UNIVERSIDAD CATÓLICA SANTO TORIBIO DE MOGROVEJO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL AMBIENTAL

Evaluación de la estabilización de subrasante de baja capacidad incorporando aditivos AggreBind y MaxxSeal 200 en vías urbanas no pavimentadas en el distrito de La Victoria, Lambayeque, 2021

TESIS PARA OPTAR EL TÍTULO DE INGENIERO CIVIL AMBIENTAL

AUTOR

Angello Arana Cumpa Effio

ASESOR

Lucas Ludeña Gutierrez

https://orcid.org/0000-0001-7903-3646

Chiclayo, 2024

Evaluación de la estabilización de subrasante de baja capacidad incorporando aditivos AggreBind y MaxxSeal 200 en vías urbanas no pavimentadas en el distrito de La Victoria, Lambayeque, 2021

PRESENTADA POR:

Angello Arana Cumpa Effio

A la Facultad de Ingeniería Civil Ambiental de la Universidad Católica Santo Toribio de Mogrovejo para optar el título de

INGENIERO CIVIL AMBIENTAL

APROBADA POR:

Joaquín Hernán Rojas Oblitas PRESIDENTE

Juan Merino Roncero SECRETARIO

Lucas Ludeña Gutierrez
VOCAL

Dedicatoria

Esta tesis está dedicado a mis padres María Effio Lluén y Eduardo Cumpa Arana; y a mi hermano Anthony Cumpa Effio quienes me brindaron su amor, sus consejos, su apoyo incondicional, por enseñarme a ser perseverante y no decaer ante las adversidades.

Agradecimiento

A mi casa de estudios la Universidad Católica Santo Toribio de Mogrovejo por albergarme durante todos estos años de estudio, igualmente a cada uno de los docentes que con sus enseñanzas aportaron en mi formación profesional.

Asimismo, agradezco a mi asesor Lucas Ludeña Gutierrez, por su apoyo constante en el transcurso de mi elaboración de mi investigación.

Evaluación de la estabilización de subrasante de baja capacidad incorporando aditivos AggreBind y MaxxSeal 200 en vías urbanas no pavimentadas en el distrito de La Victoria, Lambayeque, 2021

INFORME DE ORIGINALIDAD		
INDIC	8% 17% 2% 5% TRABAJOS DEL ESTUDIANTE	-
FUENTI	TES PRIMARIAS	
1	hdl.handle.net Fuente de Internet	8%
2	repositorio.ucv.edu.pe Fuente de Internet	3%
3	tesis.usat.edu.pe Fuente de Internet	1 %
4	Submitted to Universidad Cesar Vallejo Trabajo del estudiante	<1%
5	tesis.ucsm.edu.pe Fuente de Internet	<1%
6	Submitted to Universidad Ricardo Palma Trabajo del estudiante	<1%
7	Submitted to Universidad Continental Trabajo del estudiante	<1%

Submitted to City University of New York System

Índice

Resumen	10
Abstract	11
Introducción	12
Revisión de literatura	16
Antecedentes de la investigación	16
Bases teórico – científicas	18
Marco normativo	18
Suelos para vía de transporte	19
Subrasante	22
Estabilización de suelos	23
Estabilización con AggreBind	28
Estabilización con MaxxSeal 200	31
Ensayos de mecánica de suelos en laboratorio para pavimentos	32
Materiales y métodos	42
Tipo y Nivel de Investigación	42
Tipo de investigación	42
Nivel de investigación	42
Diseño de investigación	42
Población, Muestra, Muestreo	43
Población	43
Muestra de estudio	43
Muestreo	45
Criterio de selección	45
Operacionalización de variables	45
Técnicas e instrumentos de recolección de datos	46
Técnicas	46
Instrumentos de recolección de datos	46
Procedimientos	48
Plan de procesamiento y análisis de datos	70
Matriz de consistencia	71
Consideraciones éticas	72
Resultados y discusión	73

Resultados	73
Discusión	91
Conclusiones	107
Recomendaciones	109
Referencias	110
Anexos	112

Lista de figuras

Figura 1. Formas de importación del AggreBind	29
Figura 2. Formas de importación del MaxxSeal 200	32
Figura 3. Muestras del Suelo antes y después de la prueba	34
Figura 4. Copa de Casagrande	34
Figura 5. Prueba de límite plástico	35
Figura 6. Molde cilíndrico de 4plg	38
Figura 7. Molde cilíndrico de 6plg	38
Figura 8. Aparato para ensayo de relaciones de soporte	40
Figura 9. Localización de los puntos de estudio (calicatas)	
Figura 10. Calicata 05, cruce de la calle Demetrio Acosta y Manuel Mesones Muro	49
Figura 11. Reconocimiento de la Calicata 5	
Figura 12. Perfil estratigráfico de la Calicata 5	
Figura 13. Secado de la muestra sobre un área limpia	
Figura 14. Agrupación de tamices para el análisis granulométrico	52
Figura 15. Análisis Granulométrico con muestra seca	
Figura 16. Muestra de cada calicata llevadas al horno	53
Figura 17. Preparación de la mezcla de suelo más agua	
Figura 18. Ensayo de Límite Líquido en la Copa Casagrande	54
Figura 19. Ensayo de Límite Plástico	
Figura 20. Muestra de Suelo vertido en la matriz	55
Figura 21. Compactación de la muestra de suelo	56
Figura 22. Elaboración de los especímenes de prueba para ensayo CBR	
Figura 23. Moldes de ensayo sumergido en la poza con agua	
Figura 24. Penetración del espécimen de prueba	58
Figura 25. Medición del espécimen de prueba en el ensayo de permeabilidad	59
Figura 26. Ensayo de Límite de Atterberg más estabilizante AggreBind	66
Figura 27. Medición en peso de dosificación AggreBind	
Figura 28. Penetración del espécimen de prueba más estabilizante AggreBind	67
Figura 29. Ensayo de Límite de Atterberg más estabilizante MaxxSeal 200	
Figura 30. Medición en peso de dosificación MaxxSeal 200	68
Figura 31. Mezcla de la muestra más estabilizante MaxxSeal 200	69
Figura 32. Curva Granulométrica, Calicata 1	73
Figura 33. Curva Granulométrica, Calicata 2	74
Figura 34. Curva Granulométrica, Calicata 3	74
Figura 35. Curva Granulométrica, Calicata 4 – M1	75
Figura 36. Curva Granulométrica, Calicata 4 – M2	
Figura 37. Curva Granulométrica, Calicata 5 – M1	76
Figura 38. Curva Granulométrica, Calicata 5 – M2	76
Figura 39. Curva Granulométrica, Calicata 2 + AggreBind (2lt/m3)	80
Figura 40. Curva Granulométrica, Calicata 2 + AggreBind (4lt/m3)	
Figura 41. Curva Granulométrica, Calicata 2 + AggreBind (6lt/m3)	
Figura 42. Curva Granulométrica, Calicata 2 + MaxxSeal 200 (3lt/m2)	
Figura 43. Curva Granulométrica, Calicata 2 + MaxxSeal 200 (6lt/m2)	
• • • • • • • • • • • • • • • • • • • •	

Lista de tablas

Tabla 1. Categorias de Subrasante	23
Tabla 2. Dosis de AggreBind x m3 en función de los finos	30
Tabla 3. Número de puntos de exploración	43
Tabla 4. Medidas del ancho y distancia de vías urbanas sin pavimentadas	44
Tabla 5. Operacionalización de Variables	46
Tabla 6. Instrumentos de Investigación	47
Tabla 7. Dosificaciones equivalentes en volumen de AggreBind	63
Tabla 8. Dosificaciones equivalentes en volumen de MaxxSeal 200	
Tabla 9. Matriz de Consistencia	71
Tabla 10. Consideraciones Éticas	72
Tabla 11. Resultado del análisis granulométrico en suelo natural	73
Tabla 12. Resultado de la clasificación SUCS y AASHTO en suelo natural	77
Tabla 13. Resultado del Contenido de Humedad Natural en suelo natural	77
Tabla 14. Resultado de los Límites de Atterberg	78
Tabla 15. Resultados del ensayo de gravedad específica	78
Tabla 16. Resultados de la prueba de Proctor Modificado	78
Tabla 17. Resultados de CBR, al 95% y 100% de la MDS	79
Tabla 18. Resultados de Contenido de Sales Solubles	79
Tabla 19. Resultados de granulometría, con estabilizante AggreBind	80
Tabla 20. Resultados de los Límites de Atterberg, con estabilizante AggreBind	82
Tabla 21. Resultados del Proctor Modificado, con estabilizante AggreBind	82
Tabla 22. Resultados de CBR, con estabilizante AggreBind	82
Tabla 23. Resultados de granulometría, con estabilizante MaxxSeal 200	83
Tabla 24. Resultados de los Límites de Atterberg, con estabilizante MaxxSeal 200	85
Tabla 25. Resultados del Proctor Modificado, con estabilizante MaxxSeal 200	85
Tabla 26. Resultados de CBR, con estabilizante MaxxSeal 200	85
Tabla 27. Resultados de Permeabilidad de suelo natural y suelo adicionando estabilizante	
AggreBind	86
Tabla 28. Resultados de Permeabilidad de suelo natural y suelo adicionando estabilizante	
MaxxSeal 200	86
Tabla 29. APU sin estabilizar	87
Tabla 30. Resumen del presupuesto con Over	88
Tabla 31. APU con estabilizante AggreBind.	88
Tabla 32. Resumen del presupuesto con estabilizante AggreBind	89
Tabla 33. APU con estabilizante MaxxSeal 200	89
Tabla 34. Resumen del presupuesto con estabilizante MaxxSeal 200	90
Tabla 35. Resultados de evaluación económica	

