mayormente una esfera es una elección natural para definirla, muchas de ellas en la vida real tienen formas distintas y se caracterizan por su grado de desviación de la forma esférica.

2.4.2.1 Clasificación de las partículas sólidas.

Se clasifican en 4 grupos (A, B, C, D) en función a la diferencia de densidad entre el sólido y el gas fluidizante. En condiciones operativas similares las partículas de diferentes grupos pueden comportarse de manera diferente. [5]

Figura 12. Clasificación en polvo de sólidos granulares. Fuente: Prabir Basu Grupo C

Tienen un diámetro menor a $30\mu m$, son muy difíciles de fluidifícar es por eso que se requieren técnicas especiales. [5]

Grupo A

Tienen un diámetro de $30\mu m - 100 \mu m$, fluidizan bien y se expanden al sobrepasar la velocidad mínima de fluidización. [5]

Grupo B

Tienen un diámetro de $100\mu m - 500 \mu m$, aparecen burbujas inmediamente se sobrepase la velocidad mínima de fluidización. La mayoría de calderas de lecho fluidizado circulante utilizan este grupo de partículas. [5]

Grupo D

Tienen un diámetro mayor a 500 μm , requieren una alta velocidad para fluidificarlas, mayormente se utilizan en los lechos de chorro. [5]

Grupo	Tamaño C	analización	Expansió	n Mínima	Mínima Mezcla		Germina Mezcla de partícula.	
	velocidad	de	ción g	gas				
				de	solidos			
	(µm)			burbujeo				
С	< 20	Severa	Baja	No hay formación burbujas	Muy baja	No hay	Muy alta	
А	20 - 110	Росо	Alta	$> U_{mf}$	Alta	No hay	Alta	
В	110 - 700	Despreciable	Media	$= U_{mf}$	Media	Lecho superficial	Media	
D	> 700	Despreciable	Media	$< U_{mf}$	Baja	fácilmente	Baja	

Tabla 7 Características de las partículas sólidas de diferentes grupos.

Fuente: Circulating Fluidized Bed Boilers. Prabir Basu

2.4.2.2 Velocidad Terminal de la partícula.

Si una partícula cae libremente del reposo bajo la gravedad en un medio infinito y estacionario, la partícula se acelera bajo la acción de la gravedad. La fuerza de flotación y la resistencia del fluido se oponen al efecto de la gravedad. La partícula acelera hasta alcanzar una velocidad de equilibrio llamada velocidad terminal. [5]

Figura 13. Fuerzas que actúan sobre una partícula suspendida en un gas ascendente.

La fuerza de arrastre esta relaciona con la energía cinética del fluido y puede definirse como:

$$F_D = C_D \left(\frac{\pi}{4} d_p^2\right) \rho_g \frac{U^2}{2}$$
(1.1)

Donde el coeficiente de resistencia C_D está en función al número de Reynolds y se muestra a continuación.

$$C_D = \frac{a}{Re^b} \tag{1.2}$$

Las constantes a y b se muestran en la siguiente tabla

Reynolds	Región	а	b
0 < Re < 0.4	Ley Stokes	24	1
0.4 < <i>Re</i> < 500	Ley intermedia	10	0,5
500 < Re	Leyes newton	0,43	0

Tabla 8 Constantes de Howard para el coeficiente de arrastre. Fuente: Prabir Basu.

Si el gas y la partícula se mueven hacia arriba con las velocidades U y v, respectivamente, la partícula experimentará un arrastre de fluido debido a la velocidad relativa (U - v) que resiste su caída. Entonces, el equilibrio de la fuerza en estado estacionario puede escribirse.

Fuerza gravitatoria = Fuerza de flotación + Fuerza de arrastre

$$\rho_p g = \rho_g g + C_D \frac{6(U-v)^2 \rho_g}{8d_p} =$$
(1.3)

Esta ecuación puede ser

$$Ar = \frac{3}{4} C_D \left[\frac{d_p (U - v)^2 \rho_g}{\mu} \right]^2$$
(1.4)

Donde

$$Ar = \frac{d_p{}^3 g \rho_g (\rho_p - \rho_g)}{\mu^2}$$
(1.5)

La velocidad terminal (velocidad de deslizamiento entre fluido y partícula) se da cuando la velocidad del gas (U) es igual al cero. Para partículas esféricas se tiene las siguientes correlaciones.

$$\frac{d_p U_t \rho_g}{\mu} = \frac{Ar}{18} \qquad 0 < Re < 0.4$$
(1.6)

$$\frac{d_p U_t \rho_g}{\mu} = \left[\frac{Ar}{7,5}\right]^{0.666} \quad 0.4 < Re < 500 \tag{1.7}$$

$$\frac{d_p U_t \rho_g}{\mu} = \left[\frac{Ar}{0.33}\right]^{0.5} \quad 500 < Re$$
(1.8)

2.4.2.3 Velocidad terminal de partículas no esféricas.

Una aproximación para hallar esta velocidad es multiplicando la velocidad terminal por un factor Kt.

Ut particula no-esferica = ktUt particula esferica

Donde el factor Kt puede obtenerse:

$$K_t = 0.843 \log_{10} \left[\frac{\phi}{0.065} \right] Re < 0.2$$
(1.9)

$$K_t = \left[\frac{4(\rho_p - \rho_g)gd_v}{3\rho_g(5,31 - 1,88\phi)}\right]^{0.5} Re > 1000$$
(1.10)

Donde la esfericidad ϕ está en un rango de 0.67-0.996 y para Re (0,2-1000) podemos interpolar entre las ecuaciones (1.9) y (1.10).

2.4.3 Regímenes de fluidización

2.4.3.1 Lecho Fijo

En este lecho las partículas no se mueven entre sí, la altura permanece constante por ende también la porosidad. A medida que el gas fluye entre el espacio intersticial de las partículas esta produce una caída de presión.

La caída de presión a través de la altura unitaria de un lecho fijo de partículas de tamaño uniforme, $\Delta P / L$, se correlaciona como (Ergun, [5])

$$\frac{\Delta P}{L} = 150 \frac{(1-\varepsilon)^2}{\varepsilon^3} \frac{\mu U}{(\phi d_p)^2} + 1.75 \frac{(1-\varepsilon)\rho_g U^2}{\varepsilon^3 \phi d_P}$$
(1.11)

Donde U es la velocidad superficial del gas, definida como el caudal de gas por unidad de sección transversal del lecho, es la porosidad en el lecho, y d_p y ϕ son el diámetro y la esfericidad de sólidos de lecho, respectivamente. μ es la viscosidad dinámica, y ρ_g es la densidad del gas.

2.4.3.2 Lecho fluidizado burbujeante

Mientras el caudal del gas en la entrada del lecho aumenta, esta llega a un punto en el cual la fuerza de arrastre del gas es igual al peso de la partícula, cuando se alcanza este equilibrio se puede afirmar que la velocidad de entrada para que suceda este fenómeno es la velocidad mínima de fluidización U_{mf} . Aquí la mezcla gas-solido se comporta como un líquido. (*Figura 10*). Se sabe que la caída de presión es igual al peso del lecho, entonces el arrastre del fluido puede escribirse como [5]:

$$F_D = \Delta P A = A L (1 - \varepsilon) (\rho_p - \rho_g) g$$
(1.12)

Al resolver las ecuaciones (4.1) y (4.2) simultáneamente se obtiene:

$$Re_{mf} = d_p \frac{U_{mf} \rho_g}{\mu^2} = [C_1^2 + C_2 A_r]^{0.5} - C_1$$
(1.13)

Donde:

$$Ar = numero \ de \ arquimides = \frac{\rho_g(\rho_{p-}\rho_g) \ g \ d_p^{3}}{\mu^2}$$

 d_p = diámetro medio volumétrico de las partículas. Los valores de las constantes empíricas C_1 y C_2 pueden tomarse de experimentos como 27.2 y 0.0408, respectivamente (Grace, [5])

Con la velocidad mínima de fluidización U_{mf} el lecho se comporta como un pseudoliquido, para partículas del grupo *B* y *D* un aumento adicional del flujo de gas puede que haga que el gas fluya en formas de burbujas. La sección del lecho fuera de las burbujas se denomina fase de emulsión, en la que la velocidad superficial del gas es del orden de U_{mf} y tiene una porosidad característica de m_f . Para partículas del grupo A las burbujas se forman hasta después de alcanzar una nueva velocidad a la cual llamaremos velocidad mínima de burbujeo Umb, esta velocidad es mayor a la velocidad minina de fluidización. Un lecho burbujeante típico se muestra en la Figura 17 b. [5]

$$\frac{U_{mb}}{U_{mf}} = \frac{2300 \ \mu^{0.523} \ \rho_g^{\ 0.126} exp(0716F)^2}{d_p^{\ 0.8} \ g^{0.934} (\rho_p - \rho_g)^{0.934}}$$
(1.14)

Donde F es la fracción de masa de las partículas de menos de 45 μm , ρ_p es el diámetro medio de las partículas en m, ρ_g es la densidad del gas en kg /m³ y μ es la viscosidad del gas en kg /ms.

Las burbujas son vacíos de gas con un poco o ningún sólido dentro de ellas. El tamaño de la burbuja aumenta debido a los siguientes parámetros: diámetro de partícula d_p , Velocidad del gas en exceso $U - U_{mf}$ y su posición por encima del distribuidor o rejilla del lecho. El tamaño de la burbuja puede aumentar sólo hasta un tamaño estable máximo D_{bmax} dado por:

$$D_{bmax} = \frac{2(U_t^*)^2}{g}$$
(1.15)

Donde U_t^* es la velocidad terminal de partículas que tienen un diámetro 2,7 veces el tamaño promedio de los sólidos del lecho (Grace, [5]).

Debido a la velocidad del gas algunas partículas pasan por encima de la zona de burbujeo, esta zona es llamada francorbo, otras partículas regresan al lecho denso y otras pasan la **altura de desenganche de trasporte** (TDH), el flujo de partículas que pasan la TDH son conocidas como tasa de elutriacion, este fenómeno se ve agravado más por la explosión de las burbujas. [4](**Figura 14**).

Figura 14. Fase densa, francobordo y fracción de sólidos. Fuente: Simeon.N.Oka

La velocidad de arrastre disminuye exponencialmente con la altura de francorbo.

2.4.3.3 Slugging.

Este fenómeno únicamente se da en secciones de lecho pequeñas, en lechos comerciales este no aparece. La burbuja pasa como una bala a través del lecho y puede llegar a tener la misma sección. Para que se forme esta burbuja el tamaño de la misma tiene que ser 0.6 veces más el diámetro del lecho (Geldart 1986, [5]).La fórmula que describe su formación está dado por (Yang 1976, [5]) y se describe a continuación:

$$\frac{2(U_t)^2}{gD} \ge 0.123 \tag{1.16}$$

De la formula (4.6) se sabe que U_t es la velocidad terminal del fluido del lecho.

Steawrd y Davidson citado por Prabir Busu nos dan una ecuación la cual no ayuda a calcular la mínima velocidad a la cual se inicia el fenómeno de slugging, se muestra a continuación:

$$U_{sl} = U_{mf} + 0.07(0.07gD)^{0.5}$$
(1.17)

Donde g es la fuerza de la gravedad, D es el diámetro del lecho y U_{mf} es la velocidad mínima de fluidización.

2.4.3.4 Lecho Turbulento.

Este fenómeno se da cuando se sobrepasa la velocidad en la cual lecho está en régimen burbujeante, el lecho tiende a expandirse. Esto el lugar a la formación de más burbujas, a una expansión de la fase de emulsión (Nakajima [5]), por lo tanto si seguimos aumentando la velocidad del gas el número de burbujas en el lecho seguirá aumentando y este tomara el nombre de lecho violentamente activo y expandido, se sabe además que las partículas salen expulsadas hacia la zona de francorbo. (*Figura* 17 d)

En este régimen la presión no es constante y se alcanza una velocidad uc la cual da inicio a la transición a estado turbulento, si seguimos incrementando la velocidad se llega a un punto en el cual podemos encontrar la velocidad final de transición a estado turbulento uk, mientras más cerca estemos de encontrar la velocidad de transición final a estado turbulento la presión se hace cada vez más estable. (*Figura 16*) Grace citado por Prabir Bussu nos presenta unas correlaciones las cuales están limitadas por un rango de ($\rho p dp = 0.05-0.7 \text{Kg/m}^2$)

$$u_c = 3.0 \sqrt{\rho_p d_p} - 0.17 \tag{1.18}$$

$$u_c = 7.0 \sqrt{\rho_p d_p} - 0.77 \tag{1.19}$$

Después de 6 años Horio y Morishita citado por Prabir Busu nos presenta una nueva correlación, esta vez utilizando el número de Arquímedes y se presenta a continuación:

$$Re_c = 0.936 A r^{0.472} \tag{1.20}$$

$$Re_{k} = 1.46Ar^{0.472} (Ar < 10^{4})$$

$$= 1.41Ar^{0.56} (Ar > 10^{4})$$
(1.21)

$$Re_c = \frac{u_c \, d_p \rho_p}{\mu} \tag{1.22}$$

$$Re_k = \frac{u_k \, d_p \rho_g}{\mu} \tag{1.23}$$

Se debe de tener en cuenta que mientras el diámetro aumente la velocidad para llegar al punto de turbulencia es cada vez menor. En todos los regímenes anteriormente mencionados las partículas están un poco por encima de la parrilla por donde entra el gas, a esta etapa se le denomina etapa cautiva. [5]

Figura 15. La caída de presión depende de la velocidad de fluidización para los diferentes regímenes presentados anteriormente. Fuente: Simeon.N.Oka

Figura 16. La presión a través del lecho aumenta a medida que el lecho se acerca a la fluidización turbulenta, pero llega a un valor máximo luego decae y se mantiene constante.

Figura 17. Regímenes de fluidización. El pseudo-liquido se mueve desde un lecho fijo (a) lecho de burbujeo (b) lecho de slugging (c). Lecho turbulento (d). Los sólidos de los cuatro regímenes anteriores generalmente permanecen dentro de una cierta altura por encima de la rejilla es por eso que se les dice que están en una etapa cautiva (están retenidos dentro del lecho). Fuente: Prabir Busu.

2.4.4 Lecho fluidizado rápido.

En este régimen la velocidad es muy alta y las partículas elutriadas regresan al lecho a alta velocidad, esto hace que la temperatura en el horno se mantenga cuasi constante. Este régimen se da entre el lecho fluidizado turbulento y el trasporte neumático, aquí se forman aglomerados que luego son diluidos debido a la alta velocidad del gas, la formación de estos es una de sus principales características. [5]

A una velocidad baja las partículas viajaran aisladas de las otras, en cambio sí se aumenta esta una partícula esta chocara la estela de la otra aumentando así la fuerza del arrastre y por ende aumentara la densidad de la misma y esta caerá hacia la parte inferior del lecho, se volverán a formar aglomerados y luego se diluirán así sucesivamente. (Ver Figura 18).

Figura 18. El paso del transporte neumático a la fluidización rápida puede ocurrir cuando la velocidad de circulación del sólido se incrementa mientras se mantiene la una etapa cautiva (están retenidos dentro del lecho).Fuente: Prabir Busu. velocidad del gas fijada por encima de una cierta velocidad. A Transporte neumático. B Inicio de la formación de aglomerados.

2.4.4.1 Transición a fluidización rápida

Imaginemos que el gas fluye hacia arriba a través de una columna vertical a la que se alimenta el sólido a una velocidad dada, W1, y la velocidad es suficientemente alta para que la suspensión esté en transporte neumático, al disminuir la velocidad superficial del gas sin reducir la velocidad de alimentación se experimentara una caída de presión por unidad de altura debido a la fricción que ejercen las partículas con la pared (C-D), es por eso que mientras se disminuya la velocidad del gas aumenta el número de partículas suspendidas. Luego la caída de presión comienza a aumentar (DE) con una disminución continua de la velocidad superficial (*Figura 19*).El punto D marca el inicio del lecho rápido desde trasporte neumático. [5]

Si se sigue disminuyendo la velocidad superficial los sólidos ya no se podrán seguir trasportando, estos se acumularían hasta llenar las columnas. En diámetros pequeños las partículas empezarían a golpear la superficie de la columna mientras que en diámetros más grandes se trasformaría en un lecho fluidizado de fase densa que no se deshace, tal cual como un lecho turbulento o burbujeante. [4]

Superficial gas velocity [U]

Figura 19. Representación de regímenes de gas-solido a través de una columna vertical. Fuente: Prabir Basu

2.4.4.2 Transición de burbujeante a lecho rápido

Tomando el principio anterior podríamos usar la velocidad de ahogamiento U_{ch} para marcar la transición de cautivo (turbulento / burbujeo / slugging) a la rápida fluidización rápida. Para una primera aproximación podríamos usar la ecuación de Yang (1983), la cual puede ser usada cuando la partículas pertenecen al grupo A y para un diámetro de columna no mayor a 0.3 m. [5]

$$\frac{U_{ch}}{\varepsilon_c} = U_t \left[\frac{2gD(\varepsilon_c^{-4.7} - 1)\rho_p^{2.2}}{6.81 \times 10^5 \rho_g^{2.2}} \right]^{0.5}$$
(1.24)

$$G_{s} = (U_{ch} - U_{t}) (1 - c)\rho_{p}$$
(1.25)

Donde G_s es la velocidad de circulación sólida, $_c$ es la fracción volumétrica ocupada por vacíos en asfixia, y U_t es la velocidad terminal de partículas individuales. A velocidades de circulación más altas, la transición ala fluidización rápida ocurre a velocidades más altas.

Hay una velocidad mínima a la cual se produce el cambio a la fluidización rápida, independientemente a la velocidad de circulación, esta es llamada velocidad de trasporte. Si aumentamos la velocidad de la fluidización por encima de la velocidad terminal de las partículas, estas saldrán en un periodo de tiempo a menos que se reemplacen simultáneamente. A medida que la velocidad disminuye desde un nivel muy superior a la velocidad terminal, el tiempo necesario para vaciar el lecho aumenta gradualmente hasta alcanzar una velocidad crítica por debajo de la cual se produce un aumento repentino en el tiempo de vaciado del lecho, esta velocidad es llamada velocidad de trasporte (*Figura 20*). Por lo tanto, un lecho rápido se define más

rigurosamente mediante un régimen de fluidificación gas-sólido por encima de la velocidad de transporte y por encima de una velocidad mínima de reciclado de sólidos arrastrados. [5]

Figura 20. El tiempo de vaciado de una columna disminuye al aumentar la velocidad del gas a través de la columna. La velocidad de transporte está marcada por la intersección (F) de las pendientes de las curvas. Fuente: Prabir Busu.

$$U_{tr} = 1.45 \frac{\mu}{\rho_g d_p} A r^{0.484} , 20 < Ar < 50,000$$
(1.26)

En el 2005 Yue citado por Prabir Basu público dos expresiones la cuales nos ayudan a calcular la velocidad mínima de fluidización rápida U_{tr} y la velocidad de circulación mínima $G_{s, min}$.

$$U_{tr} = (3.5 \ a \ 4.0) U_t; G_{s,min} = \frac{U_{tr}^{2.25} \rho_g^{1.627}}{0.164 [gd_p(\rho_p - \rho_g)]^{0.627}}$$
(1.27)

2.4.4.3 Transición del trasporte neumático a lecho rápido.

Para una velocidad de circulación dada, dos velocidades vinculan el lecho rápido una de ellas velocidad asfixia en el inferior y la otra es la velocidad en el lado más alto, la velocidad más alta marca la transición de la fluidización rápida al transporte neumático. Como se ha indicado anteriormente, es el lugar de la velocidad a la cual, para una velocidad de circulación dada, la caída de presión media a través de la altura de la columna alcanza un valor mínimo (punto D, *Figura 19*). [5].

En el momento no se dispone de una correlación comprensiva para estimar esta velocidad. Sólo los datos experimentales pueden proporcionar la guía necesaria para esta transición.

Figura 21.La transición de un régimen a otro depende de los parámetros operativos y de diseño, como el tamaño de las partículas, la densidad de las partículas, el tamaño de las columnas (hasta cierto tamaño), la densidad y viscosidad del gas.

2.4.5 Estructura hidrodinámica de los lechos rápidos

Se presentará una descripción de la estructura hidrodinámica del lecho rápido, así como ecuaciones empíricas que pueden describir la distribución de densidades locales de suspensión en dirección axial y radial.

2.4.5.1 Vacío axial.

La distribución axial típica del vacío en la sección trasversal del lecho rápido muestra que en la sección inferior del lecho por debajo del nivel de inyección de aire secundario la concentración de partículas es densa en cambio en la parte superior la mezcla está más diluida. Kwauk citado por Prabir Basu llego a la conclusión que la distribución axial de vacío tiene una forma de "S". (Figura 23) y se presenta con la siguiente correlación empírica. [5]

$$\frac{\varepsilon - \varepsilon_a}{\varepsilon_d - \varepsilon} = exp\left(\frac{h - h_i}{h_0}\right)$$
(1.28)

Donde ε es el vacío a una altura, h medida desde el fondo del lecho, *d* es el vacío asintótico en la sección densa (h = - ∞), y *d* es el vacío asintótico en las secciones diluidas (h = + ∞) del perfil de vacío en forma de S. La altura característica h₀ puede encontrarse a partir de ecuaciones empíricas dadas por Kwauk (1986). La altura h_i es el punto de inflexión en el perfil. El vacío asintótico *d* en la fase diluida se describe como el vacío en el cual los racimos comienzan a formarse. Esto puede considerarse igual al vacío de asfixia, *c*, de la Ec. (1.24).

El punto B separa las dos regiones delgada y densa de un lecho rápido en función a la tasa de circulación sólida y del número de sólidos en el sistema, este punto está influenciado por la altura a la cual se inyecta el aire secundario, la densidad de la suspensión depende de la velocidad de circulación y de fluidización.

Figura 22 .El perfil de evacuación se rige por el equilibrio de presión alrededor del bucle CFB. Fuente: Prabir Basu

Figura 23. Perfil axial del vacío del lecho promedio en sección transversal. Medido en un elevador CFB de 0,24 m de diámetro y 54 m de altura para soportar una caldera CFB supercrítica de 600 MWe en Baima, China. Fuente: Prabir Basu.

La concentración de sólidos en la parte inferior es más densa, es por eso que la caída de presión por unidad de altura en esa parte del sistema es más alta que en la sección superior. Los sólidos se distribuyen entre el lecho ascendente y la etapa de retorno de tal manera que la presión cae a través de dos etapas del bucle. La caída de presión a través de la

válvula L o del cierre de bucle que controla el flujo sólido es proporcional a su caudal. Se puede aumentar el flujo sólido a través de la válvula L aumentando el flujo de aire, lo que a su vez aumentará la caída de presión por unidad de longitud del lecho empaquetado móvil en la etapa de retorno (EF). La caída de presión a través del ciclón es proporcional al cuadrado de la velocidad del gas de entrada. La caída de presión a través del tubo vertical depende del nivel de sólidos en el mismo. Para operaciones estables, el balance de presión alrededor del bucle puede escribirse como [5]:

$$\Delta P_{F-G} + \Delta P_{G-A} + \Delta P_{A-B} + \Delta P_{B-C} + \Delta P_{C-D} = \Delta P_{E-D} + \Delta P_{F-E}$$
(1.29)

El balance anteriormente mencionado depende de diferentes parámetros de funcionamiento, este puede predecir diferentes comportamientos como se muestra en la Tabla 9

Otra forma de predecir la distribución de vacío axial en un lecho rápido se basa en la ecuación de Kunni y Levenspiel mostrada a continuación:

$$\frac{\varepsilon_d - \varepsilon}{\varepsilon_d - \varepsilon_a} = \exp[-a(h - h_i)], h > h_i$$
(1.30)

Donde para las camas rápidas, la constante de decaimiento de la densidad *a* puede correlacionarse con velocidades superficiales utilizando datos experimentales. Los valores típicos de vacío asintótico en la sección más densa, *a*, para partículas del grupo A para lechos rápidos (0.88-0.78), lechos turbulentos (0.60-0.78) y lechos burbujeantes (0.45-0.60), tener en cuenta que para materiales usados en calderas comerciales este sería mayor. [5]

En los lechos rápidos el punto de inflexión (h_i) está en o por debajo del punto de alimentación de aire secundario. El vacío asintótico de la sección superior εd , puede estar relacionado con el vacío con el cual comienza la formación de conglomerados,

es por eso que se aproximara ε d como ε c. El vacío en la salida del horno ε e a una altura *H* se puede obtener como:

$$e = d - (d - a) \exp[-a(H - h_i)]$$
 (1.31)

Figura 24. Constante de decaimiento a en el perfil de densidad de lecho axial. Cada una de las curvas representa el producto de la velocidad y la constante de desintegración, a U. Fuente: Prabir Basu

Tabla 9Respuesta de las variables dependientes a los cambios en losparámetros de funcionamiento.

Situaciones	1	2	3	4	5	6		
Parámetros de operación								
Velocidad del gas	-	0	0	0	-	-		
abertura de la válvula	0	-	0	-	0	+		
Inventario del sistema	0	0	-	+	-	0		
		respuesta	a					
Tasa de circulación solida	-	-	-	0	0	0		
Caída de presión de la válvula	-	+	-	+	0	-		
Densidad de fase diluida	+	-	-	0	+	+		
Densidad de fase densa	+	-	-	0	+	+		
inventario en etapa de retorno	-	+	-	+	+	-		
Adaptado por Matsen (1998)								

Símbolos usados - disminuye; + incrementa; 0 No altera

Fuente: Circulating Fluidized Bed Boilers. Prabir Basu.Pag.39.

El vacío medio del lecho s por encima del punto de inyección de aire secundario se puede encontrar integrando la Ec. (1.31) entre H y h_i o la altura del nivel de aire secundario.

$$\varepsilon_s = \varepsilon_d - \frac{\varepsilon_e - \varepsilon_a}{a(H - h_i)}$$
 (1.32)

Por lo tanto, la cantidad de sólidos en el horno se puede encontrar con la siguiente ecuación:

$$W = A\rho_P[h_i(1 - a) + (H - h_i)(1 - s)]$$
(1.33)

2.4.5.2 Distribución de vacío lateral

Al ir el flujo de aire en forma ascendente, en una primera instancia se pensaría que todos las partículas se mueven en esa dirección pero haciendo mediciones detalladas se llega a la conclusión que la partículas cercanas a las paredes se mueven hacia abajo debido a que la velocidad cerca de la misma es mucho más baja. Por lo tanto el elevador de un CFB tienes dos formas una la cual denominamos zona anular (velocidad baja) y la otra a la que llamaremos zona central (velocidad alta).La formación de racimos en mucho mayor en la zona anular, pero son menos probables en aparecer en lechos muy diluidas de partículas gruesas. Los movimientos ascendentes y descendentes de los sólidos en el núcleo y el anillo establecen una circulación interna en el lecho, además de la circulación externa, donde los sólidos capturados por el ciclón se devuelven al lecho. Las mediciones experimentales (Horio y Morishita 1988) han mostrado que la tasa de circulación interna es 2,3 veces la tasa de circulación externa. La uniformidad de temperatura del lecho es un resultado directo de esta circulación sólida interna. [5]

a) Espesor de la capa de pared

Los sólidos en la zona anular descienden, es por eso que los sólidos disminuyen desde el fondo a la parte superior del lecho. La variación axial del espesor, δ , de la capa anular para una caldera CFB grande puede estimarse con la ecuación de Johansson (2007) citado por Prabir Basu. [5]

$$\delta = D_{eq} \left[0.008 + 4.52(1 - av(Z)) \right]$$
(1.34)

$$\delta = 0.00385 H \exp\left(1 - \frac{Z}{H}\right) \tag{1.35}$$

Donde H es la altura del horno y Z es la altura en la que el espesor está siendo calculado. El vacío local y las velocidades de gas y solido cambian continuamente desde el centro hacia la pared, el vacío en la pared es más baja mientras que en el centro es más alta. [5]

Las mediciones en unidades a escala de laboratorio sugieren que el vacío local, ε (r), es una función de sólo el vacío medio en sección transversal, *av* y la distancia radial no

r dimensional del eje del lecho. R

$$\varepsilon_{(r,Z)} = \varepsilon_{mf} + \left[\varepsilon_{av}(Z) - \varepsilon_{mf}\right]\varepsilon_{av}(Z)^{\left[-1.5 + 2.1\left(\frac{r}{R}\right)^{3.1} + 5.0\left(\frac{r}{R}\right)^{8.8}\right]}$$
(1.36)

2.5 Transferencia de Calor en las calderas de lecho fluidizado.

Las calderas de lecho fluidizado circulante (CFB) requieren transferencia de calor a las paredes del lecho, esto ayuda al control de su temperatura y como medio de generación de vapor o agua caliente. Se debe tener en cuenta la variación de la densidad de los sólidos en el lecho desde el distribuidor hasta la salida. [6]

El tamaño y ubicación de los intercambiadores de calor influyen en su eficiencia térmica y en su rendimiento. Por ejemplo, si en el horno se proporcionan intercambiadores de calor de menor tamaño a las requeridas, la generación de vapor se reduciría y, si se quiere retener, la temperatura de combustión tendría que aumentar afectando negativamente a la captura de azufre y aumentando el potencial de corrosión de los tubos. [5]

La transferencia de calor a los intercambiadores de calor no es el único proceso de transferencia de calor que tiene lugar en los hornos de la caldera FBC. Por lo tanto, es necesario prestar atención a todos los procesos de transferencia. [3]

A continuación se muestran cinco diferentes formas de transferencia de calor que se involucradas en una caldera CFB. [5]

- Gas a partículas.
- Lecho rápido a la pared de agua
- Lecho rápido a superficies sumergidas en el horno
- Lecho de burbujeo a superficies sumergidas en un intercambiador de calor externo
- Transferencia de calor al ciclón

Figura 25. Secciones de transferencia de calor en una caldera de lecho fluidizado circulante. Fuente: Prabir Basu

2.5.1 Transferencia calor gas-partícula.

Los gases y las partículas sólidas cercanas al distribuidor, puntos de alimentación y orificio de inyección de arre secundario están a diferentes temperaturas del resto del lecho. Por ejemplo, la combustión, desgaste y fragmentación de las partículas de combustible se ven afectadas por este cambio de temperaturas debido a la disminución de velocidad de calentamiento. [5]

2.5.1.1 Coeficiente de transferencia de calor Gas-Partícula. (hgp)

Las partículas finas tienen una tasa de transferencia de calor muy alta en zonas como la rejilla y en partes donde la diferencia de calor y la velocidad de deslizamiento son muy altas. La trasferencia de calor disminuye con el aumento de concentración de sólidos. [5] Se puede calcular con la ecuación de Ranz y Marshall la cual utiliza el número de Reynolds basado en la velocidad superficial del gas, pero no es completamente valida debido a que sobre predice dicho coeficiente. *Figura 26*. [5]

Para hallar el coeficiente de transferencia de calor se utilizará la siguiente correlación empírica para una primera aproximación. [5]

$$h_{gp} = \frac{K_g}{d_{cp}} 0.33 R e_{cp}^{0.62} \left[\frac{d_{cp}}{d_p} \right]^{0.1}$$

$$d_{cp} (5 - 12mm); d_p (50 - 350); Re(900 - 2500)$$
(1.37)

Donde:

$$Re_{cp} = \left[\frac{(U - U_{cp})\rho_p d_{cp}}{\mu}\right]$$

 d_{cp} es el diámetro de las partículas gruesas suspendida en el lecho de partículas finas de diámetro d_p . La velocidad media de deslizamiento entre el gas y la partícula es ($U - U_{cp}$).

Figura 26. Coeficiente de transferencia de calor al utilizar las ecuaciones de Ranz-Marshall. Fuente: Prabir Basu.

2.5.1.2 Calentamiento de las partículas sólidas.

El número de Biot para este tipo de partículas (partícula típica de un horno CFB) es muy pequeño (<0,1), es por eso que la gradiente de temperatura dentro de la partícula solida puede omitirse. A continuación, se presenta un balance energético sobre una partícula esférica sin generación de calor. [5]

$$C_p \rho_p \frac{\pi d_p^{\ 3}}{6} dT_p = h_{gp} \pi d^2_{\ p} (T_p - T_p) dt$$
(1.38)
T_p y T_g son temperaturas instantáneas de los gases y de las partículas respectivamente, y C_p y ρ_p son el calor especifico y la densidad de la partícula.

Si se asume un valor medio para la trasferencia de calor de gas a partícula se obtiene:

$$t = \frac{C_p \rho_p d_p}{6h_{gp}} \ln \left[\frac{T_g - T_{p0}}{T_g - T_p} \right]$$
(1.39)

 T_{p0} es la temperatura inicial de la partícula

Para hallar el tiempo requerido para que la diferencia de temperatura gas-partícula se reduzca a 1% de su valor nominal utilizaremos la siguiente ecuación.

$$t_{99\%} = \frac{0.765C_p \rho_p d_p}{h_{gp}}$$
(1.40)

2.5.1.3 Calentamiento del gas

Durante el calentamiento de aire frio podemos descuidar cualquier cambio en la temperatura de los sólidos del lecho, así podemos calcular la altura del horno que el aire debe recorrer para alcanzar la temperatura del horno. [5]

Si el calor perdido en la pared es descuidado, el calor ganado por el aire que atraviesa una distancia dx, $C_p \rho_p U dT_g$ es igual a la recibida por las partículas $h_{gp} \rho_b S(T_p - T_g) dx$ entonces la distancia recorrida X99% por el gas para tener la misma temperatura que el horno se puede encontrar integrando el intercambio de calor a una distancia dx. [5]

$$X_{99\%} = \frac{\rho_g U}{\rho_b S} \int_{T_{g0}}^{T_{99\%}} \frac{C_g dT_g}{h_{gp} \rho_b (T_p - T_g)}$$
(1.41)

Tomando en cuenta que $T_{99\%}$ es igual a:

$$T_{99\%} = T_{go} + 0.99(T_p - T_{go})$$

2.5.2 Transferencia de calor desde el lecho hasta la pared

La transferencia de calor hacia la pared es muy importante ya que ayuda a mantener la temperatura del horno de manera estable en un intervalo de 800-900°C. [5]

En este tipo de calderas coexisten dos fases, una llamada fase dispersa y otra de agrupamiento. La fase de agrupamiento se generan debido a que algunos de los sólidos del grupo A y B de Geldart se aglomeran formando racimos y hebras, estos se disuelven y se reforman continuamente. La transferencia de calor hacia la pared se produce a través de conducción de los racimos, convección de la fase dispersa y radiación de las dos fases. Los racimos calientes en el horno se enfrían dando calor a la pared a través de la conducción y la radiación [5]

Figura 27. Mecanismos de transferencia de calor hacia la pared del horno. Fuente: Prabir Basu

2.5.2.1 Observaciones experimentales.

En las calderas de lecho fluidizado circulante se deben tener en cuenta muchos parámetros para su correcto funcionamiento, ya que estos influyen directamente en el proceso de trasferencia de calor. A continuación, se presentan alguno de ellos. [5]

a) Densidad de suspensión

La densidad de suspensión representa el peso de los sólidos suspendidos por unidad de volumen del lecho, esta influye directamente en la trasferencia de calor de un lecho rápido, mientras más densa sea la suspensión mayor es la transferencia de calor hacia la pared. El calor es transferido debido al flujo descendente de racimos sólidos y por el gas ascendente que contiene los sólidos dispersos. Debido a que la suspensión de solidos disminuye desde el fondo hasta la parte superior del horno el coeficiente de transferencia se ve afectado y decae. Otros parámetros que influyen en este fenómeno

son el flujo de aire (primario y secundario), la circulación sólida, numero de sólidos en el lecho, distribución de tamaño de partículas y la distribución de temperatura. Para controlar la densidad de suspensión en la parte superior del lecho se tiene que cambiar la relación de flujo de aire (primario y secundario) ya que no es posible controlar la velocidad de circulación sólida. [5]

Figura 28. Efecto en el coeficiente de transferencia de calor debido a la suspensión de sólidos en un lecho de 25mm de diámetro. Fuente: Prabir Basu

A continuación, se presenta una gráfica con la comparación de diversas calderas de lecho fluidizado circulante en las cuales se presentan coeficientes de trasferencia de calor, esta incluye calderas comerciales de 110 y 135 MW. Notamos que la trasferencia de calor en las CFB es superior a las de laboratorio. [5]

Figura 29. Coeficiente de transferencia de calor debido a la densidad de la suspensión en lechos a alta temperatura. Fuente: Prabir Basu

b) La velocidad de fluidificación

La velocidad de fluidización no influye directamente en la transferencia de calor. Si la velocidad de circulación solida permanece constante y se aumenta la velocidad, el coeficiente de transferencia disminuye debido a la reducción en la densidad de suspensión más no por el aumento de la velocidad del gas. [5]

En calderas comerciales la velocidad de fluidización influye en la densidad de suspensión, pero esta se caracteriza por tener un lecho muy diluido. Una mayor velocidad de fluidificación ocurre en una carga más alta, que también está asociada con una temperatura más alta y una densidad de suspensión más alta. [5]

Figura 30. Comparación del cambio de coeficiente de transferencia de calor debido a la velocidad del gas entre CFB comerciales y de laboratorio.

c) La longitud vertical de la superficie de transferencia de calor.

Si la densidad o la temperatura de suspensión permanecen constante el coeficiente de transferencia de calor idealmente disminuiría a lo largo de la longitud de la superficie de transferencia de calor, sin embargo, en calderas comerciales se observa un efecto opuesto, el cual muestra que el coeficiente de transferencia de calor en la pared aumenta a medida que baja la altura del horno debido a la densidad de suspensión. [5]

Figura 31. Aumento del coeficiente de Transferencia de calor en la parte inferior de un horno de lecho fluidizado circulante. Fuente: Prabir Basu

d) Temperatura del lecho.

El coeficiente de transferencia de calor aumenta con la temperatura del lecho, debido a que se reduce la resistencia térmica de la primera capa de partículas y la de los racimos producto del aumento de la conductividad térmica del gas. [4]

El coeficiente de transferencia de calor también se ve afectado por el aumento de la radiación, esta última depende directamente de la temperatura, el enfriamiento de los racimos mientras se desliza por la pared del lecho no afectan mucho en la trasferencia de calor. [5]

Figura 32. Efecto de la temperatura en el coeficiente de trasferencia de calor con una densidad de suspensión de 20 kg/m³

e) Tamaño de la partícula.

En calderas comerciales el efecto del tamaño de las partículas sobre el coeficiente de trasferencia de calor es insignificante, debido a que las superficies de trasferencia de calor son largas y esto hace que las partículas estén en contacto con la pared una cantidad suficiente de tiempo para así enfriarse. [5]

El tamaño de la partícula podría afectar la densidad de suspensión en el horno, esto sí podría generar un cambio en el coeficiente de transferencia de calor. [5]

2.5.2.2 Fundamento teórico.

En un lecho fluidizado rápido, la conducción de calor transitorio entre la pared y los sólidos descendentes da como resultado una capa límite térmica. Un análisis de la masa, el momento y el balance energético tanto del gas como de las partículas cerca de la pared puede dar una imagen detallada del proceso de transferencia de calor a la pared. En este caso se presentará el modelo de Basu y Subbarao el cual se basa en la renovación de los racimos para el estudio de este proceso. [5]

En el lecho rápido la pared entra en contacto tanto con los racimos como con la parte dispersa. Si δc es la fracción media del área de la pared cubierta por aglomerados, el coeficiente de trasferencia de calor promedio en el tiempo (h), puede escribirse como la suma de los coeficientes de transferencia de calor tanto convectivo y radiactivo. [5]

$$h = h_{cov} + h_r = \delta_c (hc + h_{cr}) + (1 - \delta_c)(h_d - h_{dr})$$
(1.42)

Donde *hc* y *hd* son coeficientes de trasferencia de calor convectivo de los racimos y la fase dispersa respectivamente. La fracción de fraguado puede calcularse con la fórmula que se muestra a continuación.

$$\delta_c = K \left[\frac{1 - \varepsilon_w - Y}{1 - \varepsilon_c} \right]^{0.5}$$
(1.43)

Se puede estimar a partir de donde K = 0,5, *w* es la fracción de vacío cerca de la pared, ɛc es la fracción de vacío dentro de los grupos e Y es la fracción volumétrica de sólido en la fase dispersa la cual aumenta desde el centro hacia la pared y es más alta en la pared. El vacío cerca de la pared fue expresado por Tung de la siguiente manera. [5]

$$(R) = w = 3.811$$

a) Convección.

El proceso de trasferencia de calor convectivo comprende a las contribuciones de los aglomerados y la fase dispersa.

$$h_{conv} = \delta_c h_c + (1 - \delta_c) h_d \tag{1.44}$$

Convección en el racimo (hc)

Los racimos tienen contacto con la pared un determinado tiempo, estos inicialmente están a la temperatura del lecho (Tb), luego se someten a una trasferencia de calor en estado transitorio. Durante el período inicial de transferencia de calor, sólo está involucrada la primera capa de partículas en el racimo. Estas partículas se aproximan a la temperatura de la pared debido a la conducción de calor. Sin embargo, si el grupo permanece en la pared durante un período de tiempo suficientemente largo, las partículas de capas sucesivas también participan en el proceso de conducción térmica transitoria. El valor instantáneo del coeficiente de trasferencia de calor (ht) viene dado por la correlación Mickley y Fairbanks citado por Prabir Basu. [5]

$$h_t = \sqrt{\frac{K_c C_p \rho_c}{\pi t}}$$
(1.45)

Donde Kc, Cc y pc son la conductividad térmica, el calor específico y la densidad de los racimos Las propiedades del racimo se toman como las mismas que las de la fase de emulsión en los lechos burbujeantes, entonces tenemos. [5]

$$Cc = [(1 - \varepsilon c) Cp + \varepsilon c Cg]$$
(1.46)

$$\rho c = [(1 - \varepsilon c) \rho p + \varepsilon c \rho g]$$
(1.47)

La conductividad térmica de un racimo, Kc, se puede tomar de la Figura 33

Figura 33. Conductividad de los racimos en función a la conductividad del gas.

También la conductividad térmica de los racimos puede encontrarse con la ecuación de Gelperin y Einstein la cual se muestra a continuación: [4]

$$\frac{K_c}{K_g} = 1 + \frac{M}{N} \tag{1.48}$$

Para una relación entre K_p/K_g menor a 5000 y un tamaño de partícula por debajo de 0.5 mm M y N se puede calcular de la siguiente manera.

$$M = (1 - \varepsilon_c) \left(1 - \frac{Kg}{Kp} \right); \ N = \left(\frac{Kp}{Kg} \right) + 0.28\varepsilon_c^{0.63(Kg/Kp)^{0.18}}$$
(1.49)

La velocidad de los racimos puede calcularse siguiendo la correlación de Noymer and Glicksmann. [4]

$$U_{cl} = 0.75 \sqrt{\frac{\rho_p}{\rho_g}} g d_p \tag{1.50}$$

Donde c es la fracción de vacío en los racimos y g es la gravedad.

El coeficiente medio de transferencia de calor para una superficie isotérmica sobre un tiempo de contacto, tc, se obtiene de la siguiente manera. [5]

$$h_{c} = \frac{1}{t_{c}} \int_{0}^{t} h_{t} dt = \sqrt{\frac{4K_{c}C_{c}\rho_{c}}{\pi t_{c}}}$$
(1.51)

La transferencia de calor del racimo en un lecho rápido se somete tanto a la resistencia de contacto en la pared como a la resistencia de conducción del racimo. Si consideramos la conducción de calor transitorio desde el racimo o aglomerado hasta la pared, se puede considerar el componente de transferencia de calor (hc) con la siguiente correlación. [5]

$$h_{c} = \frac{1}{\frac{d_{p}}{10K_{gf}} + \left[\frac{\pi t_{c}}{4K_{c}C_{c}\rho_{c}}\right]^{0,5}}$$
(1.52)

 t_c es el tiempo medio de residencia de los racimos en la pared y K_{gf} es la conductividad térmica del gas que se evalúa a la temperatura media de la película de gas. Según Glicksman citado por Basu la transferencia de calor más allá de la primera capa de partículas no necesita ser considerada cuando su constante de tiempo térmico, J, es mucho mayor que su tiempo de residencia en la pared. [5]

$$J = \frac{C_p d^2 p \rho_p}{36K_g} < t_c$$
 (1.53)

Para partículas gruesas con un tiempo de resistencia corto el componente convectivo del grupo h_c puede calcularse como

$$h_c = \frac{10K_{gf}}{d_p} \tag{1.54}$$

La conducción de calor del racimo depende del tiempo de residencia en la pared, los racimos aceleran hacia abajo por efecto de la gravedad, arrastre de la pared y velocidad debido al gas ascendente hasta alcanzar la velocidad máxima (Um), esta puede medirse experimentalmente o estimarse con la cizalladura de la pared y el grosor del racimo. El tiempo de residencia que tarda el racimo en recorrer la longitud del horno antes que se rompa se puede hallar de la siguiente manera. [5]

$$L = \frac{U_m^2}{g} \left[\exp\left(\frac{gt_c}{U_m}\right) - 1 \right] + U_m t_c$$
(1.55)

L es la longitud vertical de la superficie de transferencia de calor y tc es el tiempo de contacto del racimo en la superficie.

En las calderas comerciales grandes, el coeficiente de transferencia de calor debe ser menos sensible al tiempo de residencia. El error implicado en la estimación del tiempo de residencia puede no tener un efecto importante en el coeficiente de transferencia de calor total calculado para el diseño de la caldera. [5]

Convección en la fase dispersa.

La transferencia de calor de la parte diluida puede encontrarse con la siguiente correlación dada por Wen y Miller citado por Basu y se muestra a continuación. [5]

$$h_d = \frac{K_g}{d_p} \frac{C_p}{C_g} \left[\frac{\rho_{dis}}{\rho_p} \right]^{0.3} \left[\frac{U_t^2}{g d_p} \right]^{0.21} Pr$$
(1.56)

Donde ρ_{dis} es la densidad de la fase dispersa dada por $[\rho_p Y + \rho_g (1 - Y)]$, $K_g y C_g$ son la conductividad y el calor especifico del gas. Ut de la velocidad terminal de las partículas del lecho promedio y la concentración de volumen solido Y es 0,001 %.

Cuando la radiación es despreciable, la ecuación (1.56) da el límite inferior de la trasferencia de calor, mientras que el límite superior está dado por la ecuación (1.54).

b) Radiación

La radiación en lechos rápidos se da a temperaturas mayores a 700°C y a una baja densidad del lecho menor a 30Kg/m3.Tanto los racimos como la fase dispersa entregan esta radiación hacia la pared y se puede determinar de la siguiente manera. [5]

$$h_r = \delta_c h_{cr} + (1 - \delta_c) h dr \tag{1.57}$$

Radiación en la fase dispersa (hdr)

Para un lecho muy diluido, se puede usar la siguiente ecuación para estimar la emisividad efectiva de una nube de partículas.

$$e'_{p} = 1 - exp\left[\frac{-1.5 \ e_{p}Y' \ L_{b}}{d_{p}}\right]$$
 (1.58)

Donde e'p es la emisividad de las partículas, Y' es la fracción volumétrica de sólidos en el interior del horno y puede estar entre la fracción solida de estado ahogado y la fase dispersa. La longitud media del haz L_b puede encontrase como se muestra a continuación. [5]

$$L_b = \frac{3.5V}{A} \tag{1.59}$$

Donde V es el volumen de emisión del lecho y A es la superficie de pared que lo rodea. Para un horno cilíndrico, L_b es aproximadamente 0,88 veces el diámetro del lecho. Para medios altamente diluidos el efecto de la radiación del gas puede tenerse utilizando la ecuación de Andersson citado por Basu. [5]

$$e_d = e_g + e'_p - e_g e'_p$$
 (1.60)

Si e'_p es mayor de 0.5-0.8 como en el caso de las calderas CFB grandes entonces podemos utilizar la correlación de Brewster (1.61). [5]

$$e_d = \left[\frac{e_p}{(1-e_p)B} \left(\frac{e_p}{(1-e_p)B} + 2\right)\right]^{0.5} - \frac{e_p}{(1-e_p)B}$$
(1.61)

 e_p Es la emisividad de la superficie de la partícula y B es 0.5 para una dispersión isotrópica y 0.667 para partículas refractantes difusamente. [5]

La transferencia de calor radiactiva desde la fase dispersa se puede encontrar a partir de la siguiente ecuación:

$$h_{dr} = \frac{\sigma(T_b^{\ 4} - T_s^{\ 4})}{\left(\frac{1}{e_d} + \frac{1}{e_s} - 1\right)(T_b - T_s)}$$
(1.62)

 e_s es la emisividad de la superficie de trasferencia de calor.

Radiación en los racimos (hcr)

Calculamos a emisividad (e_c) utilizando la expresión de Grace la cual cuenta con múltiples reflexiones de partículas. [5]

$$e_c = 0.5(1 + e_p) \tag{1.63}$$

Donde e_p es la emisividad de los materiales del lecho y h_{cr} puede calcularse de la siguiente manera. [5]

$$h_{cr} = \frac{\sigma(T_b^{\ 4} - T_s^{\ 4})}{\left(\frac{1}{e_c} + \frac{1}{e_s} - 1\right)(T_b - T_s)}$$
(1.64)

Tener en cuenta que en calderas CFB la radiación en la fase diluida es domínate debido a que la densidad de suspensión es relativamente baja, es por eso que es apropiado utilizar la superficie proyectada para estimar la radiación y la superficie total para estimar la transferencia de calor convectivo.

2.5.2.3 Efectos de las aletas verticales en las paredes.

Las aletas dentro del horno hacen que caldera sea más compacta e incluso menos alta, en algunos casos puede que sustituya el uso de un intercambiador de calor externo (EHE) o superficies de calentamiento suspendidas dentro del mismo. La trasferencia de calor en las aletas puede definirse de la siguiente manera. [5]

$$Q_f = A_f \eta_f h \left(T_b - T_s \right) \tag{1.65}$$

Donde Af es el área superficial de las aletas, η_f es la eficiencia de la aleta, y h es el coeficiente de transferencia de calor en el área de base, es decir, el área en ausencia de aletas. La eficiencia de la aleta medida a temperatura ambiente se indica en el intervalo de 40-70%. [5]

2.5.3 Intercambiador de calor de lecho fluidizado externo (FBHE)

Algunas calderas CFB utilizan este tipo de intercambiadores para completar la trasferencia de calor del mismo horno. El FBHE es un lecho fluidizado burbujeante situado en paralelo con la línea de retorno de sólidos la cual llega hasta el horno y contiene superficies de transferencia de calor como un evaporador o un recalentador. Esta absorción de calor ayuda a este tipo de calderas a satisfacer varias demandas además de aumentar la flexibilidad del combustible. La transferencia de calor hacia los tubos se puede calcular con la siguiente ecuación. [5]

$$Q_{tubo} = H_{tubo} A_0 LMTD \tag{1.66}$$

LMTD es la diferencia de temperatura media logarítmica entre el fluido dentro del tubo y el fluido que esta fuera, A_0 es la superficie externa del tubo. El coeficiente de transferencia de calor puede hallar de la siguiente manera.

$$\frac{1}{r_{0}} = \frac{1}{\frac{r_{0}}{r_{i}h_{i}} + \frac{1}{h_{0}} + \frac{r_{0}\ln\left(\frac{r_{0}}{r_{1}}\right)}{K_{m}}}$$
(1.67)

Donde el coeficiente de trasferencia de calor de la pared del lecho h_0 depende de varios parámetros y es descrito por la correlación empírica de Andeen y Glicksman. [5]

$$= 900(1-\varepsilon)\frac{K_g}{2r_0} \left[\frac{2U_{ehe}r_0\rho_p}{\mu}\frac{\mu^2}{d_p{}^3\rho_p{}^2g}\right]^{0.326} Pr^{0.3}$$
(1.68)
+
$$\frac{\sigma(T_{ehe}{}^4 - T_s{}^4)}{\frac{1}{e_b} + \frac{1}{e_s} - 1(T_{ehe} - t_s) PARA \frac{U_{ehe}d_p\rho_p}{\mu_g} < 10$$

 h_0

 σ es la constante de Stefan Boltzman 5.67 × 10⁻¹¹ kW/m² K⁴, *Tehe* y *T_s* son las temperaturas del lecho de intercambiador de calor externo y la pared del tubo (K); *e_s* es la emisividad de la pared del tubo; *U_{ehe}* es la velocidad superficial del gas (m / s) a través del intercambiador de calor externo y es la fracción vacía en el lecho. La emisividad *e_b* del lecho se encuentra con la ecuación (1.63)

El coeficiente de trasferencia de calor en la superficie interior de los Tubos h_i es comparable al del exterior h_0 si los tubos llevan vapor o aire sobrecalentado, para su cálculo se puede utilizar la ecuación de Sieder-Tate. [5]

$$\frac{h_i}{V_i \rho_f C_f} Pr^{0.66} \left[\frac{\mu_{fw}}{\mu_f}\right]^{0.14} = \frac{0.023}{Re^{0.2}}$$
(1.69)

 V_i es la velocidad del dentro del tubo; ρ_f es la densidad del fluido; C_f es la trasferencia de calor especifica del fluido; Pr y Re son el número de Prandtl y Reynolds; μ_{fw} y μ_f viscosidad del vapor a las temperaturas de la masa y de la pared, respectivamente.

Figura 34. Efecto de la velocidad de fluidización en el coeficiente de trasferencia de calor en un lecho fluidizado burbujeante de 20 MWe. Fuente: Prabir Basu.

2.5.4 Transferencia de calor en el tamaño comercial CFB Calderas.

Aquí se presentan algunos enfoques para determinar tamaños de la superficie de calefacción en las calderas CFB así como un análisis de la trasferencia de calor para superficies inmersas en lechos rápidos. Se debe tener en cuenta la limitación de estas correlaciones para el diseño diario. [5]

2.5.4.1 Transferencia de calor hacia las paredes

Esta correlación fue desarrollada por Dutta y Basu, nos muestra el valor de la trasferencia global de calor hacia la pared de agua.

$$h = 5 \times \rho_{avg}^{0,391} \times T_b^{0,408} W/m^2 K$$
(1.70)

Donde ρ_{avg} es la densidad de suspensión media del horno y T_b es la temperatura media de la suspensión. A continuación se presenta una comparación de las grandes calderas comerciales CFB.

Figura 35. Comparación y predicción del coeficiente de transferencia de calor para grandes calderas comerciales. Fuente: Prabir Basu

2.5.4.2 Transferencia de calor a superficies inmersas en lechos rápidos.

Este tipo de calderas necesitan tener una parte de sus tubos de evaporación y / o sobrecalentamiento dentro del horno para absorber la fracción requerida de calor de combustión en el horno, estos tubos tienen forma de pared de ala (ver fig.). El borde de la pared de ala (platina) podría extenderse dentro del núcleo del horno y puede entrar en contacto con el gas relativamente diluido que fluye hacia arriba y los sólidos dispersados. Los datos experimentales sobre la distribución lateral del coeficiente de transferencia de calor en una unidad de laboratorio muestran que aumenta continuamente desde el núcleo a la pared, debido a la creciente densidad de la suspensión.

Figura. 36 Efectos de la temperatura del lecho en el coeficiente de trasferencia de calor para la pared de agua, sobrecalentador de pared de ala y los paneles de recalentamiento en una caldera de 135 MWe. Fuente: Prabir Basu.

El coeficiente de transferencia de calor disminuye a lo largo de la altura del horno, pero esta disminución no necesariamente sigue un decaimiento exponencial de la densidad de suspensión debido a la influencia del calor radiactivo sobre la pared. [5]

2.5.5 Transferencia de calor en ciclón.

Las calderas CFB utilizaban ciclones con capas refractarias de 400 mm de espesor respaldadas con una placa de acero gruesa, esto aumentaba drásticamente la capacidad térmica del ciclón, el mantenimiento se hacía tedioso y aumentaba el tiempo de puesta en marcha y de enfriamiento de la caldera además a todo eso se tenía que añadir el tiempo de parada de la caldera. [5]

Para evitar eso problemas se usa ciclones refrigerados por tubos que trasportan vapor o agua, además también algunos optan por los paneles de pared de membrana los cuales forman una cámara hexagonal, estos están cubiertos por una capa (20-30mm) de refractarios parta evitar el impacto directo de los sólidos, con estas dos técnicas anteriormente mencionadas se reduce la capacidad térmica de la pared y se reduce la perdida de calor. El coeficiente de transferencia de calor varía de 60 a $15W / m^2 K$ dependiendo de la carga de la caldera en la caldera. [5]

Los experimentos a escala de laboratorio de Gupta y Nag indicaron que el coeficiente de transferencia de calor en la pared del ciclón aumenta con la velocidad de circulación sólida y la velocidad superficial del gas en el tubo ascendente. [5]

2.6 Combustión.

La combustión es un proceso de oxidación exotérmica que ocurre a una temperatura relativamente [4]

Para que éste proceso es necesario la presencia de un combustible, comburente y calor. El material que se quema se conoce como combustible estos pueden ser hidrocarburos (gas de petróleo, gasolina, kerosene, parafina, etc.), hidrógeno, el azufre, el papel, la madera, etc. El oxígeno o comburente es esencial para este proceso. [8]

La combustión en combustibles sólidos es extremadamente compleja, hay un número de cálculos básicos de ingeniería que se pueden realizar fácilmente, basados en balance de masas y termodinámica. Estos cálculos se centran en la reacción de conversión total del combustible que ocurre y en el rendimiento térmico. [9]

La combustión se denomina completa o. perfecta, cuando toda la parte combustible se ha oxidado al máximo. Si la combustión es incompleta o imperfecta, los productos de la combustión poseen sustancias todavía capaces de ser oxidadas, por ejemplo el CO que puede pasar a C02. La combustión incompleta aparece cuando el aire es insuficiente, o en aquellas zonas de las cámaras de combustión en las que el aire no llega en cantidad suficiente. [10]

2.6.1 Combustión en los lechos fluidizados circulantes.

El tiempo, la temperatura y la turbulencia son tres requisitos importantes para un buen proceso de combustión, en este tipo de calderas se satisfacen adecuadamente esos tres requisitos. La excelente circulación interna y externa de sólidos calientes a la temperatura de combustión proporciona un largo tiempo de residencia y una temperatura adecuada a las partículas de combustible. La turbulencia en el lecho proporciona un alto grado de mezcla gas-solido. [5]

2.6.1.1 Etapas de la combustión

Una partícula en un lecho fluidizado experimenta los siguientes fenómenos de forma secuencial. [4] • Calentamiento y secado

- Desvolatilización y combustión volátil
- Hinchamiento y fragmentación primaria (para algunos tipos de carbón)
- Combustión de carbón con fragmentación secundaria y desgaste.

Figura 37. Combustión de una partícula de carbón

Se debe tener en cuenta que el análisis es aplicable para una alta gama de combustibles. [5]

a) Calentamiento y secado.

Se produce debido a que la mayoría de los sólidos que están en el lecho son no combustibles tales como las cenizas y sorbetes (combustible sólido equivale a 1-3% peso total), estos envuelven inmediatamente a los sólidos frescos los cuales están recién alimentando a la CFB y son precalentados por dichas partículas hasta llegar cerca de la temperatura del lecho. La velocidad de calentamiento puede variar de entre 100° C/s – 1000° C/s esto depende de varios factores incluyendo la del tamaño de la partícula. [5]

$$Nu = 0.33Re^{0.62} * \left(\frac{d_v}{d_p}\right)^{0,1} + \frac{K_g \varepsilon_p \sigma (T_b^{-4} - T_s^{-4})}{d_v (T_b - T_s)}$$

$$5 < d_v < 12mm, 900 < Re < 2500$$
(1.71)

 d_p es el diámetro de partículas de lecho fino; d_v es el diámetro de las partículas de residuos que reciben calor; $_p$ es la emisividad de la partícula; σ es la constante de Stefan Boltzman; T_s y T_b son la temperatura de las partículas de combustible y de los sólidos del lecho respectivamente.

b) Desvolatilización.

Este proceso también conocido como Pirolisis libera una amplia gama de productos gaseosos condensables y no condensables de la descomposición del combustible. En la *Figura 38* se presenta un esquema de como los productos gaseosos de una partícula de carbón son liberados en etapas. La materia volátil y sus composiciones se ven afectados por diferentes parámetros como la velocidad de calentamiento, temperatura inicial y final, temperaturas finales, tamaño de partícula, tipo de partícula y la presión. [5]

Para hallar la fraccion materia volátil liberada en un instante de tiempo "t" se podría utilizar la ecuación de Anthony pero debido a su complicidad en este caso se utilizara la ecuación de Nauze la cual se basa en la reducción del núcleo de la desvolatilización y se muestra a continuación. [5]

$$\frac{t}{\Gamma} = 1 - 3(1-x)^{\frac{2}{3}} + 2(1-x)$$
(1.72)

Tener en cuenta que x es la fracción de materia volátil liberada en un tiempo t y Γ es el tiempo para que la desvolatilización completa, que es proporcional al cuadrado del diámetro de la partícula de carbón.

Figura 38. Desvolatilizacion de una partícula de carbón y sus diferentes etapas. Fuente: Prabir Basu.

La ecuación anterior muestra a la velocidad de liberación volátil en ausencia de combustión, sim embargo estos dos procesos se complementan es por eso Pilai calculo el tiempo total de liberación desvolatilización-combustión con la correlación que se muestra a continuación. [5]

$$t_v = a \, d_v^{\ p} \tag{1.73}$$

Donde t_v está en segundos, d_v está en milímetros y el exponente p varia de entre 0.321.8, la constante empírica *a* es proporcional a $t_v^{3,8}$ y su valor necesita ser encontrado experimentalmente.

c) Combustión del Char

El char es la masa resultante después de la desvolatilización de la partícula de combustible, durante la combustión de la partícula el oxígeno es trasportado a la superficie de la partícula es ahí donde se produce el CO_2 y CO. El char es muy poroso debido a eso el oxígeno en condiciones favorables oxida las paredes interiores de los poros. [5]

La proporción de producción primaria de monóxido de carbono y dióxido de carbono depende de la temperatura superficial, Ts y se muestra en la siguiente correlación. [5]

$$\frac{CO}{CO_2} = 2400 \exp\left[\frac{-51\,830}{8,31\,T_s}\right]$$
(1.74)

Para temperaturas mayores a 1000°C el producto de la reacción es CO, pero a presiones atmosféricas el CO se quema y se puede considerar que el producto de la combustión es completamente CO₂. [5]

La combustión de las partículas sólidas puede producirse en los poros o en las superficies externas dependiendo del régimen bajo el cual se quema.