Lista de gráficos

Gráfico 1. % de muestra que pasa la malla N°200	91
Gráfico 2. Contenido de Humedad Natural de cada calicata	92
Gráfico 3. Índice de plasticidad de las muestras de cada calicata	93
Gráfico 4. Gravedad específica de sólidos de cada calicata	94
Gráfico 5. Máxima Densidad Seca de las muestras de cada calicata	94
Gráfico 6. Óptimo Contenido de Humedad de las muestras de cada calicata	95
Gráfico 7. CBR de las muestras de cada calicata	96
Gráfico 8. Contenido de Sales Solubles de las muestras de cada calicata	96
Gráfico 9. % de muestra que pasa la malla N°200, aditivo AggreBind	97
Gráfico 10. % de muestra que pasa la malla N°200, aditivo MaxxSeal 200	98
Gráfico 11. Límites de Atterberg con aditivo AggreBind	
Gráfico 12. Límites de Atterberg con aditivo MaxxSeal 200	100
Gráfico 13. Máxima Densidad Seca, con aditivo AggreBind	100
Gráfico 14. Óptimo Contenido de Humedad, con estabilizante AggreBind	101
Gráfico 15. Máxima Densidad Seca, con estabilizante MaxxSeal 200	102
Gráfico 16. Óptimo Contenido de Humedad, con estabilizante MaxxSeal 200	102
Gráfico 17. Curva de CBR vs dosificación, con estabilizante AggreBind	103
Gráfico 18. Curva de CBR vs dosificación, con estabilizante MaxxSeal 200	104
Gráfico 19. Comparación de Presupuestos	106

Resumen

El presente estudio titulado "Evaluación de la estabilización de Subrasante de baja capacidad incorporando aditivos AggreBind y MaxxSeal 200 en vías urbanas no pavimentadas en el distrito de La Victoria, Lambayeque, 2021" tiene como fin analizar la influencia de la incorporación de los aditivos AggreBind y MaxxSeal 200 en el mejoramiento de las propiedades físico-mecánicas en la estabilización de subrasante de baja capacidad. El método que se empleó en esta tesis fue de tipo experimental, con nivel de carácter explicativo; en cuanto a la población se consideró el PJ. Antonio Raymondi del ACQUA Sector 1, ubicado en el distrito de La Victoria, se tomaron muestra de suelo por medio de calicatas para posteriores pruebas de laboratorio sin y con estabilizantes, aplicando al menos tres dosificaciones tanto para AggreBind (2, 4 y 6 lt/m3) como para MaxxSeal 200 (3, 6 v 9 lt/m2) v finalmente se procede hacer la comparación. Los resultados conseguidos evidencian que el suelo del PJ. Antonio Raymondi del ACQUA Sector 1 es una arcilla de baja a mediana plasticidad, además se determinó la dosificación óptima para AggreBind que es de 6lt/m3, obteniendo un CBR de 12.16% con una MDS de 1.91 gr/cm3, un OCH de 12.19% y para MaxxSeal 200 de 6lt/m2 con un CBR de 11.80% con una MDS de 1.89, un OCH de 12.24%.

Palabras clave: Estabilización de suelos, CBR, AggreBind, MaxxSeal 200.

Abstract

The present study entitled "Evaluation of low-capacity subgrade stabilization incorporating AggreBind and MaxxSeal 200 additives in unpaved urban roads in the district of La Victoria, Lambayeque, 2021" aims to analyze the influence of the incorporation of AggreBind and MaxxSeal 200 additives in the improvement of the physical-mechanical properties in the stabilization of low-capacity subgrade. The method used in this thesis was of experimental type, with explanatory character level; as for the population, the PJ was considered. Antonio Raymondi of ACQUA Sector 1, located in the district of La Victoria, soil samples were taken by means of soil pits for subsequent laboratory tests without and with stabilizers, applying at least three dosages for both AggreBind (2, 4 and 6 lt/m3) and MaxxSeal 200 (3, 6 and 9 lt/m2) and finally a comparison was made. The results obtained show that the soil of the PJ. Antonio Raymondi del ACQUA Sector 1 is a clay of low to medium plasticity, in addition, the optimum dosage for AggreBind was determined to be 6lt/m3, obtaining a CBR of 12.16% with an MDS of 1.91 gr/cm3, an OCH of 12.19% and for MaxxSeal 200 of 6lt/m2 with a CBR of 11.80% with an MDS of 1.89, an OCH of 12.24%.

Keywords: Soil stabilization, CBR, AggreBind, MaxxSeal 200.

Introducción

El costo de una infraestructura vial puede ser elevado, pues se requiere una inversión inicial considerable para las diferentes etapas, desde la elaboración de estudios preliminares, diseño geométrico y de pavimento, y construcción de la vía. Es así, que los gobiernos tienen la obligación de planificar, ejecutar, supervisar y garantizar la calidad de éstas obras, consideradas elementales para el progreso de las comunidades y por ende, acrecentar la calidad de vida de los habitantes [1].

Así mismo los caminos de una red vial regional o local y de diferentes niveles de tránsito, se deterioran con el tiempo, provocado principalmente por factores climáticos y la aplicación de cargas vehiculares superiores a las consideradas en el diseño; esto se evidencia con las fallas, como, por ejemplo: baches, hundimientos, ahuellamientos, desprendimientos de partículas, etc. Las mismas que afectan considerablemente a los transportistas y usuarios con la dispersión de polvo e imposibilitan una buena visión y por ende pueden conducir a accidentes de tránsito. En algunos casos el deterioro de las vías, es invisible en los primeros años y sin un adecuado mantenimiento del camino, conllevaría a una eminente destrucción parcial o total en un plazo inferior al determinado en el diseño. Por lo cual, las estrategias de investigación, progreso e innovación, son la clave para incorporar nuevos materiales en los planes de construcción, mejoramiento y restablecimiento de la red vial [1].

Más aún, que a medida que el mundo crece en población y se interconectan cada vez más capitales, ciudades, caseríos y/o centros poblados en crecimiento, las necesidades de infraestructura aumentan y por ende los ingenieros, técnicos y contratistas del mundo implicados en el mantenimiento, construcción y reconstrucción de carreteras tienen mayores proyecciones de obras viales, con recursos económicos en su mayoría limitados debido al reducido presupuesto fiscal y en condiciones ecológicas complicadas; por lo cual, esto representa un gran desafío para el ingeniero, ya que tendrá que corregir los diferentes comportamientos que tenga el suelo y mejorarlos como por ejemplo: aumentando su resistencia, reduciendo su compresibilidad, su permeabilidad, contracción e hinchamiento del suelo [2].

Según el artículo[3], existen desventajas de los estabilizadores tradicionales frente a los no tradicionales y es por ello que en esta literatura se citan a diferentes investigadores como: Kim y Worrel (2002); Gartner (2004); Shi et al. (2011) y Andrew (2017), señalan el impacto ambiental negativo que emite las emisiones de CO2 a nivel mundial (5% al 8%), en su producción e incluso su costo de fabricación. Asimismo, los investigadores Tremblay, Duchesne, Locat y Leroueil (2002) indican la pobre efectividad del uso de cementantes a base de calcio en suelos con altos contenidos de materia orgánica que influyen en las reacciones puzolánicas y de hidratación esenciales para alcanzar la resistencia mecánica indicada en la estabilización del suelo. Además, Ma, Chen y Chen (2016) mencionan que, debido a la descomposición de la materia orgánica, la resistencia a la compresión disminuye al incrementar el ácido húmico, por lo que se necesitaría emplear más cemento, resultando muy costosa. El cemento no debe emplearse de forma rutinaria en suelos con más del 2% de materia orgánica y con un pH ácido, ya que esto puede ralentizar o cohibir los procesos de hidratación [3].

Cabe señalar que el artículo [4], citando a otros investigadores agregan otras desventajas de los estabilizadores tradicionales con respecto a los no tradicionales, la cual es que relativamente demandan una gran cantidad y un tiempo de curado largo. El tiempo de curado prolongado se debió a la lenta reacción puzolánica que normalmente se completa en 28 días.

A. Md Zahri y A. Zainorabidin [4], citando a Indraratna, Tingle y Santoni, concluyeron que el estabilizador no tradicional daña menos el ecosistema natural, además de mejorar las características del suelo disminuyendo el desgaste del suelo.

Razón por la cual en el transcurso del tiempo se ha intentado modificar o controlar las propiedades del suelo problemático, expansivo in situ, en inicios de manera empírica o artesanal; ya con el avance de la civilización, la tecnología y en especial el desarrollo del transporte moderno, ha motivado al ingeniero a investigar, plantear, modificar, reemplazar y/o mantener las características físico-mecánicas naturales óptimas del suelo, basados en estudios experimentales. Tal es así que el Instituto de Tecnología de Massachusetts celebró una Conferencia sobre "Estabilización del Suelo" en la que se discutieron y compendiaron la mayoría de métodos conocidos para modificar las propiedades del suelo [5].

En nuestro país las vías de bajo tránsito de los sectores periféricos de las ciudades capitales, se traducen en muchos casos a calles y pasajes sin pavimentar, de los cuales existen kilómetros esperando por una solución rápida y económica. Estas vías urbanas en los barrios periféricos y asentamientos humanos son elementales para el desarrollo del país; una calle sin pavimentar es factor de riesgo y salud no solo para quienes viven en la zona o transitan por ella, sino para toda la ciudad, porque al no tener una buena accesibilidad y movilidad, se obstaculiza el incremento de las diferentes actividades laborales, de estudio, de salud, recreación, etc. y se incrementa el costo vehicular, debido al desgaste y corrosión de sus piezas, ya que al transitar por estas calles, que constantemente son mojadas para mitigar la erosión del polvo, o que por efecto de las lluvias se produce barro y/o pequeños pozos; y estos tienen que ser evadidos por los conductores para evitarlos y así no afectar sus unidades, ya que el barro se inserta en las partes inferiores y se produce allí la corrosión. Por tal razón estas obras requieren una atención inmediata, sin embargo, los limitados o en su defecto carentes recursos económicos y la mala disposición en algunos casos de sus autoridades al no poder o querer gestionar ante los organismos competentes el desarrollo de estas vías, quedan sin ejecutarse y por lo consiguiente los ciudadanos tienen la penosa realidad de convivir en condiciones críticas con vías en mal estado. Agravándose aún más en épocas de lluvias con vías inaccesibles cubiertas de lodo, y expuestos a enfermedades [6].

El PJ. Antonio Raymondi del ACQUA Sector 1, ubicado en el distrito de La Victoria cuenta con calles en mal estado, existiendo diversos tipos de fallas dentro de ellas el hundimiento, hinchamiento, ahuellamiento las cuales dificultan la buena calidad de tránsito vehicular ocasionando que los conductores evadan los baches y en ciertos casos pueden llegar a ocasionarse accidentes que conllevarían a situaciones lamentables, asimismo según INDECI informa que en este sector predomina las partículas de suelo fino cuya expansión va de alta a extremadamente alta, con cambios de volumen moderado a severo, esto quiere decir que se tiene que realizar un proceso de estabilización adecuada con el fin de obtener una infraestructura apta para el libre tránsito tanto vehicular como peatonal de la población, en protección de la integridad físico social de los habitantes.

Dicho lo anterior, surge la interrogante ¿Como influye la incorporación de los estabilizantes AggreBind y MaxxSeal 200 en el mejoramiento de las propiedades físicomecánicas en la estabilización de subrasante de baja capacidad en vías urbanas no pavimentadas en el distrito de La Victoria?

Para dar solución al problema identificado se planteó la siguiente hipótesis: La incorporación de los aditivos AggreBind y MaxxSeal 200 mejora las propiedades físicomecánicas en la estabilización de subrasante de baja capacidad en las vías urbanas no pavimentadas del distrito de La Victoria.

Como objetivo general se planteó: Analizar la influencia de la incorporación de los aditivos AggreBind y MaxxSeal 200 en el mejoramiento de las propiedades físicomecánicas en la estabilización de subrasante de baja capacidad en vías urbanas no pavimentadas en el distrito de La Victoria. De igual manera se establecieron los siguientes objetivos específicos:

- Determinar las características físico-mecánicas del suelo de fundación.
- ➤ Determinar la dosificación óptima al emplear los aditivos AggreBind y MaxxSeal 200 en el suelo de subrasante.
- ➤ Comparar los resultados de la capacidad de soporte (CBR) de la muestra sin estabilizar (muestra patrón) y de las muestras estabilizadas con los polímeros AggreBind y MaxxSeal 200.
- > Comparar los resultados de permeabilidad de la muestra sin estabilizar y con estabilizantes.
- Comparar los costos de estabilización química para una vía urbana no pavimentada con los aditivos AggreBind y MaxxSeal 200.

El motivo de este proyecto se basa en las siguientes razones:

La presente investigación aportará con los conocimientos para solucionar las carencias que afectan a los pavimentos, por medio de la estabilización de suelos incorporando los aditivos AggreBind y MaxxSeal 200, la cual contribuirá en el enriquecimiento de las características físico-mecánicas de la subrasante ayudando así a tener pavimentos que sean confiables, rentables y duraderos ante las cargas de tráfico; por otro lado, esta investigación contribuirá a que las municipalidades puedan saber de este método de estabilización y llevarlo a la aplicación, con el fin de mejorar las vías locales y con ello brindarles a la población una mejor calidad de vida.

Referente a la justificación económica, estos aditivos son confiables, rentables y ayudan a reducir los costos tanto de construcción como rehabilitación en comparación con los

métodos tradicionales, ya que éstos trabajan con el mismo suelo en situ, además de no necesitar mano de obra calificada; y las vías se habilitan al tráfico de inmediato, es por eso que la utilización de estos aditivos ayudaría a ejecutar más obras por parte de las municipalidades accediendo así al progreso de las actividades productivas, sociales las cuales serán ventajosas para la población en general.

Con la estabilización de los aditivos AggreBind y MaxxSeal 200, estos ayudarían a disminuir la presencia de polvo y erosión en las vías, por lo consiguiente, la población tendría una mejor calidad de vida, además de que estos aditivos son ecológicos con el medio ambiente, cabe mencionar que cumplen con las exigencias de la EPA y fue aprobado por la AICS (Australian Inventory of Chemical Substances), cumpliendo con las exigencias de los países líderes en ecología, en síntesis estos polímeros pueden ser aplicados en las vías no pavimentadas y con ello ayudar con el desarrollo.

Revisión de literatura

Antecedentes de la investigación

Según [7], El gerente Sohan Khadka de operaciones de Stead Fast Nepal informó que con la aprobación del Departamento de Carreteras y la experiencia de los Estados Unidos; Stead Fast Nepal Ltd. empresa privada nacional, estabilizó alrededor de 430 metros a lo largo de la carretera Kalanki-Nagdhunga, aplicando la tecnología de estabilización de suelos in situ con el aditivo AggreBind, cuyos beneficios fueron aumento de la capacidad de carga, proporcionando una resistencia adicional a la tracción y es respetuosa con el medio ambiente para la construcción y conservación de carreteras.

La tesis de Mena Robles [8] tiene como objetivo identificar las ventajas constitutivas que se dieron al adicionar el estabilizador y el sellante en las peculiaridades de los suelos con respecto a las características de los caminos no asfaltados en la Calle Morales Bermúdez-Huaral. La metodología empleada para esta tesis fue elaborada en dos fragmentos: la primera, que implicó en diagnosticar las propiedades básicas del suelo, el segundo fragmento que implicó en adicionar al suelo el estabilizador AggreBind a una dosificación de 2, 4, 6lts/m3 y el sellante a una proporción de 1 a 3 (1 de AggreBind y 3 de Agua). Lo que se llegó a la conclusión que empleando este aditivo mejoró el CBR a un 41.2% con la dosificación de 2lts y además se obtiene buenos

beneficios estructurales como es la rigidez, comprensibilidad, permeabilidad, estabilidad.