Régimen I

La velocidad cinética química de combustión controla este régimen debido a que esta es mucho más lenta que la velocidad de difusión del oxígeno. La velocidad de transferencia de masa a las partículas pequeñas es mayor que la de las partículas gruesas, pero la velocidad cinética es menor a menor temperatura, por ende este régimen se produce en partículas pequeñas a bajas temperaturas pero se debe tener en cuenta que en partículas porosas finas donde la trasferencia de masa es mayor la combustión podría ocurrir a temperaturas más altas. La combustión ocurriría uniformemente ya que el oxígeno podría penetrar en los microporos y en vez de reducir su tamaño, reduciría su densidad.

Régimen II

La velocidad de reacción y las velocidades de difusión de oxigeno son comparables, la penetración de oxigeno es limitada y mayormente este es consumido por los poros que están cerca de la superficie de la partícula de combustible.

Régimen III

Aquí la velocidad de trasferencia de masa es muy lenta en comparación con la velocidad cinética. La velocidad cinética es tan rápida que la cantidad limitada de oxígeno que llega a la superficie externa del carbón se consume por completo antes de que tenga la oportunidad de entrar en los poros, la velocidad de trasferencia de masa es mucho más lenta y no puede mantener el ritmo de consumo de oxígeno, este régimen se produce en grandes partículas y a altas temperaturas donde la trasferencia de masa es pequeña. [5]

Tabla 10	Regímenes	de la	combustión	del Char.
----------	-----------	-------	------------	-----------

RÉGIMEN	DE	Ι	Π	III
COMBUSTIÓN				
ORDEN DE REACCIÓ	N		$n = \frac{m+1}{2}$	
TASA DE CONTROL		cinético	Difusión poros	Difusión externa
ENERGÍA ACTIVACIÓN APARE	DE NTE	ΤV	$\frac{TV}{2}$	

n y m son ordenes de reacción aparente y verdadero respectivamente, TV es valor verdadero.

d) Fenómenos que ocurren en el momento de la combustión

Una partícula presenta una serie de fenómenos físicos como por ejemplo la fragmentación y el desgaste, estos influyen directamente en el proceso de combustión en un lecho fluidizado rápido.

La inflamación se genera después de la desvolatilización debido a los gases generados dentro de la partícula de combustible, estos hacen que la partícula se expanda, cuando estos gases generados no pueden ser soportados por los poros de la partícula estos tienden a romperse debido a la presión generada y dan como resultado la fragmentación de la partícula o desfragmentación primaria.

La fragmentación secundaria se produce después del proceso de desvolatilización, en regímenes I y II se generan debido a la ruptura de los puentes de pared de los poros de la partícula ya que estos son cada vez delgados por efecto de la combustión, en el régimen I todos los puentes internos de la partícula colapsan repentinamente dando lugar a la fragmentación percolativa.

El desgaste de las partículas sólidas de combustible se produce en una partícula relativamente gruesa debido a que la oxidación de la partícula es desigual, algunas partes de la superficie de la partícula se queman más rápidos que otras dejando crestas en su superficie, estas se sueltan por efecto de las fuerzas hidrodinámicas ejercidas por otras partículas. Este proceso es llamado desgaste asistido por combustión.

2.6.1.2 Combustión estequiometria.

El cálculo estequiométrico nos brinda información importante para el diseño de una CFB. Ayuda a encontrar la cantidad de materia que se quemara así como la cantidad de piedra caliza requerida para lograr una cierta cantidad de captura de azufre además también se puede estimar la cantidad de contaminantes tanto solidos como líquidos producto de la combustión. [5]

a) Reacciones químicas.

En este tipo de hornos se pueden quemar combustibles con alto contenido de azufre, pero para evitar que dicha sustancia salga a la atmosfera esta debe ser retenida. El cálculo estequiométrico requiere condiciones especiales y sus reacciones pueden escribirse como se muestran a continuación. [4]

$$C + O_2 = CO_2 + 32,790 \frac{KJ}{Kg} de \ carbono$$
(1.75)

$$C_n H_m + \left(n + \frac{m}{4}\right) O_2 = n C O_2 + \frac{m}{2} H_2 O + calor$$
(1.76)

$$S + O_2 = SO_2 + 9260 \frac{kJ}{Kg} de azufre$$
(1.77)

En la ecuación (1.78) n y m son coeficientes estequiométricos

Para absorber el dióxido de azufre SO_2 el horno debe ser alimentado por piedra caliza, esta se calcina primero contra el *CaO* a través de la siguiente reacción. [5]

$$CaCO_3 = CaO + CO_2 - 1830 \frac{KJ}{Kg} de carbonato de calcio$$
(1.78)

Si el sorbente contiene carbonato de magnesio ocurre la siguiente reacción

$$MgCO_3 = MgO + CO_2 - 1183 \frac{KJ}{Kg} de \ carbonato \ de \ mg$$
(1.79)

El óxido de calcio, de la piedra caliza o de la ceniza de carbón, absorbe una fracción del dióxido de azufre liberado del carbón durante la combustión. [5]

$$CaO + SO_2 + 0.5 O_2 = CaSO_4 + 15,141 \frac{KJ}{Kg} de azufre$$
 (1.80)

Para la combustión completa se necesita una cantidad excesiva de aire, este es aproximadamente 20% para reacciones de combustión y sulfatación.

b) Aire Requerido.

Se sabe que el aire seco contiene 23.16% de oxígeno y 76.8 % de nitrógeno y 0.04% de gases inertes, el aire seco requerido para la combustión completa se muestra en la ecuación *(1.97)*. [4]

$$Mda = \left[11.53\ C + 34.34\left(H - \frac{O}{8}\right) + 4.34S + A * S\right] \frac{Kg}{Kg\ combustible}$$
(1.81)

Donde *C*, *H*, *O y S* son fracciones en peso de los constituyentes del combustible obtenidos en al análisis último. A * S es el aire seco adicional que se necesita para convertir el azufre en sulfato de calcio, para cuando se captura azufre este valor es 2.17 en caso contrario este es cero. [4]

Para una eficiencia en la combustión se tiene que multiplicar el aire teórico calculado en la ecuación anterior con el exceso de aire (*EAC*).

$$T_{da} = M_{da} \frac{Kg}{Kg \ quemado} * EAC$$
(1.82)

El aire suele tener una cierta cantidad de humedad (Xm = 0.013 Kg/Kg aire) por lo tanto el aire húmedo total se puede calcular con la ecuación que se muestra a continuación. [4]

$$M_{wa} = T_{da} (1 + X_m)$$
(1.83)

c) Sorbente Requerido.

Si la ceniza del combustible contiene una cantidad insignificante de óxido de calcio, el sorbente requerido Lq para retener el azufre se puede encontrar con la siguiente ecuación. [4]

$$L_q = \frac{100 \, S}{32 \, X_{CaCO_3}} \, R \tag{1.84}$$

Donde S es la fracción de azufre en el combustible, X_{CaCO_3} es la fracción de carbonato de calcio en el sorbente y R es la relación molar de calcio-Azufre en la alimentación de sorbente y combustible respectivamente.

En caso de que la ceniza del combustible tenga una cantidad apreciable de óxido de calcio esta elimina una parte del azufre liberado del combustible, entonces se necesitaría menos cantidad de piedra caliza para la misma cantidad de captura de azufre. Si *XCaO* es el peso de óxido de calcio por unidad de peso de combustible alimentado, la relación Ca/S inherente es $\left(\frac{32 X_{CaCO_3}}{56 s}\right)$. Donde R puede reemplazarse por R'. [4]

$$R' = R - \frac{32X_{CaO}}{56\,S} \tag{1.85}$$

d) Producción de residuos sólidos.

En las reacciones (1.78) y (1.79) encontramos que el sorbente se descompone en CaO, MgO e inertes. Fuera de esto, una parte del CaO se convierte en CaSO4. El sorbente gastado estaría así compuesto de CaSO4, CaO no convertido, MgO no convertido y componentes inertes del sorbente. El peso del sorbente gastado producido por unidad de peso de combustible quemado, Lw, es la suma de CaSO4, CaO, MgO e inertes. [4]

$$L_w = 136\frac{S}{32}E_{sor} + 56\left[\frac{L_q X_{CaCO_3}}{100} - \frac{SE_{sor}}{32}\right] + \frac{40L_q X_{MgCO3}}{84} + L_q X_{inert}$$
(1.86)

Donde L_q es el sorbente alimentado por unidad de peso de combustible quemado La cantidad total de residuos sólidos está conformado por el sorbente gastado (Lw), la ceniza de carbón (ASH) y el carbono no quemado, menos el contenido de CaO del carbón convertido en CaSO4 e incluido en Lw (Xcao) [4]

$$Wa = [L_w + ASH + (1 - E_c) - X_{Ca0}]$$
(1.87)

Donde el carbono no quemado es aproximadamente (1 - Ec), Ec es la eficiencia de la combustión.

e) Productos de deshecho gaseosos.

El peso del gas producto de la combustión Wc es la suma del dióxido de carbono, vapor de agua, nitrógeno, oxigeno, dióxido de azufre y cenizas volantes. [4]

Dióxido de Carbono

El dióxido de carbono producido por el carbono en el combustible puede hallarse la siguiente manera. [4]

$$CO_2 = 3.66 C$$
 (1.88)

El dióxido de carbono producido por la calcinación de CaCO3 y MgCO3 puede encontrarse de la siguiente manera. [4]

$$W_{CO2} = 1.375 SR \left[1 + \frac{100 X_{MgCO3}}{84 X_{CaCO3}} \right]$$
(1.89)
Vapor de agua.

El agua en los gases de combustión proviene de la combustión del hidrogeno en el combustible y la humedad presente en el aire de combustión, combustible y la piedra caliza. El agua por unidad de combustible quemado se puede calcular de la siguiente forma. [4]

$$H_2 O = 9H + EAC * M_{da} * X_m + M_f + L_q * X_{ml}$$
(1.90)

Nitrógeno

El nitrógeno en los gases de combustión proviene del combustible y del aire de combustión. [4]

$$N_2 = N + 0.768 \, M_{da} \, EAC \tag{1.91}$$

Oxigeno

El oxígeno en los gases de combustión proviene del combustible, exceso de oxígeno en el aire de combustión y el oxígeno que queda en los gases de combustión para la captura de azufre. Se debe de tener en cuenta que por cada mol de azufre no convertido se ahorra medio mol de oxígeno. [4]

$$O_2 = O + 0.2315 M_{da}(EAC - 1) + \frac{(1 - E_{sor})S}{2}$$
(1.92)

Dióxido de Azufre

Si solo una fracción de azufre E_{sor} es convertida en CaSO4, el dióxido de azufre en los gases puede calcularse con la siguiente ecuación. [4]

$$SO_2 = 2S(1 - E_{sor})$$
 (1.93)

Ceniza Volátil

Los gases de combustión pueden llevar una parte de la ceniza del combustible o del sorbente, esta es muy pequeña en cantidad y se eventualmente se recolecta en el colector de polvo.

Peso unitario de combustible quemado =
$$a_c ASH$$
 (1.94)

Donde a_c es la fracción de ceniza en el combustible que aparece como ceniza volátil (0.1 - 0.5)

El peso total de los gases de combustión se obtiene sumando todos los productos anteriormente calculados.

$$w_{c} = M_{wa} - 0.2315 M da + 3.66C + 9H + L_{q}X_{ml} + N + O + 2.5S(1 - E_{sor}) + 1.375SR \left(1 + \frac{1.19 X_{MgCO3}}{XCaCO3}\right) + a_{c} ASH$$
(1.95)

Las fracciones masa de los gases de combustión $X_{CO_2} XH_{2O} X_{SO_2} XN_2 y X_{O_2}$ se hallan normalizando la masa total de gases de combustión. Las fracciones de volumen de los gases de combustión se determinan convirtiendo las fracciones de masa a fracciones de volumen como se muestra a continuación. [9]

$$Y_i = \frac{\frac{X_i}{M_i}}{\sum_i \frac{X_i}{M_i}}$$
(1.96)

Se sabe que:

$$\sum_{i} \frac{X_{i}}{M_{i}} = \frac{X_{CO_{2}}}{M_{CO_{2}}} + \frac{X_{H_{2}O}}{M_{H_{2}O}} + \frac{X_{SO_{2}}}{M_{SO_{2}}} + \frac{X_{N_{2}}}{M_{N_{2}}} + \frac{X_{O_{2}}}{M_{O_{2}}}$$
(1.97)

Donde *M* son las masas molares de cada elemento respectivamente

Masa Molecular de los gases de combustión.

Se obtiene al sumar el producto de la masa molar con el volumen de cada elemento que se produce por efecto de la combustión como se muestra en la ecuación siguiente.

$$M_{FG} = \sum_{i} Y_{i}M_{i}$$

= $Y_{CO_{2}}M_{CO_{2}} + Y_{H_{2}O}M_{H_{2}O} + Y_{SO_{2}}M_{SO_{2}}$
+ $Y_{N_{2}}M_{N_{2}} + Y_{O_{2}}M_{O_{2}}; \left[\frac{kg}{kmol}\right]$ (1.98)

Densidad de los gases de combustión.

$$\rho_{FG} = \frac{\rho_o}{\frac{R_u}{M_{FG}} T_o}; \left[\frac{kg}{m^3}\right]$$
(1.99)

Donde ρ_o es la presión en condición normal = 101325 P_a ; $T_{c,i}$ es la temperatura a condición normal = 300,15 K y R_u es la constante de gas universal = 8314.32 $\frac{J}{kmol.K}$ [9]

Densidad del aire.

$$\rho_{aire} = \frac{\rho_o}{\frac{R_u}{M_{aire}} T_{c,i}}; \left[\frac{kg}{m^3}\right]$$
(1.100)

Donde la masa molecular del aire $M_{aire} = Y_{O_2aire}M_{O_2} + Y_{N_2aire}M_{N_2}; \left[\frac{kg}{kmol}\right][9]$

f) Valor de calentamiento de los combustibles

El valor de calentamiento superior HHV de un combustible puede calcularse con la fórmula de Dulong y Petit. [4]

$$HHV = 33.823 C + 144.249 \left(H - \frac{O}{8}\right) + 9418 S KJ/Kg$$
(1.101)

El valor de calentamiento inferior LHV puede calcularse con la siguiente ecuación.

$$LHV = HHV - \left(\frac{H}{2.016} + \frac{M_f}{18.0154}\right)h_g \quad \frac{KJ}{kg}.$$
 (1.102)

Donde H y Mf son la fracción en peso de hidrogeno y humedad respectivamente, hg es el calor de vaporización de agua la cual depende de la presión y la temperatura. Los estándares como ASTMD5865-13 y el código de prueba ASME PTC especifican 2441 KJ/Kg a una temperatura de 25°C y a una presión de 0.0316 bar. [5]

2.7 Emisión y captura de los gases de combustión.

La quema de combustibles fósiles es la principal fuente de contaminación del aire, estos emiten contaminantes gaseosos como SO2, NOx, CO, N2O, Hg y compuestos orgánicos volátiles que son trasportados por la acción del viento. El SOx reacciona químicamente con la humedad y forma ácidos al entrar en contacto con la luz solar. [4].

2.7.1 Emisión de Dióxido de Azufre

Se describirá como se produce el dióxido de azufre el cual es un importante precursor para la formación de la lluvia acida y como este es capturado en las calderas de lecho fluidizado circulante en forma sólida. [5]

2.7.1.1 Reacciones químicas

a) Formación del dióxido de azufre.

Al quemar la partícula de combustible, el azufre en su composición se oxida y se convierte principalmente en dióxido de azufre y esto se muestra en la siguiente reacción exotérmica. [5]

$$S + O_2 = SO_2; \Delta H^\circ = -296 \, KJ/mol$$
 (1.103)

Donde ΔH° es la entalpia de formación a condiciones estándar (1 atm, 25°C)

Si el combustible contiene CaO este absorberá una parte del dióxido de azufre como sulfato de calcio. [5]

$$CaO + \frac{1}{2}O_2 + SO_2 = CaSO_4; \Delta H^\circ = -486 \, KJ/mol$$
 (1.104)

La otra cantidad restante de dióxido de azufre se escapa hacia a la atmosfera mientras que una parte de ella se puede convertir en trióxido de azufre.

$$SO_2 + \frac{1}{2}O_2 = SO_3 \tag{1.105}$$

La formación de trióxido de azufre depende del tiempo de residencia del gas, temperatura, exceso de aire y la presencia de superficies catalíticas en el horno. El trióxido de azufre al entrar en contacto con la humedad de los gases de combustión forma el ácido sulfúrico. Si se condensa la humedad de los gases de combustión por debajo del punto de roció esto se puede recolectar en materiales carbonosos que forman aglomerados que se desprenden y se emiten a través de la chimenea como smog acido. [5]

$$SO_3 + H_2O = H_2SO_4 \tag{1.106}$$

b) Retención de dióxido de azufre.

La piedra caliza CaCO3 y la dolomita (CaCO3 \cdot MgCO3) son los principales sorbentes para la retención de dióxido de azufre en las calderas de lecho fluidizado.

$$CaCO_3 + \frac{1}{2}O_2 + SO_2 = CaSO_4 + CO_2$$
(1.107)

La reacción del carbonato de calcio con el dióxido de azufre a temperaturas (800900°C) es tan lenta que el dióxido de azufre absorbido por el carbonato de calcio es insignificante.

c) Calcinación

Esta reacción endotérmica se produce cuando la piedra caliza se descompone en CaO y CO2.

$$CaCO3 = CaO + CO2; \Delta H^{\circ} = +183 \, KJ/mol$$
 (1.108)

El dióxido de carbono liberado durante la calcinación crea y agranda muchos poros en la partícula de piedra caliza (Figura 40), estos ayudan a las reacciones de sulfatación. [5]

Figura 40. Proceso de absorción de dióxido de azufre

La calcinación ocurrirá si la presión parcial de dióxido de carbono es menor que la presión parcial de equilibrio *Pe* del dióxido de carbono. La presión parcial de equilibrio aumenta con la temperatura y se muestra a continuación. E es la energía de activación (159 000 KJ/Kmol) y R es la constante universal de los gases (8,314 KJ/Kmol K). La presión parcial del CO2 depende del exceso de aire y la presión total. [5]

Figura. Efecto de la presión y el exceso de aire sobre la temperatura de calcinación de equilibrio. Fuente: Prabir Basu.

$$Pe = 1.2 \times 10^7 exp\left(\frac{-E}{RT}\right) bar$$
(1.109)

La dolomita es otro sorbente que se puede utilizar para la captura de azufre, está compuesto de carbonato de calcio y carbonato de magnesio, la temperatura a la cual estos dos carbonatos reaccionan es 620 °C. [5]

$$CaCO_3 MgCO_3 = CaCO_3 + MgCO_3; \quad \Delta H^\circ = +32KJ/mol$$
 (1.110)

El carbonato de magnesio se calcina fácilmente bajo todas las temperaturas y presiones de combustión.

$$CaCO_3 + MgCO_3 = CaCO_3 + MgO + CO_2; \Delta H^{\circ}(1.111) = +100KJ/mol$$

El óxido de magnesio reacciona tan lentamente con SO2 a temperaturas entre 540 y 980 ° C que puede considerarse inerte. El dióxido de carbono liberado de la partícula crea poros, estos permiten que el óxido de azufre ingrese y reaccione con el calcio para formar sulfato de calcio (CaSO4) a través de las reacciones de sulfatación. [5]

d) Sulfatación.

En esta reacción el óxido de calcio absorbe dióxido de azufre y forma sulfato de calcio

$$CaO + SO2 = CaSO_3 \ ; \ CaSO_3 + \frac{1}{2}O_2 = CaSO_4$$
 (1.112)

$$SO2 + \frac{1}{2}O_2 = SO_3$$
; $CaO + SO_3 = CaSO_4$ (1.113)

Se debe tener en cuenta que solo una fracción del sorbente se puede utilizar para la sulfatación debido a que los poros del sorbente están obstruidos por el sulfato de calcio producto de la reacción. [5]

2.7.1.2 Reacción en las partículas de sorbentes.

La tasa de sulfatación de partículas R_0 de óxido de calcio a través de la reacción (Ca $0 + SO_2 + \frac{1}{2}O_2 = CaSO_4$)_{disminuye} exponencialmente con el tiempo.

$$R(t) = R_0 exp\left(\frac{-t}{R_0}\right)$$
(1.114)

Donde R_0 es velocidad de reacción inicial, moles absorbidos por una partícula en tiempo unitario (partícula Kmol / s). La constante de tiempo de obstrucción de poros R_0 es inversamente proporcional a la concentración de dióxido de azufre (Cso_2) y p^* es la constante de proporcionalidad [5]

$$t_p = \frac{p^*}{C_{SO_2}}$$
(1.115)

La velocidad de reacción inicial se muestra en la ecuación (1.116), además se tiene que saber que la reacción de sulfatación del dióxido de azufre es de primer orden y de orden cero en el oxígeno. [5]

$$R_0 = \frac{V_p \ C_{SO_2}}{t_{sf}} \tag{1.116}$$

Donde V_p es el volumen de la partícula, t_{sf} es la constante de tiempo de sulfatación la cual depende de la reactividad, el tamaño, características del poro y la composición del sorbente. El peso fraccional de una partícula sorbente sulfata se encuentra mediante la integración de la tasa de sulfatación de una partícula [5]

$$\delta(t) = \frac{1}{M_{ca}} \int_{0}^{t} R(t) dt = \delta(\infty) \left[1 - \exp\left(\frac{-t C_{SO_2}}{P^*}\right) \right]$$
(1.117)

 M_{ca} son los moles de calcio de una partícula sorbente, $\delta(\infty)$ es la máxima conversión.

$$\delta(\infty) = \frac{P^* M_{CaCO3}}{t_{sf} \rho_p X_{CaCO3}} = \frac{P^* V_p}{M_{ca} t_{sf}}$$
(1.118)

Donde M_{caCO3} son los moles de carbonato de calcio, CaCO3 es la fracción en peso del carbonato de calcio en la partícula sorbente y ρ_p es la densidad del sorbente.

Datos experimentales sobre el grado de sulfatación $\delta(t)$ con dependencia del tiempo de la siguiente manera.

$$\delta(t) = \delta(\infty) [1 - \exp(-k' t^n)]$$
(1.119)

Donde k' y n son constantes de ajuste, n esta en rango de 0.6-1.2 para los sorbentes canadienses, este valor puede tomarse como igual a 1 sin temor a dar una precisión inadecuada para la captura final de azufre.

$$k' = \frac{C_{SO2}}{p^*}$$
(1.120)

Con la ecuación (1.119) podemos definir la constante de velocidad de reacción

$$K = \frac{1}{C_{SO2}} \frac{d\delta(t)}{dt} = \frac{1}{P^*} [\delta(\infty) - \delta(t)]$$
(1.121)

La reactividad de la piedra caliza K puede expresarse con la ecuación anterior. Algunos valores típicos se muestran en la tabla que se muestra a continuación.

FUENTE SORBENTE	CACO3 %	MGCO3 %	$\pmb{\delta}(\infty)$	$1/\mathbf{P}^* \frac{m^3}{Kmol s}$
IRISH COVE	94.40	1.00	0.284	14.48
CALPO	95.60	1.99	0.340	13.46
CALPO	96.10	0.90	0.535	10.23
BROOKFIELD	83.90	1.97	0.164	27.25
GLENCOE	92.10	3.84	0.221	21.88
GLENDALE	92.10	5.77	0.236	22.97
HAVELOCK	94.60	1.83	0.330	15.14
CARLISLE	98.40	1.00	0.267	16.09
ELMTREE	91.40	1.00	0.198	21.68
CLAUSEN	90.10	2.89	0.272	19.12
SYNCRUDE	91.30	2.49	0.229	18.89
EXSHAW	97.00		0.227	13.52

Tabla 11 Reactividad de algunas piedras calizas en m3 por Kmol de calcio en el sorbente por segundo.

Fuente: Datos obtenidos por Hamer citado por Prabir Basu.

2.7.1.3 Factores que determinan la captura de azufre en CFB

En una caldera de lecho fluidizado hay una serie de parámetros de diseño y operación que influyen en el proceso de retención de azufre, algunos de ellos se muestran a continuación. [5]

a) Temperatura de operación.

La reactividad del sorbente aumenta con la temperatura y alcanza un valor óptimo a temperaturas de entre 800-850 °C pero luego disminuye debido a que la tasa de sulfatación aumenta, esto hace que los poros en la partícula de óxido de calcio se tapen, otra causa de la diminución de captura de azufre se da debido a la descomposición del CaSO4 a temperaturas más altas. [5]

b) Recirculación de cenizas volantes.

Se debe recircular el sorbente gastado al lecho, para obtener una eficiencia más alta de captura se debería hidratar el sorbente parcialmente utilizado antes de llevarlo al lecho. [5]

Figura 42. Efecto de la temperatura de combustión en la captura de azufre

c) Tiempo de residencia del gas y altura horno

La captura de azufre se da por encima de nivel de aire secundario del horno, el tiempo de residencia puede tomarse como la relación entre la altura y la velocidad superficial del gas. [5]

La relación Ca/S necesaria para lograr una captura del 90% disminuye rápidamente al aumentar el tiempo de residencia del gas, para un tiempo de residencia más largo esta mejora es mucho mejor, el aumento de la altura del horno aumenta la eficiencia de captura de azufre. [5]

d) Tiempo de residencia sólido y rendimiento ciclónico.

La sulfatación está sujeta a tiempo de residencia de los sólidos en la caldera de CFB, mientras más tiempo permanezca en ciclón mayor será la conversión CaSO4, es decir el tiempo de residencia de los sólidos y el rendimiento del ciclón están interrelacionados. [5]

Figura 43. La demanda de piedra caliza disminuye con el tiempo de residencia del gas para un nivel específico de captura de azufre

e) Efecto de la presión en la calcinación

La temperatura de equilibrio para la calcinación de piedra caliza disminuye con la disminución de presión del horno y la disminución de concentración de CO2 Por ejemplo, a presión atmosférica, la caliza del combustor de lecho fluidizado puede calcinar fácilmente, porque la presión parcial del dióxido de carbono es baja y la temperatura de calcinación de equilibrio correspondiente está por debajo de 770 ° C para la condición normal de exceso de aire. [5]

En lechos presurizados teniendo en cuenta la misma concentración de CO2 y el mismo exceso de aire la temperatura de calcinación de equilibrio es mucho más alta, es por eso que la caliza no se calcina en lechos fluidizados burbujeantes presurizados que operan a 850 ° C y en vez de eso utilizan dolomita. [5]

La caliza se calcina fácilmente a temperaturas de operación de 800-850 °C en calderas de CFB debido a que debajo del nivel de inyección de aire secundario opera bajo una condición subestequeometrica. [5]

f) Tamaño del sorbente

La hidrodinámica de un lecho rápido permite que las calderas CFB utilicen partículas sorbentes tan finas como 100-300 µm, las calderas de lecho burbujeante no pueden usar partículas menores de 500-1500 µm debido al arrastre excesivo. Esta es la razón por la cual las calderas CFB requieren solo 1.5-2.5 veces la cantidad estequiométrica de sorbentes para una captura de 90% de azufre, mientras que las calderas de lecho burbujeante requieren de 2 a 3.5 veces para el mismo nivel de retención de azufre. [5]

g) Tamaño del poro

Los poros finos brindan una gran cantidad de superficies internas por unidad de peso del sorbente pero se pueden bloquear fácilmente durante la sulfatación, en cambio los poros gruesos no se bloquean fácilmente pero la superficie de reacción no es tan extensa, un sorbente debe tener un equilibrio en la composición de sus poros. [5]

2.7.1.4 Modelo simplificado para la captura de azufre

A continuación se presenta una relación para la captura de azufre en una caldera de CFB que proporciona la velocidad de alimentación del carbón y el sorbente para un nivel dado de captura de azufre, eficiencia del ciclón y características del sorbente. [5]

$$\frac{F_{sor}}{F_s} = \frac{3.12E_{sor} S \rho_{bav} H - 100 P^* U ASH E_c \ln(1 - E_{sor})}{E_c [\delta(\infty) X_{CaCO3} \rho_{bav} H + 100P^* U \ln(1 - E_{sor})]}$$
(1.122)

2.7.1.5 Calculo de la retención de azufre en el lecho

Para saber la cantidad de alimento de sorbente F_{sor} necesita saber que fracion de azufre se retiene en el lecho como sulfato de calcio o EL grado de captura o retención de azufre. E_{sor} . Esto puede calcularse a partir de la regulación de emisión de azufre. Si la regulación local de emisión de azufre estipula el límite de emisión de SO2 como L kg / kJ de entrada de calor, entonces uno puede calcular fácilmente S 'porcentaje máximo de azufre en el combustible para cumplir este límite sin captura [5]

$$S' = L * HHV * 100\%$$
(1.123)

El porcentaje de azufre real en el combustible es S%. Entonces, el porcentaje de captura, *Esor* es

$$E_{sor} = \frac{S - S'}{S} \tag{1.124}$$

2.7.2 Emisión de óxido de Nitrógeno.

Los principales óxidos de nitrógeno emitidos por las calderas incluyen tres gases principales NO, NO2 Y N2O, el dióxido nítrico y el óxido de nitrógeno contribuyen a la lluvia acida y el óxido nitroso contribuye al calentamiento global. [5]

Tipos de calderas	Combustible quemado	Tempo com	eratura de Ibustión Nox	Emisión en ppm a 6% de oxigeno Nox		
calderas de carbón pulverizadas (promedio de 3 unidades)	Carbón	1000-1400	130-460	3-Abr		
Calderas de lecho fluidizado burbujeante (promedio de 8 unidades)	Carbón y residuos	780-900	35-243	35-103		
Calderas de lecho fluidizado circulante (promedio de 4 unidades)	Carbón y residuos	780-850	11-113	153-40		

Tabla 12 Emisión de óxidos de nitrógeno de tres tipos de calderas de carbón y de residuos industriales.

El óxido nítrico se forma a través de la oxidación del nitrógeno del aire y del nitrógeno propio del combustible, el nitrógeno del aire podría oxidarse a NOX térmico, pero esta reacción es significativa solo por encima de 1540 ° C y el contenido de nitrógeno de la mayoría de los combustibles es típicamente 1-2% en una base seca, libre de minerales. [5]

Figura 44. Formación de NO del carbón

El 77% del nitrógeno del combustible se oxida a NO por las reacciones anteriores y el resto aparece como NH3, que a su vez se convierte parcialmente en nitrógeno. [5]

2.7.2.1 Métodos para disminuir la emisión de NOx.

Se puede realizar mediante modificaciones en el sistema de combustión y estas son mencionadas a continuación. [5]

a) Disminución de la temperatura de combustión

No se produce NO_X térmico por las bajas temperaturas de combustión, el Nox se genera principalmente por la presencia de nitrógeno en el combustible que disminuye luego con la temperatura [5]

b) Aire de inyección

Al agregar el aire en una sección más arriba del horno hace que la falta de aire de combustión en el fondo del horno facilite la reducción de óxido nítrico por carbonización y CO en la zona interior [5]

Figura 45. Nox contra exceso de aire

c) Exceso de aire

La emisión de Nox aumenta con el exceso de aire, si este se disminuye la emisión puede reducirse. Al disminuir el exceso de aire de 30 a 10 % las emisiones de NOX pueden reducirse de 150 a 80 ppm en algunos casos. [5]

d) Emisión de Nox en calderas de CFB

La emisión en las calderas de lecho fluidizado burbujeante es mayor que en las calderas CFB. [5]

2.7.3 Emisión de óxido nitroso

En calderas CFB el N2O puede producirse por la reducción de óxido nítrico por carbono en la partícula de carbón o por oxidación directa del nitrógeno del carbón durante la combustión. Para temperaturas de entre 800-900°C la velocidad de formación de óxido nitroso a partir de nitrógeno del combustible es proporcional a la velocidad de combustión. Según experimentos en llamas de carbón encontraron una

contribución insignificante de oxidación de nitrógeno carbonizado o reducción de NO por carbonización a la emisión total de óxido nitroso.