Bazán [9] en su tesis, describe como el uso del polímero AggreBind contribuye en el acrecentamiento técnico económico de la pavimentación vial en la Av. Paramonga. La metodología de este estudio fue realizar 3 calicatas en una longitud de 1.45km, la cual se tomó la calicata con el CBR menor, posterior a ello se procedió a realizar los ensayos añadiendo el estabilizante AggreBind mediante dosificaciones de 3, 3.5, 4, 5lts/m3. Finalmente, se concluyó que la capacidad de soporte del suelo cuando se aplicó AggreBind influyó en el acrecentamiento técnico económico del pavimento; esto se debe a que el CBR aumenta hasta 13 veces sobre el suelo natural, asimismo de acuerdo con el estudio, la dosis óptima de AggreBind es 3lt/m3.

La tesis de Ortiz Roldan [10] tiene como finalidad evaluar la contribución que tiene el producto AggreBind en la estabilización de la subrasante en el Jr. Brasil en Nuevo Chimbote. La metodología empleada para esta tesis fue realizar 3 calicatas en una longitud de 575m e incorporando dosificaciones de 3, 5 y 7 lts/m3 a cada muestra de la calicata extraída. La conclusión a la que llegó fue que la MDS aumentó de 2.07 a 2.30gr/cm3, de la misma manera el OCH incremento de 8.43% a 11.50% y por último el CBR aumento de 24.40% a 61.90%, concluyendo así que los valores incrementan a medida que se va agregando más polímero.

Según Tesen Tineo [11], en su investigación busca diseñar un pavimento flexible empleando el estabilizante AggreBind en la Av. La Esperanza, Olmos - Lambayeque. Para esta tesis se planteó realizar 2 calicatas en una longitud de 3km, posterior a la extracción del espécimen de cada calicata se procedió a realizar los diferentes ensayos con la calicata desfavorable (calicata 2) a dosificaciones de 2, 4, 6 lts/m3, dando como resultado un incremento en la capacidad portante hasta 52% con dosificación de 6 lts/m3.

Según Flores Castañeda [12], en su tesis busca determinar el impacto del aditivo MaxxSeal 200 en la evaluación y mejora de la subrasante, y para ello se planteó realizar 3 excavaciones e incorporar dosificaciones de 3%, 6% y 9% con la intención de obtener los resultados de las mejoras en cualidades físicas, químicas y en el CBR de subrasante. Luego de realizar los respectivos ensayos se comprobó que el polímero ayudó a bajar

el índice de plasticidad de un 10% a 7% para las dosificaciones del 3%, 6% y 9%, de manera análoga el CBR aumentó de un 10.7% a un 41.3%, 37.1% y 48.6% para las dosificaciones antes mencionado [12].

El propósito de Godoy [13] en su tesis es determinar la mejora de la capacidad portante añadiendo dosificaciones de 6%, 8% y 10%. La metodología de esta investigación fue extraer 2 calicatas, las cuales se realizaron los diferentes métodos de ensayo, posterior a lo mencionado, se añadieron las respectivas dosificaciones y se ensayaron con respecto al CBR obteniendo un total de 24 especímenes.

Dicho lo anterior, se concluyó que la capacidad de soporte (CBR) aumentó al 10.2%, 12.85% y 17.55% con respecto al suelo natural que fue de 7.65%, asimismo con la incorporación de estos aditivos disminuyó la densidad máxima seca, por otro lado, se delimitó que el número estructural requerido disminuyó con respecto al número estructural calculado en 0.65 [13].

Bases teórico - científicas

Marco normativo

A. Norma de suelos y cimentaciones – Perú, E.050 2020

Esta normativa establece las condiciones mínimas para realizar el Estudio de Mecánica de Suelos, asimismo comprende las pautas de estudio de campo sujetables a los diferentes tipos de suelo existentes, seleccionando los ensayos que puedan aplicarse a los diversos tipos de suelo. [14].

B. Manual de carreteras: sección suelos y pavimentos – Perú 2014

Este compendio determina las normas técnicas mínimas para el diseño, construcción, mantenimiento tanto de carreteras como de caminos y vías urbanas; asimismo comprende los estudios necesarios a realizarse para la adecuada selección de los suelos, dentro de ello las subrasantes, además de los pavimentos y la estabilización [15].

C. Manual de carreteras: especificaciones técnicas generales para construcción EG-2013

El libro en mención establece los requisitos, indicadores y métodos para el diseño de las obras de infraestructura vial, lo que comprendería toda la investigación para realizar una correcta selección de subrasante y, en su caso, su estabilización; dentro de los estudios tenemos: granulometría, límites de consistencia, contenido de humedad, ensayo de Proctor Modificado, CBR, entre otros [16].

D. Manual de carreteras: ensayo de materiales – Perú, 2017

La guía en mención establece las normas para los diferentes métodos y procedimientos desarrollados en los diversos materiales a emplearse, asimismo comprende los equipos y/o instrumentos a utilizarse, el tipo de ensayo y cálculos e informes a reportar.

Dentro de ello tenemos: el análisis granulométrico, contenido de humedad, los límites de consistencia, ensayo de Proctor Modificado, ensayo para determinar la densidad y peso unitario, entre otros [17].

E. Norma CE.010 pavimentos urbanos – Perú, 2010

Esta normativa [18] establece las condiciones mínimas para el análisis, diseño, construcción, rehabilitación y mantenimiento de los pavimentos urbanos, enfocándose en la Mecánica de Suelos y también la Ingeniería de Pavimentos, con la finalidad de usar correctamente los recursos y garantizar la durabilidad de los mismos a lo largo de su vida de servicio.

Suelos para vía de transporte

Según [19]–[22], definen al suelo como un complemento natural no consolidado conformado por partículas que se desintegraron física o químicamente, y además de tener partes líquidas y gaseosas intercaladas entre las partículas sólidas.

Cabe subrayar [23, p. 18] "Suelo es una capa delgada de material sobre la corteza terrestre resultante de la degradación y/o alteración física y/o química de las rocas y los remanentes de la actividad de los organismos que las colonizan"

Por otra parte, Alfreds [24], citado por Crespo [23, p. 18] califica al suelo como copio de fragmentos sólidas provenientes de la meteorización de las rocas.

F. Propiedades físicas del suelo

Peso volumétrico

Para Badillo y Rodríguez [25], un suelo está constituido por 3 fases: sólida, líquida y gaseosa, de las cuales nos hace en mención que la forma sólida la conforma partículas minerales, asimismo la forma líquida está compuesta por el agua, y por último y no menos importante la fase gaseosa que está constituida por el aire.

Este suelo se divide en dos volúmenes, de las cuales uno pertenece al volumen de vacíos (fase líquida y gaseosa) y el otro pertenece al volumen de los sólidos (fase sólida).

Para Rodríguez y H. Del Castillo [20], la definición del peso volumétrico no es más que la relación que hay entre los pesos y los volúmenes del suelo.

Densidad

Para Crespo [23] la densidad está dividida en tres tipos: densidad absoluta que se refiere a la masa del elemento incluido en una unidad de volumen sin incorporar los vacíos; en cambio en la densidad aparente, incluye los vacíos; por otro lado la densidad relativa viene hacer la relación que hay entre la densidad absoluta intermedia de las partículas que conforman el suelo y la densidad absoluta del agua destilada.

🖊 Granulometría

Según [26] la granulometría tiene como objetivo clasificar el suelo por medio de tamices, reteniendo en cada tamiz las partículas que son mayor al número de malla correspondido. Estas partículas que son retenidas son relacionadas con el peso total del suelo tamizado, dichos resultados son representados por medio de un gráfico llamado curva granulométrica.

Según Villalobos [27] la selección de los tamices granulométricos no solo son empleados en la construcción de caminos para evaluar qué tipo de suelo es apropiado como base o subbase, sino también, en el diseño de drenes y en la dinámica de suelos.

Plasticidad del suelo

Es la característica del suelo que le permite sufrir alteraciones aceleradas, sin rechazo elástico, sin cambio volumétrico notable y sin deshacerse ni desquebrajarse [25].

Para Crespo [23] la plasticidad no es más que la deformación de los suelos hasta cierto límite, sin romperse; todos estos conceptos son típico de las arcillas, pero en grado inestable.

Para dar de conocimiento la plasticidad de un suelo se tiene que realizar los límites de Consistencia, que estos son realizados en laboratorio para hallar el límite líquido, límite plástico.

a) Límite líquido

Según Crespo [23] el margen líquido viene hacer la porción del volumen de humedad con relación al peso seco de la prueba; en otras palabras, es la variación de los fases líquida y plástica de un suelo analizado.

Juárez [25], acotando en su libro manifestó que según Atterberg el límite líquido puede soportar 25gr/cm2 al corte.

b) Límite plástico

Según Braja [19] el límite plástico es el porcentaje de contenido de humedad que permite amasar el suelo en hilos de 3.2mm de diámetro sin deshacerse.

c) Índice de plasticidad

Según Braja, el índice plástico viene hacer la variación entre el límite líquido y plástico del suelo [19].

Crespo [23], indica que el índice plástico se da por lo general en suma al contenido de arcilla del suelo, asimismo este índice señala el rango de alteración del contenido de humedad sobre el cual el suelo permanece plástico.

G. Propiedades mecánicas del suelo

Compactación (ensayo Proctor)

Según Braja [19], Rodríguez [20] la compactación es un proceso mecánico cuyo fin es acrecentar las cualidades, rigidez, comprensibilidad y elongación de los suelos, dicho de otra manera, con la compactación se tiene un suelo estructurado la cual adquiera un comportamiento mecánico adecuado para su vida útil.

Capacidad de soporte (CBR)

"Es la renuencia a ser deformado bajo cargas de tráfico. Concierne de la resistencia al corte del suelo del que está hecho. Concierne del tipo, densidad y humedad del suelo utilizado o disponible en la explanada. El estudio más aplicado es el C.B.R. (California Bearing Ratio), que es una prueba de penetración o punzonamiento" [28].

Subrasante

Según Lizcano y Quintana [29], la subrasante es la base para la estructura del pavimento y la cual va a depender para obtener dicho espesor.

Por otra parte, Frost, citado por [29] nos dice que en un pavimento la subrasante debe satisfacer las siguientes competencias como: sostener un restringido número de automóviles en el proceso de la construcción, aprovisionando una cimentación compacta para los estratos de la estructura y ser idóneo para sostener las cargas aplicadas por el tráfico a lo largo de su vida útil.

Para [29], la subrasante tiene que tener las siguientes cualidades:

- Tener una elevada resistencia mecánica.
- Tener estabilidad de la resistencia a lo largo de la vida útil del pavimento.
- Tener una elevada densidad o grado de compacidad.
- Tener una baja vulnerabilidad a cambios volumétricos y al agua.
- Tener durante la compactación una buena trabajabilidad.

Según [15, p. 40], clasifica a la subrasante como adecuado y estable cuando se obtiene un CBR mayor al 6%, por el contrario, se dice que la subrasante es pobre o inadecuada cuando el CBR es menor al 6%, en este último caso la subrasante se tendría que estabilizar.

Según RNE [15], nos dice que la cota superior de la subrasante tiene que estar al menos 0.60m por encima de la napa freática cuando se trate de las siguientes categorías:

Tabla 1. Categorías de Subrasante

Categorías de Subrasante	CBR (%)
S0: Subrasante Inadecuada	CBR < 3%
S1: Subrasante Insufuciente	De CBR ≥ 3% A CBR < 6%
S2: Subrasante Regular	De CBR ≥ 6% A CBR < 10%
S3: Subrasante Buena	De CBR ≥ 10% A CBR < 20%
S4: Subrasante Muy Buena	De CBR ≥ 20% A CBR < 30%
S5: Subrasante Excelente	CBR ≥ 30%

Fuente: Manual de Carreteras. Sección Suelos y Pavimentos

Estabilización de suelos

A. Definición

Según el MTC [15, p. 92], es el incremento de las características físicas de un suelo por medio de procedimientos mecánicos añadiéndosele materiales químicos, naturales y/o sintéticos.

Rivera et al. [3], [30]–[33], dicha estabilización de suelos tiene las características de poder mejorar no sólo las propiedades físicas sino también las mecánicas y de resistencia. Dicho de otra manera, lo que hace la estabilización es reemplazar un suelo de baja calidad por otro estabilizado y mejorado; y por ende facilitar así los trabajos de construcción tanto de estructuras como de pavimentos. Por otra parte, se requerirá de estabilización del suelo cuando éste no pueda soportar cargas estructurales [34].

B. Propiedad de los suelos a estabilizar

Para Fonseca et al. [30, p. 16], un ingeniero tiene que tener en cuenta en la estabilización de suelos las siguientes propiedades:

a) Estabilidad Volumétrica: Es concerniente a los inconvenientes vinculados con los suelos expansivos por modificación de humedad, vinculado con cambios estacionales. Dicha estabilización modifica la masa arcillosa expansiva en una masa dura o granular cuyas partículas están vinculadas estrechamente con el fin de tolerar las tensiones de expansión interna.

- b) Resistencia: Propiedad cuyo objetivo es aumentar la adherencia entre las partículas del suelo, dicha resistencia se puede lograr mediante estabilizaciones como: compactación, vibroflotación, precarga, drenaje, estabilización mecánica con mezclas de otros suelos, estabilización química con cemento, cal o aditivos líquidos.
- c) Permeabilidad: Tiene la propiedad de transmitir el agua y el aire a través del suelo. Si el suelo arcilloso es compactado con humedales muy bajas, éste tendrá una permeabilidad alta, por el contrario, si el suelo fuese compactado con humedales altos aquí se producirían permeabilidades menores [35].
- d) Comprensibilidad: Es de primordial importancia ya que interviene en las características del suelo, asimismo cambia la permeabilidad y también modifica la resistencia del suelo ante el esfuerzo cortante, debido a cambios entre las partículas tanto en magnitud como en sentido [35].
- e) **Durabilidad:** Es una propiedad que concierne a la resistencia a la desintegración, erosión o desgaste del tránsito, y cuyos inconvenientes de durabilidad están ligados a los suelos ubicados circundando la extensión de rodadura. En síntesis, estos inconvenientes afectan a los suelos nativos y a los estabilizados [30].

C. Tipos de estabilización

Para definir qué tipo de estabilización es la más adecuada, se determina el tipo de suelo que existe (suelos limosos, arcillosos, arenas arcillosas, arenas limosas), y también el uso que se le dará al mismo.

[19], La estabilización de suelos se realiza de la siguiente manera:

- > Térmicos
- > Eléctricos
- Mecánicos y de drenaje: Aumenta las características del suelo sin la incorporación de agentes químicos. Entre ellos tenemos: compactación, vibroflotación, precarga, drenes de arena.
- Químicos: Mejora la resistencia, ayuda a reducir la plasticidad del suelo mediante aditivos químicos.

Dentro de los tipos de estabilización química tenemos:

a) Estabilización con Cal:

Proporciona las características de mejorar la capacidad del suelo para resistir el esfuerzo de corte ocasionados por las cargas del tránsito, asimismo mejora las propiedades plásticas del suelo; en definitiva, la estabilización con cal ha logrado obtener resultados positivos y por ende es usado con frecuencia además de tener un costo moderado y de fácil producción [35].

Cabe mencionar que si el índice plástico del suelo es superior a 15 y la proporción de la malla N°200 es superior a 25, la utilización de la cal es más efectiva. Por el contrario, es menos efectiva cuando el suelo tiene pocas cantidades de arcilla o cuando son suelos altamente orgánicos [35].

Según [15], la National Lime Association menciona los beneficios adquiridos después de un mejoramiento con cal y estos son:

- Reduce el índice de plasticidad y el límite líquido por ende aumenta el límite plástico.
- Se obtiene un material más trabajable debido a la disminución de agua en el suelo.
- Incrementa la capacidad portante del suelo (CBR), asimismo incrementa la resistencia a la tracción del suelo y reduce el potencial de hinchamiento.

b) Estabilización con Cemento:

[19], La estabilización con cemento proporciona las características de incrementa la fortaleza de los suelos, eleva la fuerza con la fase de curado, aumenta el índice de plasticidad y disminuye el límite líquido. En efecto, cuando el límite líquido está entre 45 a 50 y el índice plástico es inferior a 25 la estabilización con cemento es más eficiente. Dicho lo anterior las propiedades que intervienen en la estabilización del suelo – cemente son:

- Tipo y cantidad de suelo, cemento y agua.
- Realización.
- Edad de la mezcla compactada y tipo de curado.

c) Estabilización con Cloruro de Sodio:

Esta estabilización es apta para todo clase de suelo, salvo que contengan materia orgánica [35]. El cloruro de sodio (sal) o salmuera, es fácilmente diluible al agua [15], las cuales pueden ser añadidas al suelo seco y así conseguir una capa con superficie de características lisa y uniforme.