Figura 46. Reducción de la emisión de óxido nitroso con la incrementación de la temperatura del lecho.

2.7.4 Emisión de carbono

2.7.4.1 Monóxido de carbono

La emisión de monóxido de carbono de las plantas CFB generalmente no se percibe como una composición problemática importante además que tiene la oportunidad adicional de quemarse en el gran ciclón. Los niveles típicos de emisión están en el rango de 15-200 ppm (<188 mg / Nm3 a 6% de O2 seco), en comparación con 200400 ppm en las calderas alimentadas por fogoneros. [5]

2.7.4.2 Dióxido de carbono

En comparación con una caldera de carbón pulverizado sin captura de azufre, una caldera CFB con alimentación de sorbente emite una mayor cantidad de dióxido de carbono. Además, las calderas CFB emiten una mayor cantidad de óxido nitroso pero sin embargo es importante tener en cuenta que una caldera CFB tiene un mayor potencial de captura de dióxido de carbono que otras calderas y para esto se pueden utilizar dos métodos distintos los cuales son la Oxy Combustión, el Bucle químico y el cálculo de calcio.

III. Caracterización de los residuos sólidos.

3.1 Residuos

Es todo material, sustancia o elemento producido por las actividades humanas que no tienen un valor económico, a excepción de algunos, los cuales necesitan ser eliminados, estos pueden ser líquidos, solidos o gaseosos.

3.1.1 Residuos Líquidos.

Hace referencia a la combinación de agua con residuos que provienen de residencias, instituciones públicas, etc.

3.1.2 Residuos gaseosos

Son todas aquellas emisiones producidas por la industria, pueden ser toxicas y hasta pueden contener óxido de nitrógeno, anhídrido sulfuroso y sulfúrico los cuales son los principales causantes del cambio climático.

3.1.3 Residuos Sólidos

Los residuos urbanos solidos (RUS) son todos aquellos materiales que se generan producto de las actividades humanas, que luego de su utilización estos resultan inservibles. La O.C.D.E (Organización de Cooperación y Desarrollo Económico) define a los residuos como aquellas materias generadas en las actividades de producción y consumo que no han alcanzado un valor económico en el contexto en que fueron producidas"

3.2 Clasificación de residuos

Los residuos pueden clasificarse según su origen (domiciliarios, comerciales, industriales, agropecuarios, etc.) y su nivel de peligrosidad.

3.2.1 Residuos Según su origen.

3.2.1.1 Residuos Sólidos Domiciliarios.

Comprende a restos de materiales que se generan en las viviendas, hoteles, oficinas, colegios, centros penitenciarios, etc.

3.2.1.2 Residuos Sólidos Comerciales

Son aquellos restos generados por la actividad comercial ya sean centros comerciales, mercados, restaurantes, bares, etc.

3.2.1.3 Residuos sólidos industriales

Son restos de materiales que se generan después de llevarse a cabo un proceso industrial, algunos de estos pueden asimilarse a los RUS tales como piedras, escombros, grava y son tratados como tal, otros por su composición pueden ser dañinos para la salud y para el medio ambiente y son llamados residuos industriales peligrosos.

3.2.1.4 Residuos agropecuarios

Están conformados por todos los residuos producidos por la pesca, actividad agrícola, ganadera y forestal.

3.2.1.5 Residuos Hospitalarios

Son todos esos residuos generados por los hospitales durante el transcurso de sus actividades diarias.

3.2.2 Residuos según su peligrosidad

3.2.2.1 Residuos no peligrosos.

En este grupo podemos encontrar a todos aquellos deshechos que no afectan al medio ambiente ni a la salud de las personas y pueden ser los siguientes:

Biodegradables.

Aquí están aquellos restos que pueden ser degradados fácilmente por el medio ambiente (Vegetales, Papel higiénico, Madera, etc.)

Reciclables.

Estos solidos no se descomponen fácilmente por el medio ambiente, pero pueden ser reutilizados nuevamente (papeles, plástico, chatarra, vidrio, telas)

Inertes.

Estos residuos no pueden ser reutilizados y su degradación necesita periodos largos de tiempo (Poliestireno expandido, papel carbón, etc.)

3.2.2.2 Residuos Peligrosos

Estos son peligrosos tanto para el medio ambiente, así como también para la salud de los seres vivos.

Biosanitarios

Se generan a partir de procedimientos asistenciales que tienen contacto con materia orgánica, sangre, fluidos corporales tanto de humanos como de animales (vendas, gasas, pañales, toallas higiénicas, etc.) y son los siguientes:

Anatomopatológicos

Aquí podemos encontrar restos humanos, placentas, tejidos corporales amputados, etc.

Corto punzantes

Estos restos provienen mayormente de actividades de los hospitales y el contacto con ello puede generar heridas cortantes o punzantes (cuchillas, agujas, laminas vidrio, limas, etc.)

Animales

Estos son productos de animales de experimentación los cuales tienen enfermedades infectocontagiosas.

• Residuos químicos

Son restos de sustancias químicas que pueden causar muerte, lesiones graves o efectos tanto a la salud de las personas como a la de los animales además también influyen mucho en el medio ambiente (fármacos vencidos o deteriorados)

Residuos Reactivos

Estos deshechos pueden causar graves problemas a la salud después de mezclarse o estar en contacto con otros elementos ya sean sustancias liquidas, solidas o gaseosas (humos tóxicos, vapores, liquido de revelado, etc.)

Residuos radioactivos

Estos residuos emiten una cierta energía de forma alfa o beta los cuales causan problemas degenerativos en los seres humanos y pueden ser los siguientes: químicos para el tratamiento de cáncer, equipos con fuentes radioactivas, etc.

3.3 Generación de residuos sólidos en el mundo.

La generación de residuos sólidos según el Banco Mundial fue en el 2012 de 1.3 billones de toneladas y se proyectó que en el año 2025 sería de 2.2 billones de toneladas, cada persona generaría de 1.2 a 1.42 kg de residuos sólidos en los próximos 15 años a partir del 2012. [11]

El crecimiento de la economía va de la mano con la generación de residuos sólidos es por eso que en las zonas urbanas se generan el doble de residuos que en las zonas rurales.

A continuación, se presenta la generación de residuos sólidos por regiones tomando en cuenta a la población urbana:

En África (AFR) la generación de residuos sólidos fue de 5% a nivel mundial, tenía una población de 260 millones de personas, cada una de ellas podía producir desde 0.09kg/día a 3kg/día (promedio de 0.65 kg/cápita/día) es por eso que anualmente acumulaban un total de 62 millones de toneladas.

En Asia este y la región del pacifico (EAP) la generación de residuos sólidos fue de

5% a nivel mundial, tenía una población de 777 millones de personas, cada una de ellas podía producir desde 0.44kg/día a 4.3kg/día (promedio de 095kg/cápita/día) es por eso que anualmente acumulaban un total de 270 millones de toneladas.

En Asia central y oriental (ECA) la generación de residuos sólidos fue de 7% a nivel mundial, tenía una población de 227 millones de personas, cada una de ellas podía producir desde 0.29kg/día a 2.1kg/día (promedio de 1.1kg/cápita/día) es por eso que anualmente acumulaban un total de 93 millones de toneladas.

En América Latina y El Caribe (LAC) la generación de residuos sólidos fue de 12% a nivel mundial, tenía una población de 399 millones de personas, cada una de ellas podía producir desde 0.11kg/día a 5.5kg/día (promedio de 1.1kg/cápita/día) es por eso que anualmente acumulaban un total de 160 millones de toneladas.

En el medio oriente y África del norte (MENA) la generación de residuos sólidos fue de 6% a nivel mundial, tenía una población de 162 millones de personas, cada una de ellas podía producir desde 0.16kg/día a 5.7kg/día (promedio de 1.1kg/cápita/día) es por eso que anualmente acumulaban un total de 63 millones de toneladas.

La generación de residuos en los países que conforman la OECD (Organización de Cooperación y Desarrollo Económico) fue de 44% a nivel mundial, tenía una población de 729 millones de personas, cada una de ellas podía producir desde 1.1kg/día a 3.7 kg/día (promedio de 2.2kg/cápita/día) es por eso que anualmente acumulaban un total de 572 millones de toneladas.

En Asia sur la generación (SAR) de residuos sólidos fue de 5% a nivel mundial, tenía una población de 426 millones de personas, cada una de ellas podía producir desde 0.12kg/día a 5.1kg/día (promedio de 0.45 kg/cápita/día) es por eso que anualmente acumulaban aproximadamente un total de 70 millones de toneladas. [12]

Figura 47. Generación de residuos sólidos por Región. Fuente: Banco Mundial.

	Cu	rrent Available Da	ata	Projections for 2025					
Region Total Urban Population (millions)	Total Urban	Urban Waste	Generation	Projected	Population	Projected Urban Waste			
	Per Capita (kg/capita/day)	Total (tons/day)	Total Popula- tion (millions)	Urban Popula- tion (millions)	Per Capita (kg/capita/day)	Total (tons/day)			
AFR	260	0.65	169,119	1,152	518	0.85	441,840		
EAP	777	0.95	738,958	2,124	1,229	1.5	1,865,379		
ECA	227	1.1	254,389	339	239	1.5	354.810		
LCR	399	1.1	437,545	681	466	1.6	728,392		
MENA	162	1.1	173,545	379	257	1.43	369,320		
OECD	729	2.2	1,566,286	1,031	842	2.1	1,742,417		
SAR	426	0.45	192,410	1,938	734	0.77	567,545		
Total	2,980	1.2	3,532,252	7,644	4,285	1.4	6,069,703		

Tabla 13 Proyección de la generación de residuos per cápita para el 2025.Banco Mundial.

	Waste Generation Per Capita (kg/capita/day)						
Region	Lower Boundary	Upper Boundary	Average				
AFR	0.09	3.0	0.65				
EAP	0.44	4.3	0.95				
ECA	0.29	2.1	1.1				
LAC	0.11	5.5	1.1				
MENA	0.16	5.7	1.1				
OECD	1.10	3.7	2.2				
SAR	0.12	5.1	0.45				

Tabla 14 Generación de residuos per cápita del año 2012. Fuente: Banco Mundial

La producción de residuos depende de dos factores importantes: la calidad de vida de los habitantes y la cantidad de los mismos.

Las personas con un nivel de ingreso bajo ocupa el 6% de la generación de deshechos en todo el mundo, producen aproximadamente un promedio de 0.6 kg/cápita/día, acumulando 75 millones toneladas por año.

Los habitantes con un nivel de ingreso medio alto ocupa 19% de la generación de deshechos en todo el mundo, producen aproximadamente un promedio de 1.16kg/cápita/día, acumulando 243 millones de toneladas por año.

Las personas con un nivel de ingreso medio bajo ocupa 29% de la generación de deshechos en todo el mundo, producen aproximadamente un promedio de 0.78kg/cápita/día, acumulando 370 millones de toneladas por año (el factor que influye aquí es el número de personas. Ver tabla 4).

Los habitantes con un nivel de ingreso alto ocupa 46% de la generación de deshechos en todo el mundo, producen aproximadamente un promedio de 2.13kg/cápita/día, acumulando 602 millones de toneladas por año.

Region	Cur	rent Available D	ata	Projections for 2025 (from Annex J)					
	-	Urban Waste Generation		Projected	Population	Projected Urban Waste			
	Population (millions)	Per Capita (kg/capita/ day)	Total (tons/day)	Total Popula- tion (millions)	Urban Population (millions)	Per Capita (kg/capita/ day)	Total (tons/day)		
Lower Income	343	0.60	204,802	1,637	676	0.86	584,272		
Lower Middle Income	1,293	0.78	1,012,321	4,010	2,080	1.3	2,618,804		
Upper Middle Income	572	1.16	665,586	888	619	1.6	987,039		
High Income	774	2.13	1,649,547	1,112	912	2.1	1,879,590		
Total	2,982	1.19	3,532,256	7,647	4,287	1.4	6,069,705		

Tabla 15 Generación de residuos proyectada al 2025 teniendo en cuenta los ingresos económicos. Fuente: Banco Mundial

Figura 48. Generación de residuos sólidos urbanos teniendo en cuenta el nivel de ingreso económico y el año. Fuente: Banco Mundial.

3.4 Generación de residuos sólidos en el Perú.

En el 2012 el Perú aproximadamente tenía un ingreso económico promedio mediano bajo, contaba con una población total de 25, 593,000 de habitantes de los cuales 18, 678,510 se encontraban en la zona urbana, estos generaban 18,740 tons/día(6.7 millones toneladas al año) y se proyectó que para el 2025 se generarían 35,830tons/día de residuos sólidos urbanos. (Fuente: Banco Mundial.)

Según el Ministerio del Ambiente, el total de residuos sólidos municipales estimados fue de 7 millones 47 mil toneladas los cuales tuvieron la siguiente composición: 50,9% materia orgánica, 10,1% plástico,8,5% de residuos peligrosos, 7,1% de material inerte, 4,8% de papel, 3,4% de madera y restos de jardín, 3,3% de cartón, 3,2% de vidrio, 2,8% de metales, 1,8% de telas y textiles, 1,6% de caucho y cuero, 0,8% de huesos, 0,6% de tetra pack y 0,45% de residuos de aparatos electrónicos.

En el año 2014 la Provincia de Lima generó 2,8 millones de toneladas de residuos sólidos; mientras que, en el año 2013 fue de 2,7 millones toneladas, esto significó un incremento de 2,5%. Esto se muestra a continuación.

Figura 49. Residuos Sólidos generados en Lima desde 2000-2014.Fuente: INEI

El Cercado de Lima genero 2,2 kg/cápita/día residuos sólidos mientras que el más bajo fue de 0,5kg/cápita/día generado por Puente Piedra. La mayor cantidad de residuos se

produjo en el distrito de San Juan de Lurigancho acumulando una cantidad de 700tons/día.

Figura 50. Generación de residuos sólidos per cápita, según distrito, 2014.Fuente: INEI

En el Perú el destino final de la basura se concentró en mayor medida en los vertederos a cielo abierto y en rellenos sanitarios. De esta forma, se tiene que los vertederos a cielo abierto ocuparon el 70,6% de la disposición final de residuos en el año 2013 y el 70,8% para el año 2014.

Según la |INEI se siguen tirando residuos sólidos a los ríos, además de eso solo el 20% de los residuos se incineran.

3.5 Generación de residuos Sólidos en el departamento de Lambayeque.

El crecimiento del departamento trae como consecuencia altos índices de generación de residuos, es por eso que este parte de la investigación se verá las cantidades totales de deshechos generados.

3.5.1 Ubicación

El departamento de Lambayeque se encuentra en la parte noroccidental del Perú, tiene 3 provincias y 38 distritos.

Figura 51. Mapa de la región Lambayeque

PROVINCIA	DISTRITOS
Chiclayo	20
Ferreñafe	6
Lambayeque	12

3.5.2 Población

Según el INEI el número de habitantes del departamento de Lambayeque en el año 2007 fue de 1, 112,868 de los cuales el 67.2% se encontraban en la provincia de Chiclayo.

POBLACIÓN									
PROVINCIAS	1981	1993	2007						
Chiclayo	446,008	617,881	757,452						
Ferreñafe	78,345	92,377	96,142						
Lambayeque	158,089	210,537	259,274						
TOTAL	674,442	920,795	1,112,868						

Tabla 17 Población en Lambayeque según censos nacionales. Fuente: INEI

3.5.3 Generación de residuos.

La generación de residuos va ligada con el número de habitantes y sus hábitos de consumo, estos dos parámetros son los que determinan la cantidad promedio de deshechos que genera cada persona, y se cuantifica en kg/cápita/día.

3.5.3.1 Residuos Sólidos Domiciliarios.

El Distrito que más genero esta clase de residuos fue La Victoria logrando alcanzar 0.644 kg/cápita/día.

DISTRITO	GPC
CHICLAYO ⁽¹⁾	0.454
CAYALTI (5)	0.546
CHONGOYAPE (5)	0.546
ETEN ⁽⁴⁾	0.602
JOSE LEONARDO O. (1)	0.557
LA VICTORIA ⁽¹⁾	0.644
LAGUNAS (6)	0.450
MONSEFU ⁽¹⁾	0.529
NUEVA ARICA (5)	0.546
OYOTUN ⁽⁵⁾	0.546
PATAPO ⁽²⁾	0.546
PICSI (7)	0.410
PIMENTEL ⁽¹⁾	0.520
POMALCA ⁽⁷⁾	0.410
PUCALÁ ⁽⁵⁾	0.546
PUERTO ETEN ⁽¹⁾	0.450
REQUE (1)	0.506
SANTA ROSA (6)	0.450
TUMAN ⁽³⁾	0.410
ZAÑA ⁽⁸⁾	0.506
PONDERADA	0.511

Tabla 18 Generación per cápita del año 2012. Fuente: PIGARS Chiclayo

A continuación, se muestra una tabla en la cual el distrito con mayor generación de residuos sólidos de esta naturaleza es Chiclayo generando aproximadamente 126 17 toneladas y con una proyección hacia el año 2022 de 158 14 toneladas.

		Generación Domiciliaria Ton/día									
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
CHICLAYO	126.17	129.05	132.00	135.01	138.10	141.25	144.48	147.78	151.15	154.61	158.14
CAYALTI	7.86	8.01	8.18	8.34	8.51	8.68	8.85	9.03	9.21	9.40	9.59
CHONGOYAPE	7.66	7.80	7.94	8.09	8.24	8.39	8.55	8.71	8.87	9.03	9.20
ETEN	6.62	6.77	6.92	7.09	7.26	7.44	7.63	7.82	8.03	8.24	8.46
JOSE LEONARDO O.	97.88	100.47	103.09	105.73	108.40	111.10	113.83	116.58	119.37	122.18	125.01
LA VICTORIA	51.33	52.50	53.70	54.93	56.18	57.46	58.78	60.12	61.49	62.89	64.33
LAGUNAS	3.14	3.21	3.29	3.36	3.44	3.51	3.59	3.67	3.75	3.84	3.92
MONSEFU	12.41	12.67	12.94	13.21	13.49	13.77	14.06	14.35	14.64	14.94	15.24
NUEVA ARICA	0.97	0.98	0.99	1.01	1.02	1.04	1.05	1.07	1.08	1.10	1.11
OYOTUN	3.21	3.28	3.36	3.43	3.51	3.59	3.68	3.76	3.85	3.94	4.03
PATAPO	10.38	10.50	10.63	10.74	10.87	10.99	11.12	11.25	11.38	11.51	11.64
PICSI	3.31	3.38	3.45	3.52	3.59	3.66	3.73	3.81	3.89	3.96	4.04
PIMENTEL	17.27	18.09	18.94	19.83	20.77	21.75	22.77	23.85	24.97	26.15	27.38
POMALCA	8.48	8.64	8.76	8.88	9.01	9.13	9.26	9.39	9.52	9.65	9.79
PUCALÁ	4.02	4.10	4.18	4.27	4.35	4.44	4.53	4.62	4.71	4.81	4.90
PUERTO ETEN	1.04	1.06	1.07	1.09	1.11	1.13	1.15	1.17	1.19	1.21	1.23
REQUE	5.28	5.42	5.56	5.71	5.86	6.01	6.17	6.34	6.50	6.67	6.85
SANTA ROSA	5.44	5.61	5.79	5.97	6.15	6.34	6.53	6.73	6.93	7.14	7.35
TUMAN	11.23	11.35	11.48	11.61	11.74	11.87	12.01	12.14	12.28	12.41	12.55
ZAÑA	4.81	4.90	5.00	5.10	5.21	5.31	5.42	5.53	5.64	5.75	5.87
PROVINCIA	388.49	397.80	407.27	416.93	426.80	436.88	447.18	457.69	468.44	479.41	490.63

Tabla 19 Generación de residuos Sólidos en la provincia de Chiclayo. Fuente: PIGARS Chiclayo

En la *Tabla 20* podemos apreciar que la provincia de Chiclayo en el año 2012 acumulo 141.799 toneladas de residuos y se proyecta que al año 2022 la acumulación de estos residuos llegaría aumentar un 20.82%.
		Generación Ton/año									
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
CHICLAYO	46052	47104	48180	49280	50406	51557	52735	53939	55171	56431	57720
CAYALTI	2868	2925	2984	3044	3105	3168	3231	3296	3363	3430	3499
CHONGOYAPE	2795	2846	2899	2953	3007	3063	3120	3177	3236	3296	3357
ETEN	2414	2469	2527	2587	2650	2715	2784	2856	2930	3008	3088
JOSE LEONARDO O.	35725	36671	37626	38592	39567	40552	41548	42553	43568	44594	45630
LA VICTORIA	18736	19164	19601	20049	20506	20974	21453	21943	22444	22956	23480
LAGUNAS	1147	1173	1200	1227	1255	1283	1311	1340	1370	1400	1431
MONSEFU	4530	4626	4724	4823	4924	5027	5131	5236	5343	5452	5562
NUEVA ARICA	353	358	363	368	373	379	384	389	395	400	406
OYOTUN	1171	1197	1225	1253	1282	1312	1342	1373	1405	1439	1472
PATAPO	3790	3834	3878	3921	3967	4013	4059	4105	4152	4200	4248
PICSI	1210	1234	1259	1284	1310	1336	1363	1390	1418	1447	1476
PIMENTEL	6305	6602	6913	7239	7581	7938	8312	8704	9114	9544	9993
POMALCA	3094	3153	3197	3241	3287	3333	3380	3427	3475	3523	3573
PUCALÁ	1467	1497	1527	1557	1589	1621	1653	1686	1720	1755	1790
PUERTO ETEN	380	386	392	399	405	412	419	426	433	440	447
REQUE	1926	1977	2029	2083	2138	2195	2253	2312	2373	2436	2501
SANTA ROSA	1985	2048	2112	2178	2245	2314	2384	2456	2529	2604	2681
TUMAN	4097	4144	4191	4237	4285	4333	4382	4431	4481	4531	4582
ZAÑA	1755	1790	1826	1863	1900	1938	1977	2017	2058	2099	2141
PROVINCIA	141799	145198	148654	152178	155783	159462	163220	167058	170979	174986	179079

Tabla 20 Generación de residuos Sólidos en la provincia de Chiclayo. Fuente: PIGARS Chiclayo

3.5.3.2 Residuos Sólidos No domiciliarios

A continuación, se presenta la cantidad de residuos sólidos no domiciliarios generados por la Provincia de Chiclayo tomando como base del 30% de los residuos domiciliarios.

					_	1	1				
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
CHICLAYO	27766	27146	27766	28400	29049	29712	30391	31085	31795	32521	33264
CAYALTI	860	878	895	913	932	950	969	989	1009	1029	1050
CHONGOYAPE	838	854	870	886	902	919	936	953	971	989	1007
ETEN	724	741	758	776	795	815	835	857	879	902	927
JOSE LEONARDO O.	11818	12131	12447	12766	13089	13415	13744	14076	14412	14752	15094
LA VICTORIA	4847	4958	5071	5187	5305	5426	5550	5677	5806	5939	6074
LAGUNAS	344	352	360	368	376	385	393	402	411	420	429
MONSEFU	600	612	625	639	652	666	679	693	707	722	736
NUEVA ARICA	106	107	109	110	112	114	115	<mark>11</mark> 7	118	120	122
OYOTUN	351	359	367	376	385	394	403	412	422	432	442
ΡΑΤΑΡΟ	920	931	941	952	963	974	985	996	1008	1019	1031
PICSI	363	370	378	385	393	401	409	417	425	434	443
PIMENTEL	1086	1138	1191	1247	1306	1368	1432	1500	1570	1644	1722
POMALCA	928	946	959	972	986	1000	1014	1028	1042	1057	1072
PUCALÁ	440	449	458	467	477	486	496	<mark>506</mark>	516	526	537
PUERTO ETEN	84	85	86	88	89	91	92	94	95	97	99
REQUE	504	518	531	545	560	575	590	<mark>605</mark>	621	638	655
SANTA ROSA	596	614	634	653	674	694	715	737	759	781	804
TUMAN	1497	1243	1257	1271	1286	1300	1315	1329	1344	1359	1375
ZAÑA	526	537	548	559	570	582	593	605	617	630	642

Tabla 21 Generación de residuos sólidos no domiciliarios en la provincia de Chiclayo. Fuente: PIGARS (Ton/año)

La generación de residuos sólidos de origen no domiciliario anual para el 2022 será de 33 264 Ton/año.

3.5.3.3 Residuos Sólidos totales generados por la ciudad de Chiclayo.

Según la Tabla 22 en el año 2012 la provincia de Chiclayo generó 196 997 ton/año de residuos sólidos, actualmente genera 219 726 Ton/año y se proyecta que para el año 2022 generará un total de 246 603Ton/año.

Distritos	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
CHICLAYO	73818	74250	75946	77681	79455	81270	83126	85024	86966	88953	90984
CAYALTI	3728	3803	3879	3957	4037	4118	4201	4285	4371	4459	4549
CHONGOYAPE	3633	3700	3769	3839	3910	3982	4056	4131	4207	4285	4364
ETEN	3139	3210	3285	3363	3445	3530	3619	3712	3809	3910	4015
JOSE LEONARDO O.	47543	48802	50073	51358	52656	53967	55292	56629	57981	59346	60724
LA VICTORIA	23583	24121	24672	25235	25811	26400	27003	27619	28250	28895	29554
LAGUNAS	1491	1525	1560	1595	1631	1667	1704	1742	1781	1820	1860
MONSEFU	5129	5238	5349	5462	5576	5692	5810	5929	6051	6174	6299
NUEVA ARICA	459	465	472	478	485	492	499	506	513	521	528
OYOTUN	1522	1557	1592	1629	1667	1705	1745	1785	1827	1870	1914
PATAPO	4709	4765	4819	4873	4930	4987	5044	5101	5160	5219	5279
PICSI	1572	1604	1636	1669	1703	1737	1772	1807	1844	1881	1919
PIMENTEL	7391	7740	8105	8487	8887	9306	<mark>9744</mark>	10203	10684	11188	11715
POMALCA	4023	4099	4156	4213	4273	4333	4394	4455	4517	4580	4644
PUCALÁ	1907	1946	1985	2025	2065	2107	2149	2192	2236	2281	2327
PUERTO ETEN	463	471	479	487	495	503	511	520	528	537	546
REQUE	2430	2494	2560	2628	2698	2769	2842	2918	2995	3074	3155
SANTA ROSA	2581	2662	2746	2831	2919	3008	3099	3193	3288	3386	3485
TUMAN	5594	5388	5448	5508	5571	5633	5697	5760	5825	5890	5957
ZAÑA	2281	2327	2374	2422	2470	2520	2571	2622	2675	2729	2784
PROVINCIA	196997	200167	204906	209740	214682	219726	224877	230137	235510	240998	246603

Tabla 22 Generación de residuos sólidos totales en la provincia de Chiclayo. Fuente: PIGARS Chiclayo.

3.5.3.4 Composición física de los residuos Sólidos.

La composición física de los residuos es un parámetro importante que nos ayuda a identificar la cantidad total de algún deshecho en especial, este puede ser: materia orgánica, papel, vidrio, etc. Se puede hallar de la siguiente manera:

$$\% = \frac{Pc \times 100}{PT}$$

Pc = Peso de cada componente en los residuos sólidos (plástico, vidrio, metal, etc.)

PT= Peso total de los residuos recolectados en el día

En la provincia de Chiclayo se presenta la siguiente composición de residuos sólidos.

Tipo de Residuo	CHICLAYO	ETEN	JOSE L. ORTIZ	LA VICTORIA	MONSEFU	ΡΑΤΑΡΟ	PIMENTEL	PUERTO ETEN	REQUE	TUMAN	Promedio
Papel	4.635	4.970	1.661	2.074	3.919	10.140	4.333	4.134	4.760	6.500	4.71
Cartón	1.797	10.410	1.548	1.664	1.931	4.340	2.445	2.140	2.715	2.400	3.14
Vidrio	2.095	3.440	0.424	3.684	2.064	10.430	2.450	2.805	1.177	1.700	3.03
Hojalata (Metal Ferroso)	1.294	1.780	0.647	0.339	0.150	3.380	1.500	1.883	0.906	2.900	1.48
Aluminio (Metal No Ferroso)	0.108	1.040	0.028	0.354	0.772	0.560	0.317	0.012	0.039		0.36
PET(1)	1.441	2.870	0.447	0.123	1.054	7.050	2.865	1.140	0.931	1.500	1.94
PEAD (2)	0.510	0.610	1.738	2.260	1.917	0.950	0.582	0.640	1.806	2.400	1.34
PVC (3)	0.299		0.076	0.622	0.184		0.650	0.624	0.114		0.37
PEBD (4)	1.335		0.263	0.380	0.495		0.487	1.497	2.367		0.97
PP (5)	1.063		0.367	0.566	0.459	2.550	0.570	0.765	1.164		0.94
PS (6)	0.210		0.323	0.579	0.170		0.097	0.480	0.841		0.39
Otros (7)	0.544	2.380	0.941	0.436	0.664	5.480	0.375	0.103	0.454	6.300	1.77
Materia Orgánica	63.237	59.790	77.279	38.204	62.401	24.080	40.718	43.439	65.280	32.100	50.65
Tierra, arena, otros	2.358		4.205	21.011	5.302	18.160	5.981	8.073	0.266	23.800	9.91
Telas	1.981		1.650	1.169	3.641	2.140	2.105	2.081	2.325	3.400	2.28
Pañales	5.076		3.494	2.897	5.708		7.714	9.575	4.811		5.61
Papel Higiénico	4.081		1.020	2.094	2.312	6.450	4.690	4.273	2.095	7.700	3.86
Toallas Higiénicas	0.680		0.084	0.328	0.087		0.034	0.446	0.151		0.26
Productos Farmacéuticos	0.096		0.063	0.291	0.072		0.980	0.415	0.131		0.29
Pilas y baterias	0.031	0.130		0.003	0.015		0.020	0.015	0.033	0.400	0.08
Fluorescente y focos	0.059			0.026	0.034		0.522	0.060	0.107		0.13
Otros (Cuero, ceniza, porcelana)	7.071	12.580	3.742	20.896	6.649	4.290	20.565	15.400	7.527	8.900	6.50

Tabla 23 Composición física de los residuos sólidos en la ciudad de Chiclayo. Fuente: PIGARS Chiclayo.

El tipo de deshecho que se genera en mayor volumen es el material orgánico con 50.65%, mientras que el material reciclable (plásticos, papel, cartón, vidrio y metales) se encuentra en

18.28%, también tenemos los residuos textiles y otros residuos no peligrosos que totalizan un 20.84% de los residuos generados y el 10.23% corresponde a la generación de residuos peligrosos.