El cloruro de sodio tiene como uso principal controlar el polvo tanto en bases como en rodaduras de tránsito ligero, asimismo está conformado por 98% de NaCl y un 2% de arcillas y limos; la característica esencial de este compuesto es asimilar la humedad del aire y de los materiales que le circundan, y con esto no sólo poder disminuir el punto de gasificación sino también aumentar la cohesión del suelo [15].

[15], Cuando se deseen estabilizar con sal es recomendable que el suelo esté limpio y no contenga más del 3% de su peso en materia orgánica.

La producción de la salmuera se realiza a través 3 maneras:

- Empleando el calor solar y con éste realizar la gasificación del agua salada, lo que conllevaría a obtener los residuos de sal.
- Extracción directa de las minas de sal.
- Gasificación del agua de mar mediante la utilización de hornos.

[35], la principal desventaja de este compuesto es la solubilidad de la sal, esto significa que se puede lavar fácilmente con agua de percolación, por lo cual se tendría una capa estabilizada de baja durabilidad.

d) Estabilización con Cloruro de Calcio:

[15, p. 106], El estabilizar con cloruro de calcio tiene beneficios como contribuir con la resistencia al suelo, ayudar al proceso de compactación y evitar el hundimiento de la superficie; hay que mencionar además que asiste a conservar la humedad en la extensión del camino.

Para poder estabilizar el suelo se tiene que tener en cuenta las siguientes particularidades:

- Agregado grueso $(1" N^{\circ} 4)$ de 10 60%
- Agregado fino menor que la malla N $^{\circ}$ 200 de 10 30%
- Índice plástico (IP = 4 15%)
- Sulfatos 001% máximo.

e) Estabilización con Productos Asfálticos:

[15], La estabilización del suelo con productos asfálticos tiene como propósito el incremento de la firmeza gracias a las propiedades aglutinantes que cubren las moléculas del suelo, otra característica es la impermeabilización del suelo, esto conlleva a que el suelo sea más susceptible a las variaciones de humedad y por ende más permanente en situaciones desfavorables.

Los estabilizantes más conocidos en emplearse son las soluciones asfálticas y los asfaltos fluidificados de viscosidad media. Por otra parte, los suelos más apropiados a estabilizar con este material son los granulados con finos limitados, baja plasticidad, y que presentan menos del 20% que pasa el tamiz N° 200, LL < 30 e IP < 10 [15, p. 107].

f) Estabilización con Geosintéticos:

Los geosintéticos son empleados porque brindan soporte a la tensión y por consiguiente un aumento en la cimentación de pavimentos [15].

Dichas geomallas son utilizadas para el reforzamiento o separación de la capa base de un pavimentos flexibles con el objetivo de incrementar el soporte al cimiento y por ende reforzar la conducta de la estructura del pavimento [15].

g) Uso de polímeros y resinas:

[35], Las resinas sintéticas se pueden usar en porcentajes pequeños (1 a 2%) como impermeabilizantes de suelos, puesto que, la absorción de agua medida aumentaría con proporciones mayores.

Habría que mencionar también que las resinas tienen como desventajas la desintegración por parte de los microorganismos del suelo y por ello un elevado costo [35].

Según [36], [37], los tipos de polímeros son:

- Por su composición: Homopolímeros y copolímeros.
- Por su estructura: Pueden ser lineales y ramificados; el primero quiere decir que los monómeros se unen por dos puntos (cabeza y cola); y el segundo que se pueden unir los monómeros por más de 3 sitios.
- Por su origen: Pueden ser naturales (caucho), polisacáridos (almidón, celulosa), proteínas y artificiales (plástico, fibras textiles, poliuretano, etc.).
- Por su comportamiento ante el calor: Pueden ser termoplásticos, es decir, que se
 plasman en caliente de forma rápida y recuperan sus propiedades cuando se
 enfría, por ejemplo, los polietilenos, polipropileno, poliuretano, entre otros;
 termoestables, esto quiere decir que ya no pueden ser moldeados ya que quedan
 rígidos al momento de enfriarse.

Según [38], el uso de las emulsiones de polímeros sintéticos en las estabilizaciones ayudan a aumentar la resistencia hasta 200%, y con lo que respecta a ensayos de compresión simple esto pueden llegar entre rangos de 50 y 150 kg/cm2.

Estabilización con AggreBind

AggreBind (AGB) nace en Sudáfrica con el propósito de solucionar la falta de caminos transitables; pasado 25 años de investigación al fin se pudo lograr desarrollar el producto cuyo objetivo es mejorar las vías no pavimentadas, asimismo aumenta la capacidad de soporte de carga e incrementa la fuerza de la resistencia a la tracción del suelo [39].

El AGB es un polímero acrílico de estireno reticulado estabilizante de suelos, es ecológico, es no biodegradable, no es tóxico, de composición química con trazadores propietarios, viene en estado líquido; este producto está amparado por la norma peruana MTC E 1109, además amistoso con la naturaleza y disoluble en agua.

Hay que mencionar, además que este polímero tiene una alta durabilidad, es resistente a temperaturas que van desde -57 hasta los 163 grados centígrados, igualmente AggreBind puede ser aplicado con el agua que existe en la zona, es decir, agua de río, agua dulce e incluso con agua de salada.

Por otra parte, este polímero incrementa la capacidad de soporte (CBR) de peso de 4 a 6 veces, habría que decir también que son resistentes a los derrames de carreteras más comunes como es el petróleo, gasolina, diesel, bebidas, entre otros; se debe agregar que este polímero permite controlar el polvo y la erosión.

Las vías que son aplicadas con AggreBind por lo general se pueden abrir al tráfico dentro de 2 horas posteriores a la estabilización y/o sellado del suelo.

El rendimiento del AggreBind es de 4 litros por cada m3 de suelo compactado.

Este polímero es aplicado exitosamente en diversos países, sobresaliendo sobre todo en los países de Nueva Zelanda y Australia, los mismos que son líderes en ecología.

Según el Gerente General Julio Ernesto Guardia Romani [39], el producto es distribuido en el Perú por la empresa AGE ECOVIAS PERU SAC, que son los representantes oficiales de la empresa norteamericana AggreBind Inc., y la cual es la encargada de proporcionar las especificaciones técnicas correspondientes a las diversas empresas.

El producto AggreBind se importa a través de pallet de 4 cilindros (820lts) o en tote de 1000lts (Ver Figura *I*).

Figura 1. Formas de importación del AggreBind

Fuente: Ficha técnica de AggreBind

Según especificaciones técnicas del AGB [39], este producto se debería emplear como estabilizante de acuerdo a los diferentes puntos de vista expresado en la siguiente tabla:

unto de vista rmativo	* El AggreBind cumple con las exigencias de la Norma Técnica Peruana MTC E 1109 del Ministerio de Transportes y Comunicaciones. * Cumple con el estándar AASHTO. * Cumple con las Regulaciones de la EPA (Environmental Protection Agency) * Aprobado por las Listas de Nueva Zelanda y Australia – AICS (Australian Inventory of Chemical Substances) los dos países más exigentes en temas de Ecologia en el mundo actual. * Es miembro de la American Chemistry Council * El producto AggreBind recibió una Constancia de Calidad por parte de la Municipalidad de Lima.
unto de vista onómico	* El AggreBind reduce el costo total de construcción de carreteras en un 40% a 60% en comparación con los métodos tradicionales. * Permite construir pistas y carreteras con los materiales in situ, es decir, que no hay que traer ningún material de ninguna cantera. * Reduce drásticamente el movimiento de tierras, y, por ende, el costo. * Reduce el tiempo del proceso constructivo de una via, prácticamente a 1/2 del tiempo que se usa en los procesos tradicionales. * El costo por mantenimiento de las pistas y carreteras estabilizadas con AggreBind, es sumamente económico.
unto de ra técnico	* Trabaja con cualquier tipo de suelo, incluido el suelo arcilloso. * Reduce el acarreo de materiales desde y hacia la cantera, hasta el lugar de la obra, reduciendo así el proceso constructivo. * No necesita mano de obra calificada, ni maquinaria especializada, por lo que es fácil de instalar. * Incrementa la fuerza de tracción del suelo, esto quiere decir que los vehículos se pegaran mejor al suelo. * Incrementa el CBR hasta 6 veces, en otras palabras, aumenta la capacidad portante de peso hasta 600%. * Una vez curado el suelo con AggreBind, éste es resistente al agua y derrames viales, además es impermeable. * Permite sobreponerle asfalto o microasfalto con el que se obtiene un acabado de mejor calidad.

Según [9], determina 3 ecuaciones para la dosificación optima del aditivo más agua para ensayos de laboratorio, las cuales son:

Ecuación 1: Cálculo Total del líquido → AGB + H₂O en la muestra del suelo.

Ecuación 2: Cálculo Total del aditivo en la muestra del suelo.

Ecuación 3: Cálculo Total del agua en la muestra del suelo.

Total del líquido =
$$PM(OMC - Wn)$$
 (1)

Total del aditivo = $PMx \frac{Dosis\ AggreBind}{Densidad\ del\ suelo}$ (2)

 $Total \; del \; agua = Total \; del \; Liquido - Total \; del \; aditivo \ldots \ldots \ldots \ldots (3)$

Donde:

PM: Peso de la muestra del suelo para CBR (gr)

OMC: Óptimo Contenido de Humedad del suelo que se ensayará.

Wn: Contenido de Humedad natural del suelo.

[39], La dosificación base del producto es la que se muestra en la Tabla 2; aquí se visualiza la cantidad de AGB expresada en lt/m3, la cual está basado en los finos que pasan el tamiz N°200. Así, por ejemplo, cuando se tenga un suelo que pasa la malla N°200 y 60% de finos, entonces estaríamos aplicando 3.5lt de AggreBind. Cabe resaltar que este índice de dosis es aproximado, y lo podemos tener como una orientación para las proporciones a emplear en diversos trabajos.

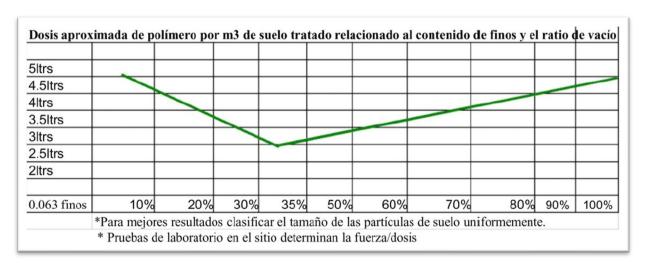


Tabla 2. Dosis de AggreBind x m3 en función de los finos

Fuente: Ficha técnica de AggreBind

Estabilización con MaxxSeal 200

MaxxSeal 200 es un copolímero acrílico de estireno estabilizante de suelos, es ecológico, no es tóxico, viene en estado líquido, no es contaminante, asimismo tiene una excelente resistencia a la penetración del agua, al desgaste y a la intemperie [40]. MaxxSeal 200 es utilizado para controlar el polvo y la erosión con el fin de crear caminos que sean duraderos; asimismo es utilizado cuando se necesitan excelentes propiedades aglutinantes para fijar los áridos en la base de la carretera o para evitar el

polvo en el aire [40].

Al mezclar el suelo con el copolímero MaxxSeal 200, las moléculas del mismo se juntan y se forman lazos de unión, lo que hace que se forme una matriz que sea resistente al agua y que sea muy durable [40].

Según [40], nos dice que al tener mayores concentración de niveles, estos pueden producir que las cualidades sean análogas al concreto, los cuales son empleados para la estabilización del suelo.

[40] Con respecto al uso de este polímero, todo estará sujeto a la utilidad y a la muestra de suelo que se requiera estabilizar, cuyo rango de aplicación es de 1 galón de MaxxSeal 200 por cada 6m², para un espesor de 15cm y una taza de mezcla de 10 a 15 litros por cada litro de MaxxSeal 200, esto en función a la cantidad o humedad del suelo y el clima.

a) Métodos de Aplicación

Antes de aplicar este aditivo, se debe escarificar el suelo de acuerdo a la profundidad que se quiera estabilizar, en este proceso se puede emplear una motoniveladora o un tractor que contenga en la parte trasera un arrastre de discos, consecuentemente, pasa el camión cisterna con la mezcla de MaxxSeal 200 más agua.

Posterior a este procedimiento se requiere que pase el arrastre de discos entre cada pasada con el fin de distribuir uniformemente la mezcla del polímero más agua con el suelo, para luego suavizarlo con la motoniveladora.

Finalmente, cuando se tenga un suelo uniformemente húmedo se da paso a la compactación con el rodillo, para posterior abrir el camino al tráfico.

Esta aplicación se da para caminos sin pavimentar, sitios de construcción, estacionamientos, calzadas sin pavimentar, caminos forestales, caminos agrícolas, base de carreteras y subbases, helipuertos, pistas de rodaje del aeropuerto, entre otras aplicaciones [40].

b) Ventajas del MaxxSeal 200

Excelente resistencia mecánica y adherencia.

El MaxxSeal reduce los costos en carreteras, calzadas y taludes.

- ✓ Conserva el aspecto natural del lugar de aplicación después del período de curación.
- ✓ Estabiliza una variedad de suelos que incluyen arena, grava, limo, arcilla, ceniza volcánica y combinaciones de suelo.
- ✓ El estabilizador MaxxSeal 200 es un producto respetuoso con la naturaleza ya que controla y mitiga la erosión del suelo.
- ✓ Larga vida útil.

El producto MaxxSeal se importa a través de la empresa LATINSEAL, cuyas presentaciones son: tambores de 55gl, totalizadores IBC (275gl), contenedor a granel (5000gl), contenedores oceánicos de 5000gl, como lo vemos en la Figura 2.

Figura 2. Formas de importación del MaxxSeal 200

Fuente: Ficha técnica de MaxxSeal 200

Ensayos de mecánica de suelos en laboratorio para pavimentos

A. Análisis granulométrico, NTP 339.128

Según el Manual de Ensayos [17] y el MTC – E107, este ensayo está apoyado en la norma norteamericana ASTM D 422 (Standard Test Method for Particle-size Analysis of Soils), la cual tiene como fin diagnosticar numerativamente las porciones retenidas de los agregados que traspasan por diversos tamices hasta llegar al tamiz N°200 (74mm); estos agregados retenidos en el tamiz N°4 (4.76mm) son considerados como agregado grueso y los pasantes son los agregados finos, las cuales se ensayarán por

tamizado y/o sedimentación dependiendo las peculiaridades e información requerida de las muestras.

[17], en este ensayo es necesario requerir de equipos y materiales las cuales son:

- Balanza de sensibilidad de 0.01g
- Bandejas, cepillo y brocha.
- Tamices
- Horno de secado con el propósito de mantener la muestra a temperatura incesante y uniforme hasta de 110 ± 5 °C.

Según [17], los cálculos a seguir son los siguientes:

- Cuando los porcentajes del agregado pasan el tamiz N°4:

$$\% Pasa 0.074mm \ (N^{\circ}4) = \frac{Peso\ Total - Peso\ Retenido\ en\ el\ tamiz\ N^{\circ}4}{Peso\ Total} x 100$$

- Cuando la proporción del material sea aprisione por cada tamiz:

$$%$$
Retenido = $\frac{Peso Retenido en el tamiz}{Peso Total}$ x100

De acuerdo a la anterior fórmula, ésta se debe calcular hasta llegar a la proporción más fina; para obtener el último porcentaje que pasa se realiza con la siguiente fórmula:

$$%$$
Pasa = $100 - %$ Retenido acumulado

B. Ensayo para determinar el límite líquido, límite plástico, e índice de plasticidad de suelos, NTP 339.129

Según el Manual de Ensayos [17] y el MTC – E110 (Determinación del Límite Líquido), este ensayo es utilizado para poder especificar la porción de materia orgánica que contiene la muestra.

[17], Este ensayo se ejecuta colocando una pequeña muestra representativa pasante del tamiz N°40, para posterior ser colocada en la copa de bronce, en la que se separará en dos partes por un ranurador, luego de esto la copa se deja caer 25 veces a una distancia de 1cm a razón de dos caídas por segundo, todo esto es para obtener la humedad de la muestra.

[17], en este ensayo es necesario requerir de equipos y materiales las cuales son:

\Display EQUIPOS:

- Vasija de porcelana de 115mm (4 ½")
- Casagrande
- Acanalador.