Figura 52. Distribución de la cantidad de deshechos generados por la ciudad de Chiclayo. Fuente: PIGARS Chiclayo.

IV. MODELO DE CÁLCULO

En este capítulo se mostrará el algoritmo utilizado para hacer el cálculo de los distintos análisis que se dan en la combustión de lecho fluidizado circulante, utilizando las fórmulas mostradas anteriormente.

4.1 Consideraciones para el análisis hidrodinámico.

En las calderas de lecho fluidizado circulante para poder mantener la densidad de suspensión de partículas se utiliza arena o en algunos casos sorbentes (materiales de lecho) es por eso que para el desarrollo de este análisis se seguirá la siguiente secuencia de cálculo analizando en este caso a una partícula de arena debido a que luego en la sección 4.2 se utilizara para hallar el coeficiente global de trasferencia de calor del lecho hacia las paredes de la misma. Los datos a utilizar se presentan a continuación:

Temperatura de operación (T_{op} **):** Son las temperaturas en las condiciones en al cuales la caldera de lecho fluidizado trabaja, para este caso tomaremos como temperatura mínima de operación a la temperatura del ambiente (27°C) y como máxima temperatura de operación a 850°C.

Densidad del gas (ρ_g): Sabiendo que el gas utilizado es aire, entonces buscamos las propiedades respectivas a sus diferentes temperaturas, las cuales son 0.317 kg/m³ para la alta temperatura y 1.16 Kg/m³ para baja temperatura.

Viscosidad del gas (μ_g **) :** El gas utilizado es aire por ende buscamos la viscosidad para las dos temperaturas antes mencionadas (alta temperatura: $4.49 \times 10^{-5}N \ s/m^2$ baja temperatura: $1.84 \times 10^{-5}N \ s/m^2$)

Diámetro de la partícula (d_p **):** Para este análisis se toma un tamaño de 200 μm , este tamaño puede variar de acuerdo al tipo de arena.

Densidad de la partícula (ρ_p): Este tipo de arena tiene un valor aproximado de 1350 kg/m³.

4.1.1 Mínima velocidad de fluidización (U_{mf}) .

Para hacer el cálculo de esta velocidad tenemos que usar la ecuación del número de Arquímedes utilizando los datos para la temperatura a la cual se elija, en este caso primero analizaremos a la temperatura de medio ambiente (27°C).

$$Ar = numero \ de \ arquimides = \frac{\rho_g(\rho_{p-}\rho_g) \ g \ d_p^{-3}}{\mu^2}$$

Ar = 362,70

Luego tenemos que reemplazar el resultado de la ecuación anterior en la ecuación para así obtener el número de Reynolds para la mínima velocidad de fluidización utilizando la ecuación *(1.13)*

$$Re_{mf} = [C_1^2 + C_2 A_r]^{0.5} - C_1$$
$$Re_{mf} = 0,270014443$$

Para hallar la mínima velocidad de fluidización utilizamos la fórmula que se muestra a continuación:

$$Re_{mf} = d_p \frac{U_{mf} \rho_g}{\mu_g^2}$$

Luego despejamos la velocidad y obtenemos la siguiente correlación.

$$U_{mf} = \frac{\mu_g}{\left(\frac{d_p}{1000000}\right)\rho_g} \quad Re_{mf}$$

Entonces obtenemos como resultado:

$$U_{mf} = 0,021414939 \ m/s$$

Para la temperatura de 825 ° C se hace el mismo proceso y se obtiene lo siguiente:

Ar	Remf	$U_{mf}(m/s)$
16,58	0,012402851	0,0088 m/s

4.1.2 Mínima velocidad de burbujeo (Umb).

La velocidad mínima de burbujeo según la **Tabla 7** es igual a la velocidad mínima de fluidización, esto quiere decir que la formación de las burbujas comienza inmediatamente al iniciar la fluidización de la partícula.

$$Umb = Umf$$

4.1.3 Mínima velocidad de slugging (U_{sl}) .

Tener en cuenta que la formación de este fenómeno se da únicamente en lechos de diámetros pequeños, la explicación se muestra en el capítulo I. Supongamos que el diámetro del lecho en este caso sea de 0,2 m entonces la velocidad para la formación de este fenómeno seria la siguiente (1.17).

$$U_{sl} = U_{mf} + 0,07(0,07gD)^{0.5}$$

$$U_{sl} = 0,101932593 \ m/s$$

4.1.4 Transición a fluidización turbulenta.

Primero utilizamos la ecuación (1.18) para hallar la velocidad del inicio hacia la transición turbulenta.

$$u_c = 3.0 \sqrt{\rho_p d_p} - 0.17$$

$$u_c = 1,458845727 \ m/s$$

Luego utilizamos la ecuación (1.19) para hallar la velocidad para completar la transición a la fluidización turbulenta.

$$u_k = 7,0\sqrt{\rho_p d_p} - 0,77$$

$$u_k = 2,867306696 \ m/s$$

Tanto para la temperatura alta y baja las velocidades de transición a ese régimen son las mismas.

Las ecuaciones anteriores tienen ciertas limitaciones debido a que dependen únicamente del diámetro de la partícula y la densidad de la misma es por eso que se utilizaran las ecuaciones (1.20) y (1.21) para tener una mejor aproximación de estas velocidades de transición.

Como el número de Arquímedes ya ha sido calculado previamente entonces reemplazamos ese valor para hallar el número de Reynolds al inicio de la transición turbulenta.

$$Rec = 0.936Ar_{0.472}$$

$$Re_c = 15,11400516$$

Lo mismo hacemos para calcular el número de Reynolds al terminar la transición al régimen turbulento, se debe tener en cuenta el valor del número de Arquímedes para elegir la ecuación adecuada, en este caso escogeremos la correlación para la cual el número de Arquímedes es menor a 10^4 .

$$Re_k = 1.46Ar^{0.472} (Ar < 10^4)$$

$$Re_k = 23,57526446$$

Los resultados de las ecuaciones (1.20) y (1.21) se reemplazan en las ecuaciones (1.22) y (1.23) para así obtener las velocidades en las cuales entramos a la fluidización turbulenta.

$$u_c = \frac{Re_c \, d_p \rho_p}{\mu}$$

$$u_c = 1,198696 \ m/s$$

$$u_k = \frac{Re_k \, d_p \rho_g}{\mu}$$
$$u_k = 1,8697624 \, m/s$$

Al repetir los pasos anteriores podemos hallar las velocidades para el lado de alta temperatura, los resultados se muestran a continuación:

$$u_c(m/s)$$
 $u_k(m/s)$

4.1.5 Velocidad terminal de la partícula.

Para hallar esta velocidad usaremos la ecuación *(1.6)* debido a que el número de Reynolds para la temperatura de 27°C es 0.0595

$$U_t = \left[\frac{Ar}{18}\right] \frac{\mu}{\rho_g \times d_p} \quad 0 < Re < 0.4$$

 $U_t = 1,59808 \ m/s$

En la sección de alta temperatura la velocidad terminal es de 0,655302659 m/s

4.1.6 Velocidad de trasporte.

La velocidad de trasporte para la partícula de madera se puede encontrar con la ecuación (1.26). Para el lado de baja temperatura tenemos como resultado el siguiente:

$$U_{tr} = 1.45 \; rac{\mu}{
ho_g \, d_p} \; Ar^{0.484} \;$$
 , $20 < Ar < 50,000$

$$U_{tr} = 1,99304020m/s$$

Para 825°C tenemos:

$$U_{tr} = 4,006441852 \ m/s$$

4.1.7 Velocidad de ahogamiento y vacío en el lecho.

Para esto utilizamos las ecuaciones (1.24) y (1.25), las desarrollamos simultáneamente y mediante un proceso iterativo en Excel obtenemos:

$$\frac{U_{ch}}{\varepsilon_c} = U_t \left[\frac{2gD(\varepsilon_c^{-4.7} - 1)\rho_p^{2.2}}{6.81 \times 10^5 \rho_g^{2.2}} \right]^{0.5}$$

$$G_s = (U_{ch} - U_t) (1 - c)\rho_p$$

Temperatura	Velocidad ahogamiento U_{ch}	Fraccion volumen c
27°C	2,681316526 m/s	0.9794991
825°C	4,53896884 m/s	0.9942782

4.1.8 Vacío en la salida del horno

Para hallar este valor tenemos que utilizar el vacío de asfixia $_c$ o valor en el cual comienza la formación de conglomerados encontrado anteriormente ya que según el fundamento teórico este es igual al vacío asintótico de la sección superior $_d$, saber la velocidad superficial del gas (en este caso tomaremos 8m/s) para así poder encontrar la constante de desintegración (ver Figura 24), supongamos que tenemos un lecho con una altura "*H*" de 20 m y una altura de inyección de aire secundario " h_i " de 3m, el vacío asintótico " $_a$ " para lechos rápidos esta entre el rango de 0.88-0.78.Utilizamos la ecuación (1.31) y obtenemos:

$$e = d - (d - a) exp[-a(H - h_i)]$$

$$\varepsilon_{e} = 0,994278$$

4.1.9 Vacío medio axial por encima del nivel de aire secundario.

Utilizamos la ecuación (1.32) para eso se usará los datos anteriores, así como también el vacío a la salida del horno calculado previamente.

$$\varepsilon_s = \varepsilon_d - \frac{\varepsilon_e - \varepsilon_a}{a(H - h_i)}$$

 $\varepsilon_s = 0,987749$

4.1.10 Vacío sobre la altura de inyección de aire secundario.

Utilizamos la ecuación (1.30), los datos proporcionados anteriormente y una altura de 4m debido a que el aire de inyección se encuentra a 3m.

$$rac{arepsilon_d - arepsilon_e}{arepsilon_d - arepsilon_a} = exp[-a(h-h_i)]$$
 , $h > h_i$

$$\varepsilon_e = 0.954958$$

4.1.11 Vacío en la pared sobre la altura de inyección de aire secundario.

$$\varepsilon_{av} = \varepsilon_e$$

$$\delta = D_{eq} \left[0.008 + 4.52(1 - av(Z)) \right]$$

$$(r) = av (3.62 + 0.191)$$

$$(r) = 0.838918$$

4.1.12 Cantidad de partículas Sólidas en el horno.

Para hallar la cantidad de solidos dentro del lecho utilizaremos la ecuación (1.33), Si la sección transversal media del lecho es $3 \text{ m} \times 10 \text{ m}$ por debajo y $6 \text{ m} \times 10$ por encima de la altura de inyección de aire respectivamente entonces obtenemos:

$$W = \rho P [Aihi (1 - a) + (H - hi)(1 -)]$$
$$W = 29 \, 244,70919 \, Kg$$

4.2 Consideraciones para el análisis de transferencia de calor

Siguiendo con los cálculos en esta sección se presentará los coeficientes de trasferencia de calor tanto del gas hacia la partícula de combustible, así como también el coeficiente global de trasferencia de calor del lecho hacia las paredes de horno. Los datos a utilizar se presentan a continuación:

4.2.1 Transferencia de calor gas - partícula

Velocidad de fluidización (U): Este valor corresponde a la velocidad superficial del gas que se inyecta en el lado primario del horno, en este caso dicho valor será 6m/s.

Densidad de la partícula a quemar (ρ_{cp}): Esta densidad corresponde a la partícula de papel en este caso tiene una densidad de 89 Kg/m3.

Densidad de la partícula del lecho (ρ_p): Esta partícula es la cual se fluidifica en el lecho, suele ser arena y tiene una densidad aproximada de 1350 Kg/m3

Conductividad térmica del gas (K_g): Este valor corresponde a la temperatura máxima de operación, el aire a una temperatura de 850 °C tiene un valor de 0.072 W/m K

Velocidad media del solido (*U_{cp}*): En este caso tomaremos una velocidad media de 1.9 m/s.

Calor especifico de la partícula a quemar (C_p): Para el papel este valor es de aproximadamente 1.4 KJ / kg K

Calor especifico del gas (C_g): Para la temperatura de operación máxima este valor es de aproximadamente 1.162 KJ/ kg K

Diámetro de la partícula (d_p) : Para este análisis se toma un tamaño de 200 μm , este tamaño puede variar de acuerdo al material de lecho usado.

Diámetro de la partícula a quemar (d_{cp}) : En este caso la partícula que se utilizará será una de 5000 μm .

Altura en donde el aire primario alcanza la temperatura del horno.

Para hallar la altura en la cual el aire primario de inyección alcanza la temperatura del lecho a un 99% primero es necesario encontrar la temperatura a 99% utilizando la ecuación que se muestra a continuación.

$$T_{99\%} = T_{go} + 0.99(T_p - T_{go})$$
$$T_{99\%} = 1114.92 K$$

Luego hallamos el número de Reynolds para partículas gruesas basado en la velocidad de deslizamiento gas-partícula,

$$Re_{cp} = \left[\frac{(U - U_{cp})\rho_p d_{cp}}{\mu}\right]$$
$$Re_{cp} = 5.8021$$

Los valores obtenidos anteriormente se sustituyen en la ecuación (1.37) y obtenemos:

$$h_{gp} = \frac{K_g}{d_{cp}} 0.33 R e_{cp}^{0.62} \left[\frac{d_{cp}}{d_p} \right]^{0.1}$$
$$h_{gp} = 353.3775626 W/m^2 K$$

Por último, usamos la ecuación (1.41) y obtenemos

$$X_{99\%} = \frac{\rho_g U}{\rho_b S} \int_{T_{g0}}^{T_{99\%}} \frac{C_g dT_g}{h_{gp} \rho_b (T_p - T_g)}$$

$$X_{99\%} = 0.0065 m$$

La altura en la cual el aire de inyección alcanza la temperatura del lecho a un 99% es de 0.0065 m.

Tiempo requerido para calentar la una partícula de combustible

Primero hallamos el número de Reynolds para partículas gruesas, en este caso tomaremos el diámetro de la partícula la cual se quiere quemar y se obtiene.

$$Re_{cp} = \left[\frac{(U - U_{cp})\rho_p d_{cp}}{\mu}\right]$$

$$Re_{cp} = 145,052338 W/m^2 K$$

Para hallar el tiempo que necesita la partícula para llegar a un 99% de la temperatura del lecho podemos usar la ecuación (1.40)

$$t_{99\%} = \frac{0.765C_p\rho_p d_p}{h_{gp}}$$

$$t_{99\%} = 3,3215 s$$

En este caso el tiempo que se necesita es relativamente corto debido a la baja densidad del solido el cual se está quemando.

4.2.2 Transferencia de calor del lecho hacia la pared de agua.

Para esto se necesitan algunos datos adicionales a los mostrados en las dos secciones anteriores, estos se muestran a continuación.

Conductividad térmica de la partícula (K_p): La partícula de arena tiene una conductividad térmica es de 0.4 W/m K

Calor especifico de la partícula (C_g): La arena tiene un valor de 0.96 KJ/kg K y puede cambiar según su tipo.

Densidad aparente del lecho (ρ_b): Este valor se puede obtener con la distribución media de vacío axial del lecho, para este caso se tomara un valor aproximado de 7.72 kg/m^3

Temperatura en la pared de agua (T_s **):** La temperatura depende de la pared de agua y del material de los tubos, para este caso se tomará una temperatura en la superficie de la pared de 360 ° C.

Emisividad de la superficie (ε_s): El valor depende del material del cual está hecho la pared de agua en este caso se tomará un valor de 0,85 para el acero.

Emisividad de la partícula (ε_p): La arena tiene un coeficiente de emisividad de 0,9.

Fracción de vacío en los aglomerados (ε_c) : Este valor depende de la distribución axial de los sólidos en el horno, esta partícula tiene un vacío en los aglomerados de 0,92.

Número de Prandtl (Pr): El aire a una temperatura de 850 °C tiene un valor de 0.7178.

Velocidad de los racimos: Puede ser calculada con la correlación de Noymer and Glicksmann, para esta partícula los racimos en las paredes tienen una velocidad de 2.16 m/s.

Conductividad de la película de gas: Este valor corresponde al coeficiente de conductividad térmica del gas a la temperatura media de entre el lecho y la pared (T = 605° C; $K_{fg} = 0.062$ W/m K)

Primero hallamos el tiempo de residencia de los racimos dentro de la caldera, para eso utilizaremos la ecuación (1.55)

$$L = \frac{U_m^2}{g} \left[\exp\left(\frac{gt_c}{U_m}\right) - 1 \right] + U_m t_c$$

La velocidad de los racimos es de aproximadamente 2,16 m/s, al reemplazar dicho valor en la ecuación anterior obtenemos un tiempo de residencia t_c de 9,45 s.

Ahora hallaremos la constante de tiempo térmico para una partícula de 200 μm utilizando la ecuación (1.53).

$$J = \frac{C_p d_p^2 \rho_p}{36K_g} < t_c$$
$$J = 0.02 \ s$$

A continuación, hallaremos el componente conductivo de trasferencia de calor, primero hallaremos el calor específico de los racimos con la ecuación (1.46)

$$Cc = [(1 - \varepsilon c)C_p + \varepsilon_c C_g]$$

$$C_c = 1,14584$$

Luego calcularemos la densidad especifica de los racimos con la ecuación (1.47)

$$\rho c = [(1 - \varepsilon_c) \rho p + c \rho g]$$

$$\rho_c = 108,29 \ kg/m^3$$

Debido a que el vacío en los racimos es mayor a los mostrados por la Figura 33 para hallar el coeficiente de conductividad de los racimos se utilizara la ecuación propuesta por Gelperin y Einstein que se muestra en la ecuación (1.48).

$$\frac{K_c}{K_g} = 1 + \frac{M}{N}$$

Para eso primero tenemos que encontrar el valor tanto de M y N con la ecuación (1.49)

$$M = (1 - \varepsilon_c) \left(1 - \frac{Kg}{Kp} \right)$$

$$M = 0,07$$

$$N = \left(\frac{Kp}{Kg}\right) + 0.28\varepsilon_c^{0.63(Kg/Kp)^{0.18}}$$

$$N = 8.3256$$

Entonces la relación entre el coeficiente de conductividad de los aglomerados y el gas es de:

$$\frac{K_c}{K_g} = 1 + \frac{M}{N}$$

$$\frac{K_c}{K_g} = 1,008$$

El coeficiente de conductividad térmica de los racimos es igual a $7,26 \times 10^{-5} \frac{kW}{mK}$ Ahora hallamos el coeficiente convectivo de trasferencia de calor con la ecuación (1.52 utilizando el coeficiente de conductividad de la película de gas K_{gf} a 605°C

$$h_{c} = \frac{1}{\frac{d_{p}}{10K_{gf}} + \left[\frac{\pi t_{c}}{4K_{c}C_{c}\rho_{c}}\right]^{0.5}}$$

$$h_c = 0,03 W/m^2 K$$

El coeficiente de trasferencia de calor de la fase dispersa se puede encontrar utilizando la ecuación (1.56)

$$h_{d} = \frac{K_{g}}{d_{p}} \frac{C_{p}}{C_{g}} \left[\frac{\rho_{dis}}{\rho_{p}} \right]^{0.3} \left[\frac{U_{t}^{2}}{gd_{p}} \right]^{0.21} Pr$$

Sabiendo que la densidad en la fase dispersa $\rho_{dis} = [\rho_p Y + \rho_g (1 - Y)]$ es igual a 0,342 kg/m^3 , entonces:

$$h_d = 0,054668 \frac{kW}{m^2 K}$$

Para el cálculo del componente radiactivo de trasferencia de calor en primer lugar se tiene que encontrar la emisividad de los mismos y para aquello se usara la ecuación (1.63).

$$e_c = 0.5(1 + e_p)$$
$$e_c = 0.95$$

Luego sustituyendo e_c en la ecuación (1.64) podemos obtener la radiación en los racimos.

$$h_{cr} = \frac{\sigma(T_b^{\ 4} - T_s^{\ 4})}{\left(\frac{1}{e_c} + \frac{1}{e_s} - 1\right)(T_b - T_s)}$$

$h_{cr} = 0,142178544 \ kW/m^2K$

Para hallar la radiación en la fase dispersa se tiene que encontrar la longitud media del Haz para el horno con la ecuación (**1.59**.

$$L_b = \frac{3,5V}{A}$$

$$L_b = 5,83 m$$

La fracción de volumen sólida en el interior del horno Y' puede encontrarse con el vacío de ahogamiento el cual tiene un valor de 0,99427 a través de la siguiente ecuación.

$$Y' = 1 - ch$$

$$Y' = 0,005722$$

La emisividad efectiva de la nube de partícula puede encontrase con la ecuación

$$e'_{p} = 1 - exp\left[\frac{-1.5 e_{p}Y' L_{b}}{d_{p}}\right]$$

 $e'_p = 1$

En las calderas de lecho fluidizado grandes la emisividad en la fase dispersa se puede hallar con la ecuación (1.61

$$e_{d} = \left[\frac{e_{p}}{(1-e_{p})B}\left(\frac{e_{p}}{(1-e_{p})B}+2\right)\right]^{0.5} - \frac{e_{p}}{(1-e_{p})B}$$

 $e_d = 0.973665961$

Sustituyendo e_d en la ecuación (1.62) podemos encontrar el componente radiactivo de trasferencia de calor en la fase dispersa

$$h_{dr} = \frac{\sigma(T_b^{\ 4} - T_s^{\ 4})}{\left(\frac{1}{e_d} + \frac{1}{e_s} - 1\right)(T_b - T_s)}$$

$$h_{dr} = 0,145374 \ kW/m^2K$$

La fracción de racimos en la pared puede encontrarse utilizando la densidad media de lecho axial.

$$1 - \varepsilon = \frac{7,73}{1350}$$

$$= 0,994274$$

Tomando el vacío medio axial encontrado anteriormente podemos encontrar en la fracción de vacío en la pared *w* utilizando la siguiente ecuación

$$w = (3.62 + 0.191)$$

 $w = 0.97835$

Por último, hallamos la fracción promedia de tiempo del área de la pared recubierta por aglomerados utilizando la ecuación (1.43)

$$\delta_c = K \left[\frac{1 - \varepsilon_w - Y}{1 - \varepsilon_c} \right]^{0.5}$$
$$\delta_c = 0,119$$

El coeficiente global de trasferencia de calor puede encontrarse con la ecuación (1.42)

$$h = h_{cov} + h_r = \delta_c (hc + h_{cr}) + (1 - \delta_c)(h_d - h_{dr})$$
$$h = 0,194727 \ kW/m^2$$

Flujo total de trasferencia de calor es: $h \times (850 - 360) \frac{kW}{m^2} = 95.4177 \frac{kW}{m^2}$

4.3 Consideraciones para el análisis de la combustión.

En esta sección se presentará el cálculo de la combustión para la caldera de lecho fluidizado circulante, teniendo en cuenta que el material a quemar en este caso es el papel y el sorbente a utilizar para la captura del azufre es la piedra caliza. Los datos para utilizar se presentan a continuación:

Humedad aire (ρ_{cp}): Es la cantidad de vapor de agua contenida en el aire y esta depende a las condiciones del clima en este caso se tomara una humedad de 1,3%.

Eficiencia del sorbente (E sor): En las calderas de lecho fluidizado circulante la eficiencia del sorbente a una temperatura de entre (800-850 °C) % es de aproximadamente 90% Ver Figura 42.

R: Relación calcio Azufre Ca/S se tomara un valor de 2,5.

Carbonato de calcio (*X CaCO*₃) : Corresponde a la fracción de carbonato de calcio presente en la piedra caliza, tiene un valor de 90%.

Carbonato de magnesio (X MgCO3): Corresponde a la fracción de carbonato de magnesio presente en la piedra caliza, tiene un valor de 9%.

Inerte (X In): Fracción de peso inerte presente en la piedra caliza, en este caso es de 1%.

Calor de vaporización del agua (*hg*): Este valor depende de la presión y la temperatura. Los estándares como ASTMD5865-13 y el código de prueba ASME PTC especifican 2441 KJ/Kg a una temperatura de 25°C y a una presión de 0,0316 bar. [5]

Exceso de aire: Para calderas de lecho fluidizado circulante estas tienen un valor aproximado de 20%.

Humedad del sorbente: Esto depende directamente de las condiciones de la piedra caliza, se utilizara una humedad de 7,16 %.

Presión: El proceso de combustión se está desarrollando a presión ambiente el valor para esto sería de 1 atmosfera o 101325 Pascales.

Constante universal de los gases (R): Relaciona diversas funciones de estado termodinámico y su valor es de $8314 \frac{J}{Kmol K}$

Composición química de los residuos de papel: La composición química se muestra en la Tabla 24 donde C, H, O, N, S son el carbón, hidrogeno, oxigeno, nitrógeno y azufre respectivamente estos valores corresponden a una humedad de 6%.

Tabla 24 Composición química de los residuos de papel en base húmeda.

		Contenido										
	de humedad (w.b)											
		AnalIs	sis wt%	ı			Ceniza	X				
	С	Η	0	N	S	(Mf)	Ash	CaO				
papel	41.4	5.5	41.9	0.3	0.2	6	4.7	0				

Fuente: Internet

Tabla 25 Masa molar de los productos de la combustión.

Datos	valor	unidad
Masa	44.00995	g/mol
(MCO2)		
Masa (H2O)	18.01534	g/mol
Masa (H2)	2.01594	g/mol
Masa (SO2)	64.0628	g/mol
Masa de N2	28.0134	g/mol
Masa O	31.9988	g/mol

Fuente: Internet.

4.3.1 Relación *Ca/S* inherente en el combustible.

Utilizamos la siguiente ecuación para hallar esta relación.

$$\frac{C_a}{S} = \left(\frac{32 X_{CaCO_3}}{56 S}\right)$$
$$\frac{C_a}{S} = 0 \frac{Kg}{Kg \ de \ combustible}$$

En este caso es cero debido a que en este análisis último del combustible no se tiene el análisis de las cenizas.

4.3.2 Cantidad de sorbente requerido para una captura de azufre del 90%.

Utilizando las ecuaciones (1.84) y (1.85) podemos encontrar la cantidad de sorbente requerido por unidad de combustible quemado.

$$R' = R - \frac{32X_{CaO}}{56\,S}$$

$$L_q = \frac{100 S}{32 X_{CaCO_3}} R^{\gamma}$$

En este caso debido a que la cantidad de Ca/S inherente en el combustible es cero R'= R, Entonces el sorbente requerido es:

$$L_q = 0,01736 \frac{Kg \ de \ sorbente}{Kg \ de \ combustible}$$

4.3.3 Valor de calentamiento superior.

El poder calorífico superior puede ser encontrado utilizando la ecuación (1.101)

$$HHV = 33.823 C + 144.249 \left(H - \frac{O}{8}\right) + 9418 S KJ/Kg$$

HHV = 14 381,37563 *KJ/Kg*

4.3.4 Valor de calentamiento inferior.

Este valor puede ser encontrado con la ecuación (1.102) teniendo en cuenta que hg tiene un valor de 2441 KJ/Kg.

$$LHV = HHV - \left(\frac{H}{2.016} + \frac{M_f}{18.0154}\right)h_g \quad \frac{KJ}{kg}.$$

$$LHV = 13026,62063 \ KJ/KG$$

4.3.5 Aire teórico con captura de azufre.

El aire teórico considerando la captura del azufre puede ser encontrado utilizando la ecuación (1.81).

$$Mda = \left[11.53\ C + 34.34\left(H - \frac{0}{8}\right) + 4.34S + A * S\right] \frac{Kg}{Kg\ combustible}$$
$$Mda = 4,8765925\ Kg \frac{Kg\ aire}{Kg\ combustible}$$

4.3.6 Aire seco total

Para calderas de lecho fluidizado circulante se toma un exceso de aire aproximado de 20%, entonces el aire seco suministrado total puede encontrarse con la ecuación (1.82).

$$T_{da} = M_{da} \frac{Kg}{Kg \ quemado} * EAC$$

$$T_{da} = 5,851911 \frac{Kg \ aire}{Kg \ combustible}$$

4.3.7 Aire húmedo total

El aire húmedo total puede ser encontrado con la ecuación (1.83) teniendo en cuenta que la humedad del aire para este caso es de 1.3 %.

$$M_{wa} = T_{da} \left(1 + X_m\right)$$

$$M_{wa} = 5,927986 \frac{Kg \ aire}{Kg \ combustible}$$

4.3.8 Emisión de nitrógeno.

El nitrógeno se forma debido al combustible y al aire de la combustión y se puede encontrar con la ecuación (1.91)

$$N_2 = N + 0.768 M_{da} EAC$$

$$N_2 = 4,5002 \frac{Kg N_2}{Kg \ combustible}$$

4.3.9 Emisión de vapor de agua

El vapor de agua formado producto de la combustión por unidad de combustible quemado se puede calcular con la ecuación (1.90)

$$H_2O = 9H + EAC * M_{da} * X_m + M_f + L_q * X_{ml}$$

$$H_2 O = 0,632318 \frac{Kg H_2 O}{Kg \ combustible}$$

4.3.10 Emisión de dióxido de carbono

La cantidad de dióxido de carbono producto de la combustión del combustible puede encontrarse al sumar las ecuaciones (1.88) y (1.89)

$$CO_2 = 3.66 C$$

$$W_{CO2} = 1.375 \, SR \left[1 + \frac{100 X_{MgCO3}}{84 X_{caCO3}} \right]$$

Entonces obtenemos un total de:

$$CO_2 = 1,5229 \frac{Kg CO_2}{Kg \ combustible}$$

4.3.11 Emisión de dióxido de azufre

El dióxido de azufre que se genera después de la combustión del papel puede encontrarse con la ecuación (1.93).

$$SO_2 = 2S(1 - E_{sor})$$

$$SO_2 = 0,0004 \frac{Kg SO_2}{Kg \ combustible}$$

4.3.12 Emisión de oxigeno

La cantidad de oxigeno que se forma puede ser encontrada con la ecuación (1.92)

$$O_2 = O + 0.2315 M_{da}(EAC - 1) + \frac{(1 - E_{sor})S}{2}$$

$$O_2 = 0,2673 \ \frac{Kg \ O_2}{Kg \ combustible}$$

4.3.13 Peso de los gases de combustión.

El peso total de los gases de combustión se obtiene utilizando la ecuación (1.95).

$$w_{c} = M_{wa} - 0.2315 M da + 3.66C + 9H + L_{q}X_{ml} + N + O + 2.5S(1 - E_{sor}) + 1.375SR \left(1 + \frac{1.19 X_{MgCO3}}{XCaCO3}\right) + a_{c} ASH$$

$$w_c = 6,9231 \frac{Kg \ de \ gases \ de \ combustion}{Kg \ combustible}$$

4.3.14 Peso del sorbente agotado.

La cantidad de sorbente agotado por unidad de combustible quemado puede obtenerse al utilizar la ecuación (1.86)

$$L_{w} = 136 \frac{S}{32} E_{sor} + 56 \left[\frac{L_{q} X_{CaCO_{3}}}{100} - \frac{SE_{sor}}{32} \right] + \frac{40L_{q} X_{MgCO3}}{84} + L_{q} X_{inert}$$

$$L_w = 0,017344048 \frac{Kg \ de \ sorbente \ agotado}{Kg \ combustible}$$

4.3.15 Fracción de masa de los gases de combustión

Las fracciones de masa de los gases de combustión X_{CO2} X_{H2O} X_{SO2} X_{N2} y X_{O2} se obtiene dividiendo la cantidad de cada gas producido por la combustión entre la suma total de los gases de combustión.

$$X_{N_{2}} = \frac{4,5002 \frac{Kg N_{2}}{Kg \ combustible}}{6,9231 \frac{Kg \ de \ gases \ de \ combustible}{Kg \ combustible}}$$

$$X_{N_2} = 0,65$$

$$X_{H_2O} = \frac{0,632318 \frac{Kg H_2O}{Kg \ combustible}}{6,9231 \frac{Kg \ de \ gases \ de \ combustible}{Kg \ combustible}}$$

$$X_{H_20} = 0,091334$$

$$X_{CO_2} = \frac{1,5229 \frac{Kg CO_2}{Kg \ combustible}}{6,9231 \frac{Kg \ de \ gases \ de \ combustible}{Kg \ combustible}}$$

$$X_{SO_2} = \frac{0,0004 \frac{Kg SO_2}{Kg \ combustible}}{6,9231 \frac{Kg \ de \ gases \ de \ combustible}{Kg \ combustible}}$$

$$X_{SO_2} = 5,7778 \times 10^{-5}$$

$$X_{O_2} = \frac{0,2673 \frac{Kg O_2}{Kg \ combustible}}{6,9231 \frac{Kg \ de \ gases \ de \ combustible}{Kg \ combustible}}$$

$$X_{0_2} = 0,03861$$

4.3.16 Fracción de volumen de los gases de combustión

Las fracciones de volumen de los gases de combustión se determinan convirtiendo las fracciones de masa a fracciones de volumen con las ecuaciones (1.96) y (1.97).

$$Y_{N2} = \frac{\frac{X_{N2}}{M_{N2}}}{\frac{X_{CO_2}}{M_{CO_2}} + \frac{X_{H_2O}}{M_{H_2O}} + \frac{X_{SO_2}}{M_{SO_2}} + \frac{X_{N_2}}{M_{N_2}} + \frac{X_{O_2}}{M_{O_2}}}$$

$$Y_{N2} = 0,67298$$

$$Y_{H_2O} = \frac{\frac{X_{H_2O}}{M_{H_2O}}}{\frac{X_{CO_2}}{M_{CO_2}} + \frac{X_{H_2O}}{M_{H_2O}} + \frac{X_{SO_2}}{M_{SO_2}} + \frac{X_{N_2}}{M_{N_2}} + \frac{X_{O_2}}{M_{O_2}}}$$

$$Y_{H_20} = 0,14704$$

$$Y_{CO_2} = \frac{\frac{X_{CO_2}}{M_{CO_2}}}{\frac{X_{CO_2}}{M_{CO_2}} + \frac{X_{H_2O}}{M_{H_2O}} + \frac{X_{SO_2}}{M_{SO_2}} + \frac{X_{N_2}}{M_{N_2}} + \frac{X_{O_2}}{M_{O_2}}}$$

$$Y_{CO_2} = 0,144966$$

$$Y_{SO_2} = \frac{\frac{X_{SO_2}}{M_{SO_2}}}{\frac{X_{CO_2}}{M_{CO_2}} + \frac{X_{H_2O}}{M_{H_2O}} + \frac{X_{SO_2}}{M_{SO_2}} + \frac{X_{N_2}}{M_{N_2}} + \frac{X_{O_2}}{M_{O_2}}}$$

$$Y_{SO_2} = 2,615 \times 10^{-5}$$

$$Y_{O_2} = \frac{\frac{X_{O_2}}{M_{O_2}}}{\frac{X_{CO_2}}{M_{CO_2}} + \frac{X_{H_2O}}{M_{H_2O}} + \frac{X_{SO_2}}{M_{SO_2}} + \frac{X_{N_2}}{M_{N_2}} + \frac{X_{O_2}}{M_{O_2}}}$$

$$Y_{0_2} = 0,034993$$

4.3.17 Masa molecular de los gases de combustión

Se puede calcular con la ecuación (1.98)

$$M_{FG} = \sum_{i} Y_{i}M_{i} = Y_{CO_{2}}M_{CO_{2}} + Y_{H_{2}O}M_{H_{2}O} + Y_{SO_{2}}M_{SO_{2}} + Y_{N_{2}}M_{N_{2}} + Y_{O_{2}}M_{O_{2}}; \left[\frac{kg}{kmol}\right]$$

$$M_{FG} = 29,0026638 \frac{Kg}{Kmol}$$

4.3.18 Densidad de los gases de combustión.

Esta puede ser encontrada con la ecuación (1.99)

$$\rho_{FG} = \frac{\rho_o}{\frac{R_u}{M_{FG}} T_o}; \left[\frac{kg}{m^3}\right]$$

$$\rho_{FG} = 0.314695 \frac{Kg}{m^3}$$

4.3.19 Densidad del aire.

Utilizamos la ecuación (1.100) teniendo en cuenta que la temperatura T_{ci} a la salida es de 850 °C, entonces obtenemos.

$$\rho_{aire} = \frac{\rho_o}{\frac{R_u}{M_{aire}}T_{c,i}}; \left[\frac{kg}{m^3}\right]$$

$$\rho_{aire} = 0,810916 \ \frac{Kg}{m^3}$$
4.4 Consideraciones para el análisis de la captura de azufre

En este tipo de calderas el uso de sorbente para la absorción del azufre es una de sus grandes ventajas frente a otras tecnologías de combustión, en esta sección se calculará la velocidad de alimentación del sorbente respecto a la velocidad de alimentación del combustible. Los datos para utilizar se presentan a continuación.

Velocidad de alimentación del combustible (FFS): Este cambia de acuerdo al diseño de la caldera, para este caso se tomara un valor de 1 t/h.

Azufre en el combustible (S): Según el análisis último de la Tabla 24 el papel tiene un porcentaje de azufre de 0.2 %.

Ceniza en combustible (*ASH*): Según el análisis último de la Tabla 24 el papel tiene en su composición el 4.7 %.

Valor de calentamiento superior (*HHV*): Este valor ha sido calculado previamente en la sección 3.3.3 y tiene un valor de 14 381,37563 *KJ/Kg*.

Velocidad superficial del gas: Este valor ya ha sido utilizado previamente en las secciones anteriores y es de 6 m/s.

Carbonato de calcio (*X CaCO*₃) : Corresponde a la fracción de carbonato de calcio presente en la piedra caliza, tiene un valor de 90%.

Eficiencia del ciclón (E_c) : Este valor depende del diseño del mismo, estos pueden llegar a tener una eficiencia de 99%.

1/ Constante de proporcionalidad: Depende de la reactividad del sorbente utilizado, esto puede encontrarse en la *Tabla 11*, su valor tomado en cuenta la fuente "CARLISLE" es de 16.09.

Grado máximo de sulfatación: De la Tabla 11 tenemos que tiene un valor de 0.267

Límite de dióxido de carbono: En este caso se supondrá un valor de 0.02 g/MJ, luego este valor puede corregirse tomando en cuenta la eficiencia del sorbente.

4.4.1 Azufre equivalente en el combustible

Utilizamos la ecuación (1.123) conociendo cual es el límite L de SOX requerido

S' = L * HHV * 100%S' = 0.028762751%

4.4.2 Eficiencia del sorbente requerido según el límite dado.

Usamos la ecuación (1.124) y reemplazamos el valor del azufre equivalente en el combustible dentro de la misma.

$$E_{sor} = \frac{S - S'}{S}$$

$$E_{sor} = 85.61862438 \%$$

La eficiencia mínima del sorbente que se necesita para obtener el límite dado es de 85.62 %. La caliza tiene una eficiencia de retención de azufre 90% entonces este valor se tomara para el cálculo de la velocidad de alimentación del sorbente.

4.4.3 Densidad promedio del lecho.

Esta se obtiene utilizando la siguiente formula.

$$\rho_{bav} = \frac{1}{h} \int_0^h [2 + 480 \exp(-0.328z)] dz$$

 $\rho_{bav} = 75.06689893 \ kg/m^3$

4.4.4 Captura de azufre

Utilizamos la ecuación (1.122) para encontrar la relación entre el sorbente y la velocidad de alimentación del combustible.

$$\frac{F_{sor}}{F_s} = \frac{3.12E_{sor} \, S \, \rho_{bav} \, H - 100 \, P^* U \, ASH \, E_c \ln(1 - E_{sor})}{E_c[\delta(\infty) \, X_{CaCO3} \, \rho_{bav} \, H + 100P^* \, U \ln(1 - E_{sor})]}$$

$$\frac{F_{sor}}{F_s} = 0.000318922$$

La velocidad de alimentación del sorbente por cada t/h de combustible quemado se puede encontrar con la siguiente ecuación.

$$SFR = \frac{F_{sor}}{F_s} \times 1 t/h$$
$$SFR = 0.000318922 t/h$$

La emisión de SO_x con una eficiencia de retención de azufre de 90% es de 0.014 g/MJ.

V. ANALISIS Y DISCUSIÓN DE RESULTADOS.

Utilizando el algoritmo de cálculo hecho en Excel se podrá saber el comportamiento del lecho fluidizado circulante cambiando diferentes parámetros.

5.1 Análisis de los regímenes de fluidización en etapa cautiva utilizando diferentes tamaños de partículas y densidades.

A continuación, se presentan los datos que se necesitan para realizar el análisis del lecho fluidizado en etapa cautiva, en este caso los parámetros que cambiaran serán la densidad de la partícula y el tamaño de la misma para así evaluar el comportamiento de las velocidades.

Tabla 26 Datos para el análisis del lecho fluidizado en etapa cautiva de una partícula.

variables	Alta temperatura	Baja temperatura
Temperatura del lecho (°c)	850	27
Densidad del gas (Kg/m3)	0.3177	1.16
Viscosidad del gas (Pa*s)	4.49E-05	1.84E-05
Densidad de la partícula (Kg/m3)	1350)-4000
Tamaño y tipo de partícula(μm)	arena	100-500
Fuente: Elaboración propia		

184

	Densidad partícula	Velocidad	Velocidad d	e Velocidad	Velocidad
	(V - l ?)	mínima de	inicio	para	terminal
	(Kg/m3)	fluidización	para la	terminar la	de la
		(m/s)	fluidización	fluidización	partícula
			turbulenta	turbulenta	
			(uc m/s)	(uk m/s)	(m/s)
AT	1350	0.009	2.497	3.896	0.655
BT	1350	0.021	1.199	1.870	1.598
AT	1500	0.010	2.625	4.094	0.728
BT	1350	0.024	1.260	1.965	1.776
AT	1700	0.011	2.785	4.344	0.825
BT	1700	0.027	1.337	2.085	2.013
AT	1900	0.012	2.935	4.578	0.922
BT	1900	0.030	1.409	2.197	2.250
AT	2100	0.014	3.077	4.799	1.019
BT	2100	0.033	1.477	2.304	1.410
AT	2300	0.015	3.212	5.010	1.117
BT	2300	0.036	1.542	2.405	1.498
AT	2500	0.016	3.341	5.211	1.214
BT	2500	0.040	1.604	2.501	1.583

Tabla 27 Comportamiento hidrodinámico de una partícula de 200 um de diámetro utilizando diferentes densidades donde AT: alta temperatura, BT: baja temperatura.

	Densidad partícula	Velocidad	Velocidad d	e Velocidad	Velocidad
	Kg/m3	mínima de fluidización (m/s)	inicio para la fluidización turbulenta (uc m/s)	para terminar la fluidización turbulenta (uk m/s)	terminal de la partícula (m/s)
AT	2700	0.018	3.464	5.404	1.311
BT	2700	0.043	1.663	2.594	1.666
AT	2900	0.019	3.583	5.589	1.408
BT	2900	0.046	1.720	2.683	1.748
AT	3100	0.020	3.698	5.768	1.505
BT	3100	0.049	1.775	2.769	1.827
AT	3300	0.022	3.808	5.941	1.602
BT	3300	0.052	1.828	2.852	1.905
AT	3500	0.023	3.916	6.108	1.699
BT	3500	0.055	1.880	2.932	1.981
AT	3700	0.024	4.020	6.270	1.796
BT	3700	0.058	1.930	3.010	2.056
AT	4000	0.026	4.171	6.505	1.942
ВТ	4000	0.063	2.002	3.123	2.165

Tabla 28 Comportamiento hidrodinámico de una partícula de 200 um de diámetro utilizando diferentes densidades donde AT: alta temperatura, BT: baja temperatura. Segunda parte.

Fuente: Elaboración propia.

Figura 54. Comportamiento de la velocidad mínima de fluidización de una partícula de 200 um frente al aumento de su densidad. Fuente: Elaboracion propia

Figura 53. Comportamiento de la velocidad de inicio a la transición turbulenta de una partícula de 200 um al cambiar su densidad.Fuente: Elaboración propia.

Figura 56 Comportamiento de la velocidad para terminar la transición a régimen turbulento de una partícula de 200 um frente al aumento de su densidad.

Figura 55 Comportamiento de la velocidad terminal de una partícula de 200 um frente al aumento de su densidad. Fuente: Elaboracion propia.

	Densidad	Velocidad	Velocidad de	Velocidad	Velocidad
	partícula	mínima de	inicio para la	para terminar l	a terminal
	Ka/m3	fluidización	fluidización	fluidización	(m/s)
	Kg/m5	(m/s)	turbulenta (uc m/s)	turbulenta (uk m/s)	
AT	1350	0.002	1.872	2.920	0.164
BT		0.005	0.898	1.401	0.400
AT	1700	0.003	2.087	3.255	0.206
BT		0.007	1.002	1.563	0.503
AT	2100	0.003	2.306	3.597	0.255
BT		0.008	1.107	1.727	0.622
AT	2500	0.004	2.504	3.906	0.303
BT		0.010	1.202	1.875	0.740
AT	2900	0.005	2.686	4.189	0.352
BT		0.012	1.289	2.011	0.859
AT	3300	0.005	2.854	4.452	0.401
BT		0.013	1.370	2.137	0.977
AT	4000	0.007	3.126	4.876	0.485
BT		0.016	1.501	2.341	1.184

Tabla 29 Comportamiento hidrodinámico de una partícula de 100 um de diámetro utilizando diferentes densidades. (AT: alta temperatura, BT: baja temperatura)

Tabla 30 Comportamiento hidrodinámico de una partícula de 100 um de diámetro utilizando diferentes densidades. (AT: alta temperatura, BT: baja temperatura)

500	Densidad	Velocidad	Velocidad de	Velocidad	Velocida
	partícula	mínima de	inicio	para	d
		fluidización	para la	terminar la	terminal
	Kg/m3	(m/s)	fluidización	fluidización	(m/s)
			turbulenta	turbulenta	
			(uc m/s)	(uk m/s)	
AT	1350	0.055	3.656	5.703	4.096
BT		0.125	1.755	2.737	2.620
AT	1700	0.069	4.077	6.359	5.158
ВТ		0.155	1.957	3.052	3.055
AT	2100	0.085	4.504	7.026	6.372
BT		0.189	2.162	3.373	3.517
AT	2500	0.101	4.891	7.629	7.585
ВТ		0.221	2.348	7.988	3.951
AT	2900	0.118	5.246	8.182	5.000
BT		0.252	2.518	8.681	4.361
AT	3300	0.134	5.576	8.697	5.449
BT		0.283	2.677	9.332	4.753
AT	4000	0.162	6.106	9.524	6.194
BT		0.334	2.931	10.394	5.403

Figura 57 Comportamiento de la velocidad mínima de fluidización de una con diferentes densidades y diámetros.

Figura 58 Comportamiento de la velocidad de inicio al régimen de fluidización turbulenta de una partícula con diferentes densidades y diámetros.

Figura 59 Comportamiento de la velocidad de inicio al régimen de fluidización turbulenta de una partícula con diferentes densidades y diámetros.

Figura 60 Comportamiento de la velocidad terminal de una partícula utilizando diferentes densidades y diámetros.

Tabla 31 Comportamiento hidrodinámico de una partícula de 2500 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja temperatura.

Tamaño Velocidad de la terminar terminal de la la fluidización la					
	mínima	de partícula	partícula		
	fluidizació	ón	fluidización	turbulenta	(m/s)
	(µm)	(m/s)	turbulenta	(uk m/s)	
Veloc	idad de	Velocidad	(uc m/s)		
Velo	cidad inici	io para para			
AT	200	0.016	3.341	5.211	1.214
BT	200	0.040	1.604	2.501	1.583
AT	250	0.026	3.666	5.718	1.896
BT	250	0.061	1.760	2.745	1.978
AT	300	0.037	3.954	6.168	2.731
BT	300	0.087	1.898	2.961	2.373
AT	350	0.050	4.216	6.577	3.717
BT	350	0.117	2.024	3.157	2.767
AT	400	0.065	4.457	6.952	4.855
BT	400	0.149	2.140	3.337	3.162
AT	450	0.082	4.681	7.302	6.144
BT	450	0.184	2.247	3.505	3.556
AT	500	0.101	4.891	7.629	7.585
BT	500	0.221	2.348	7.988	3.951

Figura 61 Comportamiento de la velocidad mínima de fluidización de una partícula con una densidad de 2500 kg/m3 utilizando diferentes diámetros de partículas.

Figura 62 Comportamiento de la velocidad mínima de fluidización de una partícula con una densidad de 2500 kg/m3 utilizando diferentes diámetros de partículas

Figura 63 Comportamiento de la velocidad para terminar la fluidización turbulenta de una partícula con una densidad de 2500 kg/m3 utilizando diferentes diámetros de partículas.

Figura 64 Comportamiento de la velocidad terminal de una partícula con una densidad de 2500 kg/m3 utilizando diferentes diámetros de partículas.

	Tamaño de la partícula (μm)	Velocidad mínima de fluidización (m/s)	Velocidad de inicio para la fluidización turbulenta (uc m/s)	Velocidad para terminar la fluidización turbulenta (uk m/s)	Velocidad terminal de la partícula
					(m/s)
AT		0.009	2.497	3.896	0.655
BT	200	0.021	1.199	1.870	1.598
AT		0.014	2.740	4.275	1.024
BT	250	0.033	1.315	2.052	1.312
AT		0.020	2.956	4.611	1.474
BT	300	0.048	1.419	2.213	1.574
AT		0.027	3.152	4.917	2.007
BT	350	0.064	1.513	2.360	1.835
AT		0.035	3.332	5.198	2.621
BT	400	0.083	1.599	2.495	2.097
AT		0.045	3.500	5.459	3.317
BT	450	0.103	1.680	2.620	2.359
AT		0.055	3.656	5.703	4.096
BT	500	0.125	1.755	2.737	2.620

Tabla 32 Comportamiento hidrodinámico de una partícula con 1350 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja temperatura.

Fuente: Elaboración propia.

	Tamaño	Velocidad	Velocidad de	Velocidad	Velocidad
	de la	mínima de	inicio	para	terminal
	partícula	fluidización	para la	terminar la	de la
	(µm)	(m/s)	fluidización	fluidización	partícula
			turbulenta	turbulenta	(m/s)
			(uc m/s)	(uk m/s)	
AT	200	0.026	4.171	6.505	1.942
BT	200	0.063	2.002	3.123	2.165
AT	250	0.041	4.576	7.138	3.034
BT	250	0.097	2.197	3.427	2.705
AT	300	0.059	4.937	7.701	4.369
BT	300	0.137	2.370	3.697	3.245
AT	350	0.080	5.264	8.211	5.947
BT	350	0.182	2.527	3.942	3.785
AT	400	0.104	5.564	8.679	7.768
BT	400	0.231	2.671	4.167	4.325
AT	450	0.131	5.844	9.115	5.576
BT	450	0.282	2.805	9.676	4.864
AT	500	0.162	6.106	9.524	6.194
BT	500	0.334	2.931	10.394	5.403

Tabla 33 Comportamiento hidrodinámico de una partícula con 4000 kg/m3 de densidad utilizando diferentes tamaños de partículas donde AT: alta temperatura, BT: baja temperatura.

Figura 65 Comportamiento de la velocidad para dar inicio a la fluidización turbulenta de una partícula con diferentes densidades y diámetros. Fuente: Elaboración propia.

Figura 66 Comportamiento de la velocidad para dar inicio a la fluidización turbulenta de una partícula con diferentes densidades y diámetros. Fuente: Elaboración propia.

Figura 67 Comportamiento de la velocidad para completar la transición a la fluidización turbulenta de una partícula con diferentes densidades y diámetros. Fuente: Elaboración propia

Figura 68 Comportamiento de la velocidad para completar la transición a la fluidización turbulenta de una partícula con diferentes densidades y diámetros. Fuente: Elaboración propia.

Las calderas de lecho fluidizado circulante trabajan en la mayoría de los casos con partículas del grupo B, están tienen un tamaño de entre 100 μm – 500 μm y una densidad en el rango de 1350 Kg/m3 - 4000 Kg/m3 . Después de hacer el análisis con

diferentes tamaños de partículas y densidades utilizando los rangos anteriormente mencionados se observa que tanto la velocidad mínima de fluidización, la velocidad para el inicio a la transición a régimen fluidizado turbulento y la velocidad para terminar la transición al régimen fluidizado turbulento aumentan en todo momento al incrementar el tamaño y la densidad de la partícula.

En la Figura 57 se observa que para partículas con densidades bajas la mínima velocidad de fluidización es relativamente baja y el tamaño de la partícula no influye en gran magnitud en el aumento de la misma por ende esto hace que las velocidades a la transición a régimen turbulento sean más bajas. Según los resultados de la Figura 59 podemos observar que se necesitan velocidades de entre 3-10 m/s para que partículas de entre 100-500 μm puedan llegar hasta el régimen turbulento en etapa cautiva.

Si se mantiene constante la densidad de una partícula, al cambiar su tamaño como se muestra en la Figura 65 se puede observar que en este caso este cambio si influye en el aumento de la velocidad mínima de fluidización, pero aun así no hay un aumento significativo en la velocidad para terminar la transición a la fluidización turbulenta.

En lo que respecta a la velocidad terminal de la partícula para tamaños de entre 100 y 400 μm esta aumenta con respecto al aumento de su densidad, pero para partículas más grandes (450 μm -500 μm) con densidades altas (2790 Kg/m3 – 4000Kg/m3) estas llegan al punto en el cual la velocidad terminal disminuye debido a que el fluido pasa de estar de régimen laminar a un régimen semiturbulento. Ver Figura 69

Tabla 34 Disminución de la velocidad terminal de la partícula debido al cambio de régimen de flujo.

Tamaño de la Velocidad Velocidad Velocidad partícula terminal de la

terminal de	terminal de terminal de terminal de						
(µm)	partícula a	la partícula a	la partícula a	la partícula a			
	3900 kg/m3	3800 kg/m3	2790 kg/m3	2750 kg/m3			
350	5.79849754	5.649806003	4.148021482	4.088544868			
400	7.573547808	7.379338453	5.417823977	5.340140235			
450	5.482425978	9.33947523	6.856933471	6.758614985			
500	6.09030093	5.985838279	4.872510103	8.343969117			

Figura 69 Disminución de la velocidad terminal de la partícula debido al cambio de régimen de flujo. Fuente: Elaboración propia

5.2 Análisis del lecho fluidizado rápido.

En esta sección se presenta el análisis de la transición de lecho cautivo a lecho rápido, los parámetros que cambian serán la densidad de la partícula y el diámetro de la misma utilizando los rangos anteriormente mencionados para así evaluar el comportamiento tanto de las velocidades de ahogamiento y la fracción de vacío de ahogamiento en el lecho. A continuación, se presentan los datos a utilizar.

Datos	Alta temperatura	Baja temperatura
Temperatura del lecho (°c)	850	27
Densidad del gas (Kg/m3)	0.3177	1.16
Viscosidad del gas (Pa*s)	4.49E-05	1.84E-05
Velocidad terminal (m/s)	1.896334707	1.978108949
Velocidad de circulación solida deseada kg/m2 s	30 kg	/m2 s
Densidad de la partícula(kg/m3)	1350-400	00 kg/m3
Tamaño de partícula (µm)	100-50	0 (µm)
Fuente: Elaboración propia.		

Tabla 35 Datos para el análisis del lecho fluidizado rápido de una partícula.

Tabla 36 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 100 (μ m) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad.

100 (μm) Densidad Velocidad vacío Velocidad partícula ahogamiento ahogamiento de

G = 30 kg/m2 s		(m/s)	(e ch) K	trasporte g/m3 m/s
Alta Temperatura	1350	4.545	0.995	2.92549172
Alta Temperatura	1700	5.001	0.996	3.27088137
Alta Temperatura	2100	5.461	0.997	3.62317356
Alta Temperatura	2500	5.881	0.998	3.94223993
Alta Temperatura	2900	6.269	0.998	4.23588737
Alta Temperatura	3300	6.628	0.999	4.50928112
Alta Temperatura	4000	7.210	0.999	4.94933832

Fuente: Elaboración propia

Tabla 37 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (μ m) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad.

250 (µm)	Densidad partícula	Velocidad ahogamiento	vacío ahogamiento	Velocidad de
G = 30 kg/m2 s	Kg/m3	(m/s)	(e ch)	trasporte. m/s
Alta Temperatura	1350	5.386	0.995	4.42657429
Alta Temperatura	1700	6.089	0.996	4.94918488
Alta Temperatura	2100	6.799	0.997	5.48223972
Alta Temperatura	2500	7.473	0.998	5.96502044
Alta Temperatura	2900	8.118	0.998	6.40933967
Alta Temperatura	3300	8.747	0.999	6.82301295
Alta Temperatura	4000	10.337	0.999	7.8424472
	•			

Fuente: Elaboración propia.

Tabla 38 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500 (μ m) con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad.

500 (μm) G=30 kg/m2 s	Densidad partícula Kg/m3	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte m/s
Alta Temperatura	1350	8.463	0.995	6.05526725
Alta Temperatura	1700	9.938	0.996	6.77016473
Alta Temperatura	2100	11.561	0.997	7.49934926
Alta Temperatura	2500	13.177	0.998	8.15976205
Alta Temperatura	2900	10.918	0.998	8.76756201
Alta Temperatura	3300	11.685	0.999	9.33344029
Alta Temperatura	4000	12.908	0.999	10.2442834

Fuente: Elaboración propia

Velocidad de circulacion 30 kg/m2 s

vacio ahogamiento (e ch) (100 um) - vacio ahogamiento (e ch) (250 um)

Figura 71 comparación del comportamiento del vacío de ahogamiento de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad. Fuente: Elaboración Figura propia. 70 comparación del comportamiento de la velocidad de ahogamiento de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad. Fuente: Elaboración fuente: Elaboración G=30kg/m2 s frente al cambio en su densidad.

Figura 72 Comparación del comportamiento de la velocidad de trasporte de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=30kg/m2 s frente al cambio en su densidad. Fuente: Elaboración propia.

Tabla 39 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 100 (μ m) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad.

100 um	Densidad	Velocidad	vacío	Velocidad de
G = 50 kg/m2 s	particula	anogamiento (m/s)	anogamiento (e ch)	m/s
Alta Temperatura	1350	5.361	0.993	2.92549172
Alta Temperatura	1700	5.903	0.995	3.27088137
Alta Temperatura	2100	6.441	0.996	3.62317356
Alta Temperatura	2500	6.916	0.997	3.94223993
Alta Temperatura	2900	7.400	0.998	4.23588737
Alta Temperatura	3300	7.798	0.998	4.50928112
Alta Temperatura	4000	8.500	0.998	4.94933832

Fuente: Elaboración propia.

Tabla 40 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (μ m) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad.

250 um G = 50 kg/m2 s	Densidad partícula Kg/m3	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte m/s
Alta Temperatura	1350	6.214	0.993	4.42657429
Alta Temperatura	1700	6.981	0.995	4.94918488
Alta Temperatura	2100	7.743	0.996	5.48223972
Alta Temperatura	2500	8.521	0.997	5.96502044
Alta Temperatura	2900	9.202	0.998	6.40933967
Alta Temperatura	3300	9.876	0.998	6.82301295
Alta Temperatura	4000	13.128	0.999	7.8424472

Fuente: Elaboración propia.

Tabla 41 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500 (μ m) con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad.

500 um G = 50 kg/m2 s	Densidad partícula Kg/m3	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte m/s
Alta Temperatura	1350	9.252	0.993	6.05526725
Alta Temperatura	1700	10.817	0.995	6.77016473
Alta Temperatura	2100	12.541	0.996	7.49934926
Alta Temperatura	2500	14.162	0.997	8.15976205
Alta Temperatura	2900	12.017	0.998	8.76756201
Alta Temperatura	3300	12.815	0.998	9.33344029
Alta Temperatura	4000	14.134	0.998	10.2442834

Figura 74 Comparación del comportamiento de la velocidad de ahogamiento de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=50kg/m2 s frente al cambio en su densidad. Fuente: Elaboración propia.

Tabla 42 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 100 (μ m) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad.

100 um	Densidad	Velocidad	vacío	Velocidad
G = 100 kg/m2	particula	anogamiento (m/s)	anogamiento (e ch)	m/s
Alta Temperatura	1350	6.689	0.989	2.92549172
Alta Temperatura	1700	7.343	0.992	3.27088137
Alta Temperatura	2100	8.043	0.994	3.62317356
Alta Temperatura	2500	8.605	0.995	3.94223993
Alta Temperatura	2900	9.118	0.996	4.23588737
Alta Temperatura	3300	9.118	0.996	4.50928112
Alta Temperatura	4000	10.465	0.997	4.94933832
F F F F F F F F F F				

Fuente: Elaboración propia.

Tabla 43 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 250 (μ m) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad.

250 um G= 100 kg/m2	Densidad partícula Kg/m3	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte m/s
Alta Temperatura	1350	7.573	0.989	4.42657429
Alta Temperatura	1700	8.413	0.992	4.94918488
Alta Temperatura	2100	9.371	0.994	5.48223972
Alta Temperatura	2500	10.264	0.995	5.96502044
Alta Temperatura	2900	10.989	0.996	6.40933967
Alta Temperatura	3300	11.744	0.997	6.82301295
Alta Temperatura	4000	13.128	0.998	7.8424472

Fuente: Elaboración propia.

Tabla 44 Comportamiento de la velocidad y vacío de ahogamiento de una partícula de 500 (μ m) con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad.

500 um G= 100 kg/m2	Densidad partícula Kg/m3	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte m/s
Alta Temperatura	1350	10.592	0.989	6.05526725
Alta Temperatura	1700	12.252	0.992	6.77016473
Alta Temperatura	2100	14.129	0.994	7.49934926
Alta Temperatura	2500	15.902	0.995	8.15976205
Alta Temperatura	2900	13.872	0.996	8.76756201
Alta Temperatura	3300	14.672	0.997	9.33344029
Alta Temperatura	4000	16.207	0.998	10.2442834

Figura 75 Comparación del comportamiento de la velocidad de ahogamiento de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad .Fuente: Elaboración propia.

Figura 76 Comparación del comportamiento del vacio de ahogamiento de una partícula de 100 (μ m) ,250(μ m) ,500 (μ m) respectivamente con una velocidad de circulación G=100kg/m2 s frente al cambio en su densidad .Fuente: Elaboración propia.

Figura 77 Comparación del comportamiento de la velocidad de ahogamiento de una partícula de 100 µm, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su densidad. Fuente: Elaboración propia.

Figura 78 Comparación del comportamiento del vacío de ahogamiento de una partícula de 100 µm, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su densidad. Fuente: Elaboración propia.

Figura 79 Comparación del comportamiento de la velocidad de ahogamiento de una partícula de 250 µm, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su densidad. Fuente: Elaboración propia.

Figura 80 Comparación del com portamiento del vacío de ahogamiento de una partícula de 250 µm, utilizando distintas velocidades de circulación (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su densidad. Fuente: Elaboración propia.

Figura 81 Comparación del comportamiento de la velocidad de ahogamiento de una partícula de 500 µm, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio de su densidad. Fuente: Elaboración propia.

Figura 82 Comparación del comportamiento del vacío de ahogamiento de una partícula de 500 µm, utilizando distintas velocidades de circulación (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su densidad. Fuente: Elaboración propia.

Tabla 45 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350 kg/m3 de densidad con una velocidad de circulación G = 30kg/m2 s) frente al cambio en su tamaño.

1350 kg / m3 Gs = 30 kg/m2 s	Diámetro partícula (um)	Velocidad ahogamiento (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte
Alta Temperatura	100	4.544	0.995	2.92549172
Alta Temperatura	200	5.023	0.995	4.00188341
Alta Temperatura	300	5.835	0.995	4.80681802
Alta Temperatura	400	6.994	0.995	5.47431759
Alta Temperatura	450	7.678	0.995	5.77365633
Alta Temperatura	500	8.452	0.995	6.05526725

Fuente: Elaboración propia.

Tabla 46 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500 kg/m3 de densidad con una velocidad de circulación G = 30 kg/m2 s) frente al cambio en su tamaño.

2500 kg / m3 - 30 kg/m2	Diámet ro partícu la (um)	Velocidad ahogamient o (m/s)	vacío ahogamiento (e ch)	Velocidad de trasporte
Alta Temperatura	100	5.888	0.998	3.94223993
Alta Temperatura	200	6.781	0.998	5.39272917
Alta Temperatura	300	8.312	0.998	6.47741704
Alta Temperatura	400	10.434	0.998	7.37690462
Alta Temperatura	450	11.730	0.998	7.78027788
Alta Temperatura	500	13.165	0.998	8.15976205

Tabla 47 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000 kg/m3 de densidad con una velocidad de circulación G = 30 kg/m2 s) frente al cambio en su tamaño.

4000 kg /m3 – 30 kg/m2	Diámetro de la partícula (um)	Velocidad de ahogamiento (m/s)	Vacío de ahogamiento (e ch)	Velocidad de trasporte
Alta	100	7.244	0.999	4.94933832
Temperatura				
Alta	200	8.687	0.999	6.77037462
Temperatura				
Alta	300	11.116	0.999	8.13216064
Temperatura				
Alta	400	14.479	0.999	9.26143447
Temperatura				
Alta	450	12.324	0.999	9.76785487
Temperatura				
Alta Temperatur	:a 500	12.943	0.999	10.2442834

Figura 83 Comparación del comportamiento de la velocidad de ahogamiento de una partícula con diferentes densidades (1350, 2500,4000 kg/m3) evaluada con tamaños diferentes y con una velocidad de circulación de 30 kg/m2 s. Fuente: Elaboración propia.

Figura 84 Comparación del comportamiento de vacío de ahogamiento de una partícula con diferentes densidades (1350, 2500,4000 kg/m3) evaluada con tamaños diferentes. Fuente: Elaboración propia.

Figura 85 Comparación del comportamiento de la velocidad de trasporte de una partícula con diferentes densidades (1350, 2500,4000 kg/m3) evaluada con tamaños diferentes. Fuente: Elaboración propia.

Tabla 48 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350 kg/m3 de densidad con una velocidad de circulación G = 50 kg/m2 s) frente al cambio en su tamaño.

1350 kg/m3	Diámetro	Velocidad abogamionto	vacío abogamionto	Velocidad de
Gs = 50 kg/m2	(um)	(m/s)	(e ch)	m/s
Alta Temperatura	100	5.351	0.993	2.92549172
Alta Temperatura	200	5.831	0.993	4.00188341
Alta Temperatura	300	6.650	0.993	4.80681802
Alta Temperatura	400	7.787	0.993	5.47431759
Alta Temperatura	450	8.482	0.993	5.77365633
Alta Temperatura	500	9.273	0.993	6.05526725

Fuente: Elaboración propia.

Tabla 49 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500 kg/m3 de densidad con una velocidad de circulación G = 50 kg/m2 s) frente al cambio en su tamaño.

2500 kg/m3	Diámetro partícula	Velocidad abogamiento	vacío ahogamiento	Velocidad de trasporte
Gs = 50 kg/m2 s	(um)	(m/s)	(e ch)	ue trasporte
Alta Temperatura	100	6.919	0.997	3.94223993
Alta Temperatura	200	7.826	0.997	5.39272917
Alta Temperatura	300	9.345	0.997	6.47741704
Alta Temperatura	400	11.437	0.997	7.37690462
Alta Temperatura	450	12.727	0.997	7.78027788
Alta Temperatura	500	14.203	0.997	8.15976205
Tabla 50 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000 kg/m3 de densidad con una velocidad de circulación G = 50kg/m2 s) frente al cambio en su tamaño.

4000 kg/m3	Diámetro partícula	Velocidad ahogamiento	vacío ahogamiento	Velocidad de trasporte
Gs = 50 kg/m2	(um)	(m/s)	(e ch)	
Alta Temperatura	100	8.458	0.998	4.94933832
Alta Temperatura	200	9.893	0.998	6.77037462
Alta Temperatura	300	12.374	0.998	8.13216064
Alta Temperatura	400	15.755	0.998	9.26143447
Alta Temperatura	450	13.575	0.998	9.76785487
Alta Temperatura	500	14.192	0.998	10.2442834

Fuente: Elaboración propia

Figura 87 Comparación del comportamiento del vacío de ahogamiento de una partícula con diferentes densidades (1350, 2500,4000 kg/m3) evaluada con tamaños diferentes y con una velocidad de circulación de 50 kg/m2 s. Fuente: Elaboración propia

Tabla 51 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (1350 kg/m3 de densidad con una velocidad de circulación G = 100 kg/m2 s) frente al cambio en su tamaño.

1350 kg/m3 Gs = 100 kg/m2 s	Diámetro partícula	Velocidad ahogamiento	vacío ahogamiento	Velocidad de trasporte
G5 100 kg/m2 5	(um)	(m/s)	(e ch)	m/s
Alta Temperatura	100	6.720	0.989	2.92549172
Alta Temperatura	200	7.174	0.989	4.00188341
Alta Temperatura	300	7.968	0.989	4.80681802
Alta Temperatura	400	9.159	0.989	5.47431759
Alta Temperatura	450	9.818	0.989	5.77365633
Alta Temperatura	500	10.563	0.989	6.05526725

Fuente: Elaboración propia.

Tabla 52 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (2500 kg/m3 de densidad con una velocidad de circulación G = 100 kg/m2 s) frente al cambio en su tamaño.

2500 kg/m3	Diámetro	Velocidad	vacío abogamiento	Velocidad
Gs = 100 kg/m2 s	(um)	(m/s)	(e ch)	ut trasporte
Alta Temperatura	100	8.627	0.995	3.94223993
Alta Temperatura	200	9.512	0.995	5.39272917
Alta Temperatura	300	11.022	0.995	6.47741704
Alta Temperatura	400	13.073	0.995	7.37690462
Alta Temperatura	450	14.405	0.995	7.78027788
Alta Temperatura	500	15.825	0.995	8.15976205

Fuente: Elaboración propia.

Tabla 53 Comportamiento de la velocidad y vacío de ahogamiento de una partícula (4000 kg/m3 de densidad con una velocidad de circulación G = 100 kg/m2 s) frente al cambio en su tamaño.

4000 kg/m3	Diámetro partícula	Velocidad ahogamiento	vacío ahogamiento	Velocidad de trasporte
Gs =100 kg/m2 s	(um)	(m/s)	(e ch)	m/s
Alta Temperatura	100	10.545	0.998	4.94933832
Alta Temperatura	200	11.942	0.998	6.77037462
Alta Temperatura	300	14.297	0.997	8.13216064
Alta Temperatura	400	17.729	0.997	9.26143447
Alta Temperatura	450	15.548	0.997	9.76785487
Alta Temperatura		16.229	0.997	10.2442834

Fuente: Elaboración propia.

Figura 88 Comparación del comportamiento de la velocidad de ahogamiento de una partícula con diferentes densidades (1350, 2500,4000 kg/m3) evaluada con tamaños diferentes y con una velocidad de circulación de 100 kg/m2 s. Fuente: Elaboración propia.

velocidad de circulacion de 100 kg/m3

Figura 90 Comparación del comportamiento de la velocidad de ahogamiento de una partícula con una densidad de 1350 kg/m3, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su tamaño. Fuente: Elaboración propia

Figura 91 Comparación del comportamiento del vacío de ahogamiento de una partícula con una densidad de 1350 kg/m3, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su tamaño. Fuente: Elaboración propia.

Figura 92 Comparación del comportamiento de la velocidad de ahogamiento de una partícula con una densidad de 2500 kg/m3, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su tamaño. Fuente: Elaboración propia.

Figura 94 Comparación del comportamiento del vacío de ahogamiento de una partícula con una densidad de 4000 kg/m3, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100kg/m2 s), frente al cambio en su tamaño. Fuente: elaboración propia

Figura 95 Comparación del comportamiento del vacío de ahogamiento de una partícula con una densidad de 4000 kg/m3, utilizando velocidades de circulación diferentes (30kg/m2 s, 50kg/m2 s, 100 kg/m2 s), frente al cambio en su tamaño. Fuente: Elaboración propia.

La transición de lecho cautivo a lecho rápido está marcada por la velocidad de ahogamiento, en la Figura 70 para una velocidad de circulación de 30 kg/m2 s se puede observar que la velocidad de ahogamiento aumenta por efecto del incremento de la densidad y tamaño de la partícula, en las partículas grandes (500 um) se puede apreciar que la velocidad llega a un punto en el cual disminuye esto se produce por un cambio de régimen de flujo , el cual fue mencionado en la sección anterior, el fenómeno anteriormente descrito se repite tanto para la velocidad de circulación de 50kg/m2 s y para la de 100 kg/m2 s, la única diferencia que podemos encontrar entre estas (Ver fig. 70,73,75) es que la velocidad de ahogamiento es cada vez mayor, esto quiere decir que mientras mayor sea la velocidad de circulación mayor es la velocidad de ahogamiento.

En la Figura 71 se muestra que el aumento del tamaño de la partícula no causa un cambio significativo en el vacío de ahogamiento, esto puede observarse también en la Figura 84, 87,89 esto sucede tanto para la velocidad de circulación de 30,50 y 100 kg/m2 s. Al comparar la fig. 71, 74,76 se puede notar que el aumento de la velocidad de circulación hace que el vacío de ahogamiento disminuya para todas las partículas, esto también puede apreciarse en la fig.78, 80 y 82.

Al observar la Figura 77, 79 y 81 se puede reafirmar lo dicho anteriormente, en resumen el aumento de la velocidad de ahogamiento se debe a la velocidad de circulación, el tamaño y el diámetro de la partícula, tener en cuenta que para partículas las cuales tienen gran tamaño (450 μ m -500 μ m) y densidad mayor a 2900 kg/m3 la velocidad disminuye hasta cierto punto y luego vuelve a aumentar pero pasa de un régimen laminar a un régimen semiturbulento.

La velocidad de trasporte se incrementa con respecto al aumento de la densidad y el diámetro de la partícula (ver Figura 85).

5.3 Análisis de la estructura de lecho rápido

En esta sección se analizará la distribución axial de vacío del lecho teniendo en cuenta los datos obtenidos en el análisis anterior. Se tendrá en cuanta dos limitaciones, la primera de ellas es que la velocidad superficial del gas de alimentación de aire secundario no sea mayor a 8 m/s, esto se puede determinar con la velocidad de ahogamiento calculado previamente, la segunda limitación es que se evaluara en un rango de densidad de 1350 a 2500 kg/m3, debido a que la arena la cual se utiliza para este tipo de lechos tiene unas densidades entre esos rangos.

Densidad partícula Kg/m3	Velocidad ahogamiento (m/s) (100 um)	Velocidad ahogamiento (m/s) (250 um)	Velocidad ahogamiento (m/s) (500 um)
1350	4.545	5.386	8.463
1700	5.001	6.089	9.938
2100	5.461	6.799	11.561
2500	5.881	7.473	13.177
2900	6.269	8.118	10.918
3300	6.628	8.747	11.685
4000	7.210	10.337	12.908

Tabla 54 Velocidad de ahogamiento de una partícula evaluada con tres tamaños diferentes la cual tiene una velocidad de circulación de 30 kg/m2 s.

Fuente: Elaboración propia

Los valores resaltados con color rojo son los que se utilizaran para el análisis Además se necesita el vacío de ahogamiento mostrado a continuación.

Tabla 55	Velocidad	de aho	gamiento	de un	a partícula	evaluada	con	tres	tamaños
diferentes	la cual tie	ne una	velocidad	de cire	culación de	30 kg/m2	s.		

Densidad	vacío	vacío	vacío
partícula	ahogamiento (e ch) (100 um)	ahogamiento (e ch) (250 um)	ahogamiento (e ch) (500 um)
Kg/m3			
1350	0.995	0.995	0.995
1700	0.996	0.996	0.996
2500	0.998	0.998	0.998

Fuente: Elaboración propia.

5.3.1 Análisis de la estructura del lecho con una velocidad de circulación de 30 kg/m2 s.

5.3.1.1 Análisis de una partícula con una densidad de1350 kg/m3 y un tamaño de 100 um

Figura 96 Distribución de vacío axial de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 97 Densidad de suspensión dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 98 Velocidad de deslizamiento dentro de un horno de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 99 Velocidad de la partícula en un lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 100 Distribución de vacío en los racimos en un lecho fluidizado circulante. Fuente: Elaboración propia.

5.3.1.2 Análisis de una partícula con una densidad de 2500kg/m3 y un tamaño de 100 um.

Figura 101 Distribución de vacío axial de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 102 Densidad de suspensión dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

Figura 103 Velocidad de deslizamiento dentro de un horno de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 104 Velocidad de la partícula en un lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 105 Distribución de vacío en los racimos en un lecho fluidizado circulante. Fuente: Elaboración propia

5.3.1.3 Discusión

Después de realizar el segundo análisis se obtuvo que al aumentar la densidad y la velocidad de alimentación de aire primario con respecto al primer análisis hubo una disminución de densidad de suspensión debido al aumento de vacío axial del lecho.

La velocidad a media de la partícula en el primer análisis fue de 2.34 m/s mientras que para el segundo este aumento hasta 5.56 m/s es decir hubo un incremento en la velocidad de la partícula debido a la disminución de la densidad de suspensión.

5.3.2 Análisis de la estructura del lecho con una velocidad de circulación de 30 kg/m2 s.

5.3.2.1 Análisis de una partícula con una densidad de1350 kg/m3 y un tamaño de 250 um.

Figura 106 Distribución de vacío axial de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 107 Densidad de suspensión dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

Figura 108 Velocidad de deslizamiento dentro de un horno de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 109 Velocidad de la partícula en un lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 110 Distribución de vacío en los racimos en un lecho fluidizado circulante. Fuente: Elaboración propia.

5.3.2.2 Discusión

En este tercer análisis la velocidad de inyección de aire primario fue de 6m/s debido a esto y a la baja densidad de la partícula la densidad de suspensión con respecto al primer análisis es casi la misma (6.84 kg/m3 para el primer análisis y 6.87 kg/m3 para el tercer análisis). Si vemos la Figura 107 podemos observar que la densidad de suspensión en la parte inferior del horno en comparación al de la Figura 97 es mucho menor.

La velocidad de la partícula en este caso es de 2.32 m/s casi igual a la del primer análisis (2.34m/s), esto se debe a la densidad de suspensión, por lo tanto el vacío en los aglomerados es igual al del primer análisis y tiene un valor de 0.92.

5.3.3 Análisis de la estructura del lecho con una velocidad de circulación de 50 kg/m2 s.

5.3.3.1 Análisis de una partícula con una densidad de1350 kg/m3 y un tamaño de 100 um.

Figura 111 Distribución de vacío axial de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia.

Figura 112 Densidad de suspensión dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

Figura 113 Velocidad de deslizamiento dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

Figura 114 Velocidad de la partícula dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

Figura 115 Vacío en los racimos dentro de una caldera de lecho fluidizado circulante. Fuente: Elaboración propia

En este análisis se puede observar que hubo un aumento en la densidad de suspensión de solidos debido al aumento de la velocidad de gas producto del incremento de la velocidad de circulación sólida.

La fracción de vacío en los racimos ha disminuido a 0.915 y la velocidad promedio de la partícula aumento a 2.76 m/s con respecto a las velocidades obtenidas en el análisis número 1 y 3 (2.34 kg/m3 ,2.32 kg/m3)

5.4 Análisis de trasferencia de calor

5.4.1 Análisis del tiempo en el que la partícula llega a calentarse hasta un 99% de la temperatura del lecho.

Figura 116 Tiempo que demora el papel en alcanzar la temperatura del lecho al 99%.

Figura 117 Tiempo que demora el PET en alcanzar la temperatura del lecho al 99%.

En las figuras anteriores podemos observar que el tiempo de calentamiento de la partícula para que llegue a tener un 99% de la temperatura del lecho es de aproximadamente para una partícula de 5000 um 3.55 s y 39.42 s para el papel y el PET respectivamente, esto se debe principalmente a su diferencia de densidades ($\rho_{papel} = 89 \ kg/m3$; $\rho_{PET} = 1380 \ Kg/m3$).

5.4.2 Análisis del coeficiente global de trasferencia de calor hacia las paredes.

En esta sección de la investigación se analizarán los factores los cuales hacen que el coeficiente de trasferencia de calor disminuya o aumente, los datos a utilizar se mostraron en la sección de **"Consideraciones para el análisis de transferencia de calor"**, la cual puede encontrarse en la página 159. Adicionalmente se usará algunos datos obtenidos de la sección de **"Análisis de la estructura de lecho rápido"**, estos son mostrados a continuación.

Tabla 56 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una velocidad de circulación solida Gs= 30kg/m2 s.

Densidad partícula (kg/m3)	1350	2500	1350
velocidad superficial del gas (m/s)	5	6	6
diámetro de la partícula (um)	100	100	250
vacío axial	0,994	0,997	0,994
densidad de suspensión (kg/m3)	6,847	5,378	6,879
Velocidad de la partícula (m/s)	2,340	0,434	3,67
densidad en la parte inferior (kg/m3)	23 779,99	20 187,14	10688,45
vacío en los racimos (m/s)	0,929	0,955	0,928

Fuente: Elaboración propia.

Tabla 57 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una velocidad de circulación solida Gs= 50 kg/m2 s.

Densidad partícula (kg/m3)	1350	1350
velocidad superficial del gas (m/s)	6	7
diámetro de la partícula (um)	100	250
vacío axial	0.99	0.99
densidad de suspensión (kg/m3)	9.62	9.63
velocidad de particula (m/s)	2,76	2,75
densidad en la parte inferior (kg/m3)	10 5 0,53	5 956,20
vacío en los racimos (m/s)	0,91	0,91
Fuente: Elaboración propia.		

Tabla 58 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una velocidad de circulación solida Gs= 50 kg/m2 s.

Densidad partícula (kg/m3)	1350	1350
velocidad superficial del gas (m/s)	7	8
diámetro de la partícula (um)	100	250
vacío axial	0.99	0.99
densidad de suspensión (kg/m3)	15.28	15.28
velocidad de partícula (m/s)	3.45	3.44
densidad en la parte inferior (kg/m3)	5 787,82	3 775,72
vacío en los racimos (m/s)	0,89	0,89

Fuente: Elaboración propia.

Después de hacer el análisis con los valores de las tablas 55, 56 y 57 obtenemos los siguientes resultados para cada caso.

Tabla 59 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 56 Datos obtenidos del análisis de la estructura del lecho rápido utilizando una velocidad de circulación solida Gs= 30kg/m2 s. con una velocidad de circulación solida de 30 kg/m3

coeficiente global de trasferencia de calor (h) KW/m2 K	0.267	0.254	0.191
flujo total de trasferencia (kW/m2)	130	124	4 93.56

Fuente: Elaboración propia.

Tabla 60 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 57) con una velocidad de circulación solida de 50 kg7m3

coeficiente global de trasferencia de calor (h) KW/m2 K 0.	27 0.19
flujo total de trasferencia (kw/m2) 129.	89 93.83

Fuente: Elaboración propia.

Tabla 61 Flujo total de trasferencia de calor hacia las paredes (datos Tabla 56) con una velocidad de circulación solida de 50 kg7m3

coeficiente global de trasferencia de calor (h) KW/m2	2 K 0,19	0,19
flujo total de trasferencia (kw/m2)	128.91	94,38

Fuente: Elaboración propia.

De la Tabla 56, 57 y 58 se deduce que el coeficiente de trasferencia de calor disminuye debido a varios factores como por ejemplo la densidad de suspensión y la fracción de vacío en los racimos. El aumento en la densidad de suspensión hace que la fracción de vacíos en los racimos disminuya y esto hace que se genere un cambio en el coeficiente global de trasferencia de calor hacia las paredes. Si comparamos una partícula con la misma densidad, pero con distinto tamaño (velocidad de circulación constante) y aun aumento en la velocidad superficial del gas debido al incremento de la velocidad de ahogamiento obtenemos que el coeficiente de trasferencia de calor hacia las paredes de trasferencia de calor hacia las paredes.

Al comparar las tablas 59, 60 y 61 podemos ver que el coeficiente de trasferencia de calor para partículas pequeñas es mayor al de las partículas grandes, para las partículas pequeñas el coeficiente de trasferencia de calor disminuye mientras se aumenta la velocidad de circulación, mientras que para partículas más grandes sucede lo contrario.

5.5 Análisis de la combustión

El análisis último de los residuos se presenta a continuación, este análisis está basado en una mezcla de distintos residuos sólidos (Residuos sólidos municipales MSM) los cuales están compuestos por: Residuos de comida, residuos de frutas, madera, papel, PVC y textiles.

Tabla 62	Composición	de los	MSW	en	base	seca.
----------	-------------	--------	-----	----	------	-------

						Contenido		
						de		
		Análisis	ultimo	wt%			Ceniza	Х
						humedad		
						(w.b)		
	С	Н	0	Ν	S	(Mf)	Ash	CaO
MSW	48.08	6.48	36.22	1.82	0.74	0	6.66	0

Fuente: Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. [13]

Tabla 63 Aire necesario para la combustión con un exceso de 20% para los MSW.

Ca/s	0	Kg/Kg
Sorbente requerido	0.047002033	Kg/Kg
HHV	19078.56013	KJ/Kg
LHV	17654.96893	KJ/Kg
Aire teórico	6.2623235	Kg/Kg
Exceso de aire	7.5147882	Kg/Kg
Aire total	7.612480447	Kg/Kg
Fuente: Elaboración propia.		

Tabla 64 Emisiones producto de la combustión de los MSW.

N2	5.793314732	Kg/Kg
H2O	0.684257592	Kg/Kg
CO2	1.780324103	Kg/Kg
SO2	0.00148	Kg/Kg
02	0.338395578	Kg/Kg
Peso gases (Wc)	8.597772005	Kg/Kg
Peso sorbente agotado por unidad	0.046337819	Kg/Kg

Fuente: Elaboración propia.

de combustible quemado

Tabla 65Masa molecular de los gases de combustión generados por losMSW

Masa molecular N2	19.58271406	Kg/Kmol
Masa molecular H2O	2.312945419	Kg/Kmol
Masa molecular CO2	6.017898121	Kg/Kmol
Masa molecular SO2	0.005002735	Kg/Kmol
Masa molecular O2	1.143853588	Kg/Kmol

Fuente: Elaboración propia.

Tabla 66 Densidad del aire y los gases de combustión de los MSW

Masa molecular total	29.06241393	Kg/Kmol
Densidad de los G C	0.315343439	Kg/m3
Densidad del aire	0.841548049	Kg/m3

Fuente: Elaboración propia.

 Tabla 67
 Temperatura mínima de operación para la calcinación del sorbente.

Temperatura de operación	773	(°C)
Temperatura	1046.15	(K)
Presión equilibrio	0.13802832	Bar
Presión parcial	0.13673949	Bar

Fuente: Elaboración propia.

La combustión en los lechos fluidizados circulantes tiene un exceso de aire de 20% debido a que la temperatura del lecho es controlada por paredes de agua, esto hace que la eficiencia de combustión sea alta. Para un captura del 90% de azufre presente en el combustible se requiere 0,047 kg de sorbente por cada kilogramo de combustible, tiene un valor de calentamiento superior e inferior de 19 078,56 KJ/Kg y 17 654 KJ/Kg respectivamente. El aire necesario para la combustión sin captura de azufre es de 6.25 kg de aire por kg de combustible en caso contrario este valor aumenta a 7,61 kg de aire por cada kilogramo de combustible.

Por cada kg de combustible quemado se agota 0,046 kg de sorbente, los gases de combustión tienen una densidad de 0,315 kg/m³ y la temperatura mínima de operación del lecho en el cual comienza el proceso de calcinación de la caliza para este caso es de 773 °C, esto quiere decir que si el lecho trabaja por debajo esas temperaturas no es posible la captura del azufre.

		Aná	lisis w	t%		Contenido de	Ceniza	X
						humedad		
	С	Η	0	Ν	S	(Mf) %	Ash	CaO
papel 4	1.4 5.5	5 41.9	0.3 0.2	2		6	4.7	0

Tabla 68 Composición del papel en base húmeda.

Fuente: Influencia de la separación de residuos sólidos urbanos para Reciclaje en el proceso de Incineración con Generación de Energía. [14]

Tabla 69Aire necesario para la combustión del papel y el cartón con un excesode aire de 20% para el papel y el cartón.

Sorbente requerido	0.015879065	Kg/Kg
HHV	14381.37563	KJ/Kg
LHV	13026.62063	KJ/Kg
Aire teórico	4.8765925	Kg/Kg
Exceso de aire	5.851911	Kg/Kg
Aire total	5.927985843	Kg/Kg
Fuente: Elaboración propia		

N2	4.500193604	Kg/Kg
H2O	0.632211784	Kg/Kg
CO2	1.522198143	Kg/Kg
SO2	0.0004	Kg/Kg
02	0.267286233	Kg/Kg
Peso gases (Wc)	6.922289763	Kg/Kg
Peso sorbente agotado por unidad de combustible quemado.	0.015755615	Kg/Kg

 Tabla 70
 Emisiones producto de la combustión del papel.

Fuente: Elaboración propia

Masa molecular N2	18.85417999	Kg/Kmol
Masa molecular H2O	2.648738214	Kg/Kmol
Masa molecular CO2	6.37745846	Kg/Kmol
Masa molecular SO2	0.001675855	Kg/Kmol
Masa molecular O2	1.119832431	Kg/Kmol
Fuente: Elaboración propia.		

 Tabla 71
 Masa molecular de los gases de combustión.

Tabla 72 Temperatura mínima de operación para la calcinación del sorbente.

Τ	776	°C
Τ	1049.15	K
Presión equilibrio	0.145435372	Bar
Presión parcial	0.144909468	Bar

Fuente: Elaboración propia.

Para la captura de azufre presente en el papel se requiere 0.01587 kg de sorbente por cada kg de papel quemado. Tiene un valor de calentamiento superior e inferior de 14 381,38 KJ/kg y 13 026,61 KJ/kg, el aire total que se necesita para su combustión con captura de azufre es de 5,92 kg de aire por cada kg de combustible. En este caso la temperatura mínima de operación para una captura de azufre del 90% es de aproximadamente 776 °C.

	Análi	sis w	t%			Contenido	Ceniza	Χ
						de humedad		
	С	Η	0	Ν	S	(Mf)	Ash	CaO
Residuos							de	
	14.4 1.	9 11.3	0.8 0.1	70 1.5	0 com	ida		

Tabla 73 Composición de los residuos de comida en base humeda.

Fuente: Influencia de la separación de residuos sólidos urbanos para Reciclaje en el proceso de Incineración con Generación de Energía.

Debido a la alta humedad este residuo tiene un bajo poder de calentamiento superior (5573, KJ/Kg), en este caso el aire total para su combustión es de 1,83 kg/kg de combustible. A continuación se evaluara en base seca para poder observar.

Tabla 74	Composición	de los	residuos	de	comida	en	base	húmeda.
----------	-------------	--------	----------	----	--------	----	------	---------

		Análisis wt%			(Contenio	lo	Ceniza	Χ
		de humedad (w.b) *							
	С	Η	0	Ν	S	(Mf)		Ash	CaO
Residuos	48	6.4	37.6	2.6	0.4	0	5	0 comi	da

Fuente: Influencia de la separación de residuos sólidos urbanos para Reciclaje en el proceso de Incineración con Generación de Energía.

En este caso se necesita 0,032 kg de sorbente por cada kilogramo de residuos de comida, tiene un poder de calentamiento superior de 18 687,27 KJ/Kg y la temperatura mínima de operación para la calcinación de la caliza es de 774 °C.

VI. CONCLUSIONES.

Los residuos sólidos generados por la ciudad de Chiclayo en mayor parte están constituido por material orgánico 50.65%, el material reciclable que se puede utilizar para la combustión (plásticos, papel, cartón) se encuentra en un 13.8%, también tenemos a las telas las cuales conforman un 2.28% y el 33.27% restante está conformado por materiales peligrosos (pilas, baterías, productos farmacéuticos, etc) los cuales tienen que ser tratados con cuidado y materiales inertes los cuales no pueden ser utilizados en el proceso de combustión (vidrio, pilas, focos, fluorescentes, aluminio. hojalata).

El análisis de la combustión de los residuos sólidos urbanos (RSU) utilizando combustión en lecho fluidizado nos muestra que se puede obtener un Nivel de emisión de SO_x de 0.039 g/MJ utilizando piedra caliza para la captura del mismo, esta tiene una eficiencia de captura de azufre del 90% debido a la relativamente baja temperatura de operación del lecho (800-850°C). La velocidad de alimentación de la caliza que se necesita por cada t/h de residuos sólidos es aproximadamente 0.97 Kg/h, en este caso la caliza que se utilizó para el análisis tenía en su composición 98,4% de C_aCO_3 , se hace énfasis a este dato debido a que mientras más disminuya mayor será la cantidad de piedra caliza requería para obtener el mismo nivel de emisión mencionado anteriormente. En lo que respecta al óxido nítrico este podría convertirse en NO_X térmico pero esta reacción se da para temperaturas mayores a1540°C.

El lecho debe tener una temperatura mínima de operación de 773°C para que se pueda calcinar la piedra caliza, si el lecho funciona por debajo de esta temperatura no será posible la captura de azufre con la piedra caliza .La temperatura optima de trabajo del lecho para la combustión de los residuos esta de entre 800-850°C para así mantener un alto coeficiente de trasferencia de calor hacia las paredes, otros factores que hacen que este coeficiente aumente o disminuya es el la fracción de vacío en los racimos el cual depende de la densidad de suspensión de las partículas, después de hacer el análisis de trasferencia de calor utilizando una temperatura del lecho de 850°C con una velocidad circulación solida de 30 kg/m2 s, analizando una partícula de 100 um

con una densidad de 1350 kg/m³ la cual es fluidizada a una velocidad de 5m/s se obtuvo como resultado una densidad de suspensión promedia de solidos 6.85 kg/m3, una fracción de vacío en los racimos o aglomerados de 0.929, la velocidad media de la partícula fue de 2.34 m/s y un coeficiente global de trasferencia de calor hacia las paredes de 0.267 KW/m2 K. Luego se volvió a realizar el mismo análisis pero esta vez aumentando el tamaño de la partícula, esto hizo que la velocidad de ahogamiento aumentara y por ende la velocidad de fluidización, para este caso se toma una velocidad de 6 m/s, los datos obtenidos fueron una densidad de suspensión de 6.87 kg/m3 con una fracción de vacío en los racimos de 0.928, la velocidad promedio de la partícula fue de 2.32 m/s y el coeficiente de trasferencia de calor obtuvo un valor de 0.191 KW/m2 K, si comparamos los dos coeficientes de trasferencia de calor tenemos una disminución significativa y esto es debido al aumento del tamaño de la partícula a fluidizar.

Según los análisis realizados para diferentes velocidades de circulación (30, 50,100 kg/m2 s) el aumento en la velocidad de circulación sólida para partículas grandes hace que el coeficiente de trasferencia de calor aumente, mientras que para partículas pequeñas sucede lo contrario. Los resultados que se obtuvieron para una partícula de 100 um utilizando las velocidades de circulación previamente mencionadas son 0.267 KW/m2 K, 0.265 KW/m2 K y 0.263 KW/m2 K respectivamente, mientras que para la partícula con diámetro de 250 um se obtuvo 0.191 KW/m2 K ,0.1914 KW/m2 K y 0.1926.

Al observar los comportamientos analizados anteriormente se concluye que es preferible trabajar con velocidades de circulación bajas para así mantener una densidad de suspensión mayor en la parte inferior del lecho y el otro motivo seria para trabajar con velocidades de fluidización más bajas , en el caso de que se trabaje con una partícula de 100 um se tendría que usar una velocidad de 5m/s mientras que para la partícula de 250 um se utilizaría una velocidad de 6m/s , tener en cuenta que ambas partículas tienen una densidad de 1350 kg/m3.

VII. RECOMENDACIONES.

Se recomienda un proceso de peletizado para los diferentes residuos sólidos, pueden estar conformados de uno o varios residuos, así podemos tener uniformidad en el producto que se va a utilizar en la combustión.

Se deben hacer pruebas experimentales de dichos pelex para determinar el factor de frecuencia de colisiones y la energía de activación, con los cuales podemos hallar la constante de velocidad cinética de una reacción química con respecto a la temperatura mediante la ecuación de Arrhenius.

BIBLIOGRAFÍA

- [1] B. M. V. Manuel, *Analisis hidrodinamico de un lecho fluidizado*, Madrid, 2007.
- [2] Z. Vue, *Proceedings of the 20th International Conference on Fluidized Bed Combustion*, China: Springer, 2009.
- [3] S. Oka, Fluidized Bed Combustion, Belgrado: Marcel Deeker, 2003.
- [4] P. Busu, Combustion and Gasification in Fluidized Beds, Halifax, Nova Scotia: CRC Press, 2006.
- [5] P. Buzu, Circulating Fluidized Bed Boilers, Design, Operation and Maintenance, Halifax: Springer, 2015.
- [6] J. Grace, A. Avidan y T. Knowlton, Circulating Fluidized Beds, USA: Chapman & Hall, 1997.
- [7] M. Alvarez y E. Antony, Pressurized Fluidized Bed Combustion, UK: Springer, 1995.
- [8] C.Ciencia, «conceptodefinicion,» 11 JULIO 2015. [En línea]. Available: http://conceptodefinicion.de/combustion/.
- [9] S. v. L. a. J.Koppejan, The Handbook of biomass Combustion y Co-Firing, London: Earthscan, 2008.
- [10] I.Flores, Ahorro de energía mediante la optimización del control de la combustión y mejora de la eficiencia en la caldera de lecho fluidizado circulante de la empresa Trupal S.A., Chimbote, 2014.
- [11] E. R. f. M. S. Waste, Waste, Energy Recovery from Municipal Solid, Taylor & Francis Group, London, UK, 2016.
- [12] W. Bank, Wasted Generation, 2012.
- [13] Z. Y. Shiwen Fang, *Thermogravimetric analysis of the co-pyrolysis of paper sludge*, China: EISEVIER, 2015.
- [14] C. L. d. S. José A. Poletto, Influencia de la Separación de Residuos Sólidos Urbanos para Reciclaje en el Proceso de Incineración con Generación de Energía, Brasil.
- [15] B. M. V. Manuel, Estudio hidrodinamico de un lecho fluidizado, Madrid, 2007.

ANEXOS

Memoria de cálculo de la parte hidrodinámica.

Calculo de Regimenes de Fluidizacion

	Alta temperatura	Baja temperatura		
Temperatura del lecho <mark>(°c)</mark>	825	27		
Densidad del gas <mark>(Kg(m3)</mark>	0.317	1.16		
Viscocidad del gas (Pa*s)	4.50E-05	1.84E-05		
Densidad de la particula(Kg/m3)	700			
Tamaño y tipo de particula(μm)	madera	300		
Largo del lecho (m)	0.2	.03		
Ancho del lecho (m)	0.203			
Perimetro del lecho (m)	0.8	312		

calculo de densidades							
DATO	cantidad	unidad					
Densidad de la particula	0.7	(g/cm3)					
Densidad (ρp- ρg)a 825 °c	0.699683	(g/cm3)					
Densidad (pp- pg) a 27 °c	0.698840	(g/cm3)					

Minima velocidad de fluidizacion para baja temperatura(Umf)							
DATO cantidad unidad							
numero de Arquimides (Ar)	634.21	adimensional					

Archimedes number =
$$\frac{\rho_{\rm g}(\rho_{\rm p} - \rho_{\rm g})gd_{\rm p}^3}{\mu^2}$$

Ar =

Reynolds para minima velocidad fluidizacion (Re mf)Re mf0.470423455adimensional

Umf	0.024872964	m/s

Minima velocidad	d de fluidiza	acio	n para alt	a ten	nperatu	ra(Umf)	
DATO	cantidad		unidad				
numero de Arqu	uimides (Ar)	-	29.01	adim	nensional	
$Ar = \text{Archimedes number} = \frac{\rho_{g}(\rho_{p} - \rho_{g})gd_{p}^{3}}{\mu^{2}}$							
Reynolds pa	ara minima	vel	ocidad flu	uidiza	cion (Re	e mf)	
Re mf			0.02169	6549	adim	nensional	
Umf			0.01026	6 50 6		m/s	
1	Minima velo	cic	lad de bu	rbuje	0	T	
Group	C	A		В		D	
Minimum bubbling velocity, $U_{\rm mb}$	No bubble	>0	mf	$=U_{\rm mf}$		$=U_{\rm mf}$	
Mir	nima veloci	dad	l de sluggi	ing (L	l sl)		
Diametro (D)			(0.203	m		
U sl	0.123655589 m/s						
$U_{ m sl} = U_{ m mf} + 0.07 (gD)^{0.5}$							
Velocidad de transicion a regimen turbulento para un rango de (ρp dp)0.05–0.7 kg/m2							
Velocidad de inicio para la fluidización turbulenta (uc)	1.274772708 m/s						
--	-----------------						
Velocidad para completar la transición a la fluidización turbulenta (uk)	2.437802986 m/s						

Velocidad de transicion a regimen turbulento utilizando numero de reynolds para baja temperatura

Numero de reynolds para la Velocidad de inicio para la fluidización turbulenta (Re c)	19.67568057	adimensional
Numero de Reynolds de la Velocidad para completar la transición a la fluidización turbulenta (Re k)	30.69069833	adimensional
Velocidad de inicio para la fluidización turbulenta (uc)	1.04032334	m/s
Velocidad para completar la transición a la fluidización turbulenta (Re k)	1.622726578	m/s

Velocidad de transicion a regimen turbulento utilizando numero de reynolds para alta temperatura

4.587838269 adimensional

Numero de Reynolds de la Velocidad para completar la transición a la fluidización turbulenta (Re k)	7 156243454	adimensional
	,.130243434	aannensionai
Velocidad de inicio para la fluidización turbulenta (uc)	2.170901389	m/s
Velocidad para completar la transición a la fluidización		
turbulenta (Re k)	3.3862351	m/s

	Velocidad terminal para baja temperatura (Ut)		
Ut		1.015628476	m/s
	Velocidad terminal para	alta temperat	ura (Ut)
Ut		1.164961846	m/s

Cálculo de velocidades de trasporte.

Datos	Alta temperatura	Baja temperatura
Temperatura del lecho (°c)	825	27
Densidad del gas (Kg(m3)	0.317	1.16
Viscocidad del gas (Pa*s)	4.50E-05	1.84E-05
Velocidad terminal (m/s)	1.164961846	1.015628476
Numero de Arquimides	29.01	634.21
Diametro del lecho	0.2	203
Velocidad de circulacion solida deseada kg/m2 s	30	
Densidad de la particula(kg/m3)	700	
Tamaño y tipo de particula(µm)	300	

Baja temperatura		
X=Uch (V. ahogamiento)	2.159607201	-0.000654639
Y=Ec	0.962538427	-0.001330547
Valor para iteracion		2.19891E-06
Alta te	mperatura	
X=Uch(V.ahogamiento)	4.15992831	-0.000870986
Y=Ec	0.985680559	0.020372934
Valor para iteracion		0.000415815

Velocidad de trasporte baja temperatura (U tr)			
Utr	1.741354892	m/s	
Velocidad de transpo	rte para alta temp	eratura	
Utr	3.501733331	m/s	
Ecuacion	nes de Yue.G		
Para baja	temperatura		
Velocidad de transporte U tr	3.554699665	m/s	
Velocidad de circulacion Gs min	85.69974083	Kg/m2 s	
Para baja temperatura			
Velocidad de transporte U tr	4.193862647	m/s	
Velocidad de circulacion Gs min	15.05140025	Kg/m2*s	

Cálculos de fracción de vacíos dentro del lecho

Temperatura del lecho (°c)	825
Tamaño y tipo de particula(μm)	300
Densidad de la particula(kg/m3)	700
Velocidad superficial del gas(m/s)	8
Vacio para la minima fluidizacion	0.48
Altura de inyeccion del aire(m)	3
Altura total del lecho(m)	20
Largo por debajo del nivel de inyeccion(m)	10
Ancho por debajo del nivel de inyeccion(m)	3
Largo por encima del nivel de inyeccion(m)	10
Ancho por encima del nivel de inyeccion	6
(Ea) El vacio asintótico	0.85
El vacío de asfixia (Ec = Ed)	0.98568056
constante de desintegracion (a) (m ^-1)	1
Vacio sobre la altura de inyeccion (m)	4

Dato	cantidad	unidad
Vacio en la salida del horno(Ee)	0.985680553	adimensional
$\varepsilon_{\rm e} = \varepsilon_{\rm d} - (\varepsilon_{\rm d} - \varepsilon_{\rm a}) \exp[-a(H - h_i)]$		
Vacío medio axial del lecho, ɛs,por encima del nivel de aire secundario	0.97769935	adimencional
$\varepsilon_{\rm s} = \varepsilon_{\rm d} - \frac{\varepsilon_{\rm e} - \varepsilon_{\rm a}}{a(H - h_i)}$		
Inventario de solidos	25372.66445	Kg

$W = \rho_{\rm p} \left[A_i h_i (1 - \varepsilon_{\rm a}) + (H - h_i)(1 - \varepsilon_{\rm s}) A_s \right]$		
El vacio sobre altura de inyeccion de aire seundario	0.93576647	adimensional
El vacio en la pared sobre la altura de inyeccion de aire seundario e(r)	0.776460319	adimensional

Memoria de cálculo para trasferencia de calor

Datos	Valor	unidad
Temperatura aire entrada	27	°C
dcp	5000	um
Diametro de la particula (dp)	250	um
Calor especifico gas a (TOP)	1.162	KJ/Kg K
Calor especifico de la particula a quemar	1	KJ/Kg K
Velocidad media solido (Ucp)	2.745482197	m/s
Temperatura de operación max(TOM)	850	°C
Viscocidad gas (TOM)	4.49E-05	N s/m2
Densidad gas (TOM)	0.3177	Kg/m3
Conductividad termica gas (TOM)	0.072	W/m K
Densidad de la particula	1350	Kg/m3
Densidad paticula a quemar	1380	Kg/m3
Velocidad de fluidizacion	6	m/s
Superficie por unidad masa (S)	17.7777778	
Т 99%	1114.92	К
Re cp material del lecho	5.7570	

hgp	281.3383258	W/m2 K
X 99% integral	4.623564328	adimensional
x 99%	0.0081904	m
Re cp para el material a quemar	1.15E+02	adimensional
hgp materaila a quemar	121.601939	W/m2 K
Tiempo para que una particula se caliente hasta un 99% a la temperatura mayor	43.40802493	S

Datos	valor	unidad	
Conductividad termica particula (Kp)	0.00058	KW/mK	
Conductividad termica del gas (Kg)	0.000072	KW/mK	
Calor especifico gas (Cg)	1.162	KJ/KG K	
Calor especifico particula (Cp)	0.96	KJ/KG K	
Viscocidad del gas (µg)	4.49E-05	N s/m2	
diametro de la particula (dp)	250	um	
Densidad aparente del lecho (pb)	15.28059724	Kg/m3	
Densidad de la particula (ρp)	1350	Kg/m3	
Densidad del gas (ρg)	0.3177	Kg/m3	
Largo del lecho	10	m	
Ancho del lecho	5	m	
Area	50	m	
Temperatura del lecho (Tb)	850	°C	

Temperatura en la pared de trasferencia (Ts)	360	°C
Emisividad de la superficie (es)	0.85	
Emisividad del gas (eg)	0.107	
Emisividad de la particula (ep)	0.9	
Vacio en los aglomerados (εc)	0.89	
Numero de Pr	0.7178	
L = altura	20	m
Velocidad maximo de los racimos	1.531278003	m/s
Temperatura (Kfg)	605	°C
Conductividad de la pelicula de gas (Kgf)	0.000062	KW/mK
Constante de concentracion Y	0.00001	
velocidad terminal	1.023909874	m/s
Constante de Steban Botzman	5.67E-11	
Ech	0.99284671	
В	0.5	
К	0.5	
М	0.096344828	
N	8.321785094	

Punto inicial para calculo (tc)	9.456261166	
formula para iterar	-5.75885795	
Tiempo de residencia de los racimos en la pared	9.456261166	S
Constante termica (j)	0.03125	S
Calor especifico de los racimos	1.13978	Kj/Kg K

densidad especifica de los racimos	148.782753	Kg/m3
Кр/Кg	8.055555556	
Kc/Kg	1.011577423	
Кс	7.28336E-05	KW/m K
hc	0.043568768	W/m2 K
densidad dispersion	0.331196823	kg/m3
hd	0.050336011	KW/m2K
emisividad del racimo (ec)	0.95	
hcr	0.142178544	KW/m2 K
Lb	5.833333333	m
Y'	0.00715329	
ep'	1	adimensional
ed	0.973665961	adimensional
hdr	0.145374658	KW/m2 K
la fracción de racimo en la pared	0.988681039	adimensional
ew	0.957545013	adimensional
Fraccion promedia de tiempo del area de la pared recubierta por racimos	0.310589569	
coeficiente global de trasferencia de calor (h)	0.192616155	KW/m2 K
Flujo total de trasferencia	94.38191586	kW/m2

Memoria de cálculo para la combustión.

			Anallsis wt%			Contenido de humedad (w.b) *	Ceniza	х
	С	Н	0	N	S	(Mf)	Ash	CaO
papel	48.08	6.48	36.22	1.82	0.74	0	6.66	0

Datos	valor	unidad
Humedad aire (Xm)	1.3	%
E sor	90	%
R	2	
X CaCO3	98.4	%
XMgCO3	1	%
Xin	0.6	%
hg	2441	Kj/Kg
Exceso de aire (EAC)	20	%
Humedad del sorbente	7.16	%
Presion	101325	Ра
Constante de los gases	8314.32	J/Kmol K
Temperatura a la salida Cc	1123.15	К
Temperatuta inicial	300.15	К

Ca/s	0	Kg/Kg
Sorbente requerido	0.047002033	Kg/Kg
нни	19078.56013	Kj/Kg
LHV	17654.96893	Kj/Kg
Aire teorico	6.2623235	Kg/Kg
Exseso de aire	7.5147882	Kg/Kg
Aire total	7.612480447	Kg/Kg

Sorbent source	CaCO ₃ %	MgCO ₃ %	$\delta(\infty)$	1/P* m ³ /kmol s
Irish Cove	94.40	1.00	0.284	14.48
Calpo	95.60	1.99	0.340	13.46
Calpo	96.10	0.90	0.535	10.23
Brookfield	83.90	1.97	0.164	27.25
Glencoe	92.10	3.84	0.221	21.88
Glendale	92.10	5.77	0.236	22.97
Havelock	94.60	1.83	0.330	15.14
Carlisle	98.40	1.00	0.267	16.09
Elmtree	91.40	1.00	0.198	21.68
Clausen	90.10	2.89	0.272	19.12
Syncrude	91.30	2.49	0.229	18.89
Exshaw	97.00		0.227	13.52

Tablas utilizadas para los diferentes cálculos.

Data compiled from Hamer (1986)

METALES	Estado superficie	Temperatura °C	Emisividad c	NO METALES	Estado superficie	Temperatura °C	Emisividad e
Aluminio	placa pulida	25	0,040	Amianto	en cartón	37	0,960
Aluminio	placa pulida	200-600	0,038-0,06	Amianto	en papel	37	0,930
Aluminio	oxidado	100-500	0,20-0,33	Ladrillo	1,5962	1000	0,380
Aluminio	placa mate	25	0,070	Ladrillo	rojo, rugoso	20	0,930
Antimonio	pulido	37-260	0.28-0.31	Ladrillo	gris, satinado	1100	0,750
Latón	oxidado	200-500	0,600	Ladrillo	sílice	540	0,800
Latón	pulido	20-300	0,05-0,032	Carbón,	filamento	1050-1400	0,526
Latón	placa usada	50-350	0,220	Carbón,	carbonilla bujías	95-270	0,953
Latón	mate	50	0,202	Carbón,	negro de humo	20	0.930
Cromo	pulido	37-1100	0,058	Cerámica	alfarería, satinado	20	0,900
Cobre	negro oxidado	37	0.780	Cerámica	porcelana	22	0.920
Cobre	ligeramente mate	25	0.037	Cerámica	refractaria, negra	93	0.940
Cobre	pulido	37-260	0.04-0.05	Arcilla	caldeada	70	91
Cobre	1,5962	80	0,018	Hormigón	rugoso	37	0,94
Oro	no pulido	20	0,470	Vidrio	liso	22	0,940
Oro	pulido	37-260	0,020	Vidrio	1,5962	260-530	0,95-0,85
Hierro	oxidado	100	0.740	Hielo	liso	0	0.966
Hierro	esmerilado	20	0,240	Hielo	rugoso	0	0.985
Hierro	pulido	425-1025	0.14-0.38	Mármol	grano fino pulido	22	0,93
Hierro	todo oxidado	20	0,69	Mica		37	0,75
Hierro	laminado	925-1100	0,87-0,95	Mampostería	emplastecida	0	0,930
Fundición	mecanizada	22	0,44	Papel	ordinario	20	0,8-0,9
Fundición	1,5962	200-600	0,64-0,78	Papel	amianto	20	0,950
Plomo	1,5962	200	0.63	Papel	alguitranado	20	0,910
Plomo	oxidado gris	23	0,280	Papel	ordinario	95	0,920
Plomo	pulido	130-260	0,08-0,056	Yeso blanco	rugosa	20	0,930
Magnesio	pulido	37-260	0.07-0.13	Porcelana	vidriada	20	0,930
Magnesio	oxidado	275-825	0,55-0,2	Cuarzo fundido	rugoso	20	0,930
Molibdeno	para filamentos	700-2600	0,10-0,20	Goma blanda	gris	25	0,860
Molibdeno	pulido	150-480	0,02-0,05	Goma dura	negra rugosa	25	0,950
1,5962	pulido	37	0,170	Madera de haya	láminas	25	0,935
Níquel	1,5962	260-540	0,37-0,48	Madera de encina	láminas	25	0,885
Níquel	pulido	100-260	0,045-0,07	Tierra		37	0,950
Níquel	1,5962	37-260	0,04-0,06	PINTURAS		27	2 5
Platino	1,5962	260-540	0,06-0,1	Aluminio	bronce de	100	0,300
Platino	placa pulida	260-540	0,06-0,1	Aluminio	esmaltado rugoso	20	0,390
Platino	1,5962	260-540	0,07-0,11	Aluminio pintado	1,5962	150-300	0,350
Platino	filamento	26-1225	0,04-0,19	Aluminio	Al 10%, laca 22%	100	0,520
Plata	pulida, pura	225-625	0,02-0,03	Aluminio	Al 26%, laca 27%	100	0,300
Plata	pulida	37-370	0,02-0,03	Laca	blanca	100	0,925
Acero	pulido	23	0,160	Laca	negra mate	80	0,970
Estaño	brillante	225-265	0,02-0,03	Aceite	pintura	20	0,89-0,97
Estaño	pulido	37-370	0,070	Aceite pintura	todos los colores	100	0,92-0,96
Tungsteno	para filamentos	3300	0,390	Baquelita	esmaltada	80	0,935
Tungsteno	filamento envejecido	25-3300	0,03-0,35	Esmalte	blanco rugoso	20	0,900
Cinc	oxidado	20	0,250	Esmalte	negro brillante	25	0,876
Cinc	pulido	225-325	0,05-0,06	Pintura al aceite	00-515W/1 C 1, 72565 (200 POO)	1-200	0,885
				Imprimación minio		20-1100	0.930

2.- EMISIVIDADES NORMALES

MATERIAL	Temperatura °C	Densidad $\rho(kg/m^3)$	Calor específico c _p (J/kg°K)	Conduct. térmica k (W/m°K)	Difusiv. térmica a.10 ⁵ m ² /seg
Amianto	20	383	816	0,113	0.036
Asfalto	20-55	2120	13 13 13 13 13 13 13 13 13 13 13 13 13 1	0.74-0.76	0.60.0000
Baquelita	20	1270		0,233	
Ladrillo común	20	1800	840	0,38-0,52	0,028-0,034
Ladrillo de carborundum (50% SiC)	20	2200		5,820	
Ladrillo de carborundum	600		20	18,5	
	1400			11,1	
Ladrillo de magnesita (50% MgO)	20	2000		2,680	
34 (1995)	200		1130	3,81	
	650			2,77	
	1200			1,9	
Ladrillo de mampostería	20	1700	837	0,658	0,046
Ladrillo de sílice (95% SiO2)	20	1900		1,070	
Ladrillo de circonio (62% ZrO2)	20	3600		2,440	
Ladrillo al cromo	200	3000	840	2,32	0,092
	550			2,47	0,098
	900			1,99	0,079
Arcilla refractaria, cocida a 1330°C	500	2000	960	1,04	0,054
	800			1,07	
	1100			1,09	
Arcilla refractaria, cocida a 1450°C	500	2300	960	1,28	0,04
	800			1,37	
2	1100		18	1,4	
Cartón	20			0,14-0,35	
Cemento (duro)	20			1,047	
Arcilla (48,7% humedad)	20	1545	880	1,260	0,101
Carbón, (antracita)	20	1370	1260	0,238	0,013-0,015
Hormigón (seco)	20	500	837	0,128	0,049
Corcho (tableros)	20	120	1880	0,042	0,015-0,044
Corcho (expandido)	20	120		0,036	
Tierra de diatomeas	20	466	879	0,126	0,031
Tierra arcillosa (28% humedad)	20	1500		1,510	
Tierra arenosa (8% humedad)	20	1500		1,050	
Fibra de vidrio	20	220		0,035	
Vidrio, (ventanas)	20	2800	800	0,810	0,034
Vidrio, (lana de)	20	100		0,036	000000
	20	200	670	0,040	0,028
Granito	20	2750		3,000	
Hielo (0°C)	20	913	1830	2,220	0,124
Linóleo	20	535	-	0,081	
Mica	20	2900	-	0,523	
Corteza de pino	20	342		0,080	
Yeso	20	1800	16	0,814	
Plexiglas	20	1180		0,195	
Madera (chapa)	20	590	16	0,109	
Pollestireno	20	1050	0000	0,157	0.000
Goma dura (ebonita)	20	1150	2009	0,163	0,006
Goma esponjosa	20	224		0,055	
Arena seca	20	1640		0,582	
Arena numeaa	20	1040	1	1,130	
Serrin	20	210	0200	0,071	0.011.0.010
Madera de roble	20	416 401	2390	0,17-0,21	0,011-0,012
I áminas de fibra de madera	20	410-421	2720	0,150	0,012
Lamendo de pora de madera	20	200		0,047	

Metring c.A.

Emisividad

Material Metálicos	Emisivida	d		Acero			
	1.0µm	1.6µm	8-14µm	Laminado en frío	0.8-0.9	0.8-0.9	0.7-0.9
Auminio				Pulido	0.35	0.25	0.1
No Oxidado	0.1-0.2	0.02-0.2	n.r.	Fundido	0.35	0.25-0.4	nr.
Oxidado	0.4	0.4	0.2-0.4	Oxidado	0.8-0.9	0.8-0.9	0.7-0.9
Cromo	0.4	0.4	n.r.	Inoxidable	0.35	0.2-0.9	0.1-0.8
Cobre				Estaño	0.25	0.1-0.3	nr.
Pulido	n.r.	0.03	n.r.	Titanio			
Oxidado	0.2-0.8	0.2-0.9	0.40.8	Pulido	0.5-0.75	0.3-0.5	nr.
Termind eléctrico	n.r.	nr.	0.6	Oxidado	nr.	0.6-0.8	0.5-0.6
Oro	0.3	0.01-0.1	n.r.	Tungsteno	nr.	0.1-0.6	nr.
Inconel				Pulido	0.35-0.4	0.1-0.3	nr.
Oxidado	0.4-0.9	0.6-0.9	0.795	Zinc			
Sandblasted	0.3-0.4	0.3-0.6	0.3-0.6	Oxidado	0.6	0.15	0.1
Pulido	0.2-0.5	0.25	0.15	Pulido	0.5	0.05	nr.
Hierro							
Oxidado	0.4-0.8	0.5-0.9	0.5-0.9	Material No metálicos	Emisivido	d	
No-Oxidado	0.35	0.1-0.3	n.r.		1.0 µm	7.9 µm	8-14 µm
Fundido	0.35	0.4-0.6	n.r.	Asbestos	0.9	0.95	0.95
Hierro Fundido				Asfalto	n.r.	0.95	0.95
Oxidado	0.7-0.9	0.7-0.9	0.6-0.95	Carbón	0.8-0.95	0.8-0.9	0.8-0.9
No-Oxidado	0.35	0.3	0.2	Grafito	0.8-0.9	0.7-0.8	0.7-0.8
Fundido	0.035	0.3-0.4	0.2-0.3	Carborundum	n.r.	0.9	0.9
Hierro forjado	0.9	0.9	0.9	Cerámica	0.4	0.95	0.95
Plomo				Arcilla	n.r.	0.95	0.95
Pulido	0.35	0.05-0.2	n.r.	Concreto	0.65	0.95	0.95
Rugoso	0.65	0.6	0.4	Tela	n.r.	0.95	0.95
Oxidado	n.r.	0.3-0.7	0.2-0.6	Vidrio Plano	n.r.	0.85	0.85
Magnesio	0.3-0.8	0.05-0.3	n.r.	Yeso	n.r.	0.8-0.95	0.8-0.95
Mercurio	n.r.	0.05-0.15	nr.	Piedra Caliza	n.r.	0.98	0.98
Molibdeno				Pintura (no-Al.)		0.9-0.95	
Oxidado	0.5-0.9	0.4-0.9	0.2-0.6	Papel (cudquier color)	n.r.	0.95	0.95
No-Oxidado	0.25-0.35	0.1-0.35		Plastico opaco	n.r.	0.95	0.95
Nauel				Cauco	n.r.	0.95	0.95
Oxidado	0.8-0.9	0.4-0.7	0.2-0.5	Arena	n.r.	0.9	0.9
Bectrolitico	0.2-0.04	0.1-0.3	n.r.	Madera (natural)	n.r.	0.9-0.95	0.9-0.95
Dete	Dr	002	Dr				

METRING C.A. Telfs: (0286) 994.17.66 / 717.2050 Fax: (0286) 994.54.77 E-Mail: ventas@metring.com - web: www.metring.com 09.02

ноја ао вногнаотон толо ы с

testo

Tabla de emisividades

La siguiente tabla sirve como orientación para ajustar la emisividad en mediciones por infrarrojos. En esta se indica la emisividad ϵ de algunos de los materiales más comunes. Dado que la emisividad varía con la temperatura y con las propiedades de la superficie, estos valores solo deben ser considerados como indicativos para mediciones de diferencias y comparaciones de temperatura. Para medir el valor de temperatura absoluto, se debe determinar la emisividad exacta del material.

Material (temperatura del material)	Emisividad
Acero laminado en frío (93 °C) Acero svidado (200 °C) Acero superficie tratada térmicamente (200 °C) Algodón (20 °C) Aluminio laminado sin tratamiento (170 °C) Aluminio, muy oxidado (93 °C) Aluminio, no oxidado (93 °C) Aluminio, no oxidado (25 °C) Arcilla (70 °C)	0,75-0,85 0,79 0,52 0,77 0,04 0,09 0,2 0,03 0,02 0,02 0,91
Caucho, blando, gris (23 °C) Cinc oxidado Cobre ligeramente deslustrado (20 °C) Cobre axidado (130 °C) Cobre, puildo (40 °C) Corcho (40 °C) Gorcho (40 °C) Cromo (40 °C) Cromo puildo (150 °C) Cuerpo refrigerante anodizado negro (50 °C)	0,89 0,1 0,04 0,76 0,64 0,03 0,7 0,94 0,08 0,06 0,98

Material (temperatura del material)	Emisividad
Goma dura (23 °C)	0,94
Granito (20 °C)	0,45
Hielo liso (0 °C)	0,97
Hierro con costra de fundición (100 °C)	0,8
Hierro con costra de laminación (20 °C)	0,77
Hierro de fundición oxidado (200 °C)	0,64
Hierro, esmerilado (20 °C)	0,24
Hormigón (25 °C)	0,93
Ladrillo, mortero, revoque (20 °C)	0,93
Latón oxidado (200 °C)	0,61
Madera (70 °C)	0,94
Mampostería (40 °C)	0,93
Mármol blanco (40 °C)	0,95
Papel (20 °C) Piedra arenisca o gres (40 °C) Pintura azul sobre lámina de aluminio (40 °C) Pintura blanca (90 °C) Pintura negra mate (80 °C) Pintura, aranila, 2 capas sobre lámina de aluminio (40 °C) Pinturas, andieo (cualquier color) (90 °C) Piásticos: PE, PP, PVC (20 °C) Piomo (40 °C) Piomo (40 °C) Piomo (40 °C) Piomo, grís oxidado (40 °C) Piorcelana (20 °C)	0,97 0,67 0,78 0,94 0,97 0,92-0,96 0,94 0,43 0,43 0,43 0,28 0,92
Yeso (20 °C)	0,9