- Calibrador.
- Recipientes o pesa filtros.
- Balanza de sensibilidad de 0.01g
- Horno de secado con el propósito de mantener la muestra a temperatura incesante y uniforme hasta de 110 ± 5 °C.
 - **❖** MATERIALES e INSUMOS:
- Espátula
- Agua destilada



Figura 3. Muestras del Suelo antes y después de la prueba Fuente: Manual de Carreteras. Ensayo de Materiales, MTC

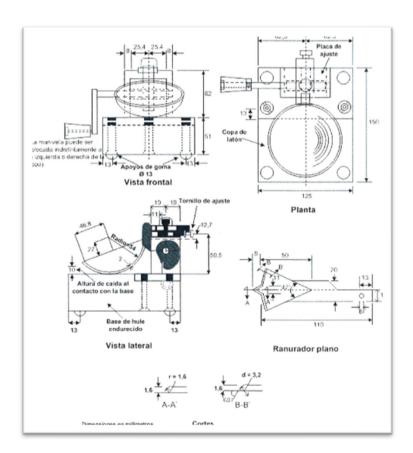


Figura 4. Copa de Casagrande

Fuente: Manual de Carreteras. Ensayo de Materiales, MTC

Según [17], para hallar el límite líquido (LL) usaremos la siguiente fórmula:

$$LL = W^n \left(\frac{N}{25}\right)^{0.121} \text{ ó } LL = KW^n$$

Donde:

N: Número de golpes que se requiere para cerrar el contenido de humedad

Wn: Contenido de humedad del suelo

K: Factor que depende del número de golpes

Se debe agregar que según [17], en el MTC – E111(límite plástico e índice plástico), el ensayo se debe desarrollar enrollando y presionando hasta que la muestra se pueda formar en rollitos de 3.2mm de diámetro, este procedimiento se ejecuta sobre una superficie lisa y con la palma de la mano; y para el índice plástico no es más que la variación entre el límite líquido y el límite plástico.

La fórmula para obtener el valor del límite plástico (LP) es la siguiente:

$$L\text{\'imite Pl\'astico} = \frac{\text{Peso de agua}}{\text{Peso del suelo secado al horno}} x 100$$

La fórmula para obtener el valor del índice de plasticidad (IP) es la siguiente:

Índice de Plasticidad (IP) = LL - LP

Figura 5. Prueba de límite plástico

Fuente: Fundamentos de Ingeniería Geotécnica de Braja M. Das

C. Contenido de humedad de un suelo, NTP 339.127

Según el Manual de Ensayos [17] y el MTC – E108, este ensayo está apoyado en la norma norteamericana ASTM D 2216, la cual tiene como fin obtener la relación que

hay entre el peso del agua y el peso de las partículas sólidas, para esto se requiere de los siguientes materiales:

- Horno de secado con el propósito de conservar la muestra a temperatura incesante y uniforme hasta de 110 ± 5°C.
- Balanza de sensibilidad de 0.01g (muestras >200g) y de 0.1g (muestras <200g).
- Recipientes resistentes a la corrosión.
- Desecador.
- Otros utensilios (cuchillos, espátulas, cucharas, etc.)

[17], La fórmula para obtener el valor del contenido de humedad (W) es la siguiente:

$$W = \frac{Peso \text{ de agua}}{Peso \text{ del suelo secado al horno}} x100$$

$$W = \frac{M_{CWS} - M_{CS}}{M_{CS} - M_C} \times 100 = \frac{M_W}{M_S} \times 100$$

Donde:

W: Contenido de humedad (%)

Mcws: Peso del contenedor + Suelo húmedo (gr)

Mcs: Peso del contenedor + Suelo secado en horno (gr)

Mc: Peso del contenedor (gr)

Mw: Peso del agua (gr)

Ms: Peso de las partículas sólidas (gr)

D. Peso específico relativo de las partículas sólidas de un suelo, NTP 339.131

Según el Manual de Ensayos [17] y el MTC – E113, esta prueba es utilizado para poder determinar la relación que hay entre las etapas del suelo, es decir, la relación de vacíos y el grado de saturación.

[17], Para este proceso se emplean los siguientes materiales:

- Picnómetro.
- Balanza de sensibilidad de 0.01g (frasco volumétrico) y de 0.001g (frasco taponado).
- Desecador
- Horno de secado con el propósito de mantener la muestra a temperatura invariable y uniforme hasta de 110 ± 5°C.

- Termómetro
- Embudo

[17], La fórmula para obtener el valor del peso específico relativo (G_S) a cierta temperatura es la siguiente:

$$G_{S} = \frac{T_{x}}{T_{x} \circ C} = \frac{M_{o}}{M_{o} + (M_{o} - M_{b})}$$

Donde:

Gs: Peso específico relativo de las partículas sólidas.

M₀: Masa de la muestra de suelo seco al horno (gr)

Ma: Masa del picnómetro lleno de agua a una cierta temperatura T_x (gr)

M_b: Masa del picnómetro lleno de agua + suelo a una cierta temperatura T_x (gr)

 T_x : Temperatura de los contenidos del picnómetro cuando se determinó la masa M_b (°C)

E. Método de ensayo para la compactación de Proctor Modificado, NTP 339.141

Según el Manual de Ensayos [17] y el MTC – E115, esta prueba fue fundamentado por el reglamento norteamericano ASTM D 1557, la cual tiene como fin definir el vínculo entre la capacidad de agua y el peso individual seco del suelo, dicho prueba se ejecuta en un molde cuyas medidas son de diámetro de 4 o 6 plg, altura de 18 plg, se debe agregar que este ensayo es utilizado solo por los suelos que contengan menor o igual al 30% del peso de las partículas que han sido retenidas en el tamiz 3/4".

En el siguiente aspecto tratará de los procedimientos a realizarse para este ensayo, los cuales según [17], nos menciona que hay 3 procedimientos, en los que se basará de acuerdo a la gradación del material dado.

[17], Para este ensayo se emplean los siguientes materiales y equipos:

- Ensamblaje del molde; este equipo debe ser de un material rígido y cilíndrico, asimismo podemos encontrar dos tipos de molde, uno de 4" (Øinterior 101.6mm y altura 116.4mm) y otro de 6" (Øinterior 152.4mm y altura 116.4mm).
- Pisón o Martillo, este pisón debe ser plano y circular con Ø 50.80mm.
- Extractor de muestra
- Balanza

- Horno de secado con el propósito de conservar la muestra a temperatura invariable y uniforme hasta de 110 ± 5 °C.
- Regla metálica

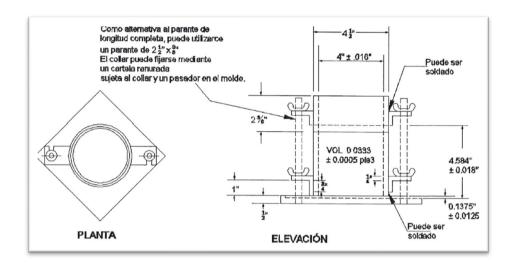


Figura 6. Molde cilíndrico de 4plg

Fuente: Manual de Carreteras. Ensayo de Materiales, MTC

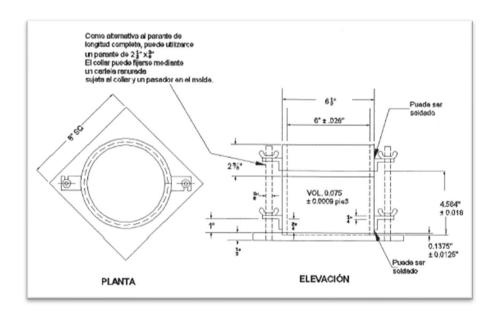


Figura 7. Molde cilíndrico de 6plg

Fuente: Manual de Carreteras. Ensayo de Materiales, MTC

[17], Para este ensayo tenemos que calcular lo siguiente:

- > Contenido de Agua.
- ➤ Peso Unitario Seco, aquí se calcula primero la densidad húmeda luego la densidad seca para luego obtener el peso unitario seco.

$$\rho_m = 1000 \times \frac{(M_t - M_{md})}{V} \dots \dots \dots \dots (1)$$

Donde:

ρ_m: Densidad húmeda del espécimen compactado (Mg/m³).

Mt: Masa del espécimen húmedo y molde (kg)

Ma: Masa del molde compactado (kg)

V: Volumen del molde de compactación (m3)

$$\rho_d = \frac{p_m}{1 + \frac{w}{100}} \dots \dots \dots \dots (2)$$

Donde:

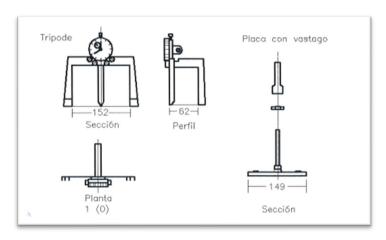
ρ_d: Densidad seca del espécimen compactado (Mg/m³).

w: Contenido de agua (%)

$$\gamma_d = 9.807 \rho_d \quad \left(\frac{KN}{m^3}\right) \, \dots \, \dots \, \dots \, (3)$$

Donde:

γ_d: Peso Unitario Seco del espécimen compactado.


F. Método de ensayo de CBR (Relación de soporte de California), NTP 339.145

Según el Manual de Ensayos [17] y el MTC – E132, esta prueba fue fundamentado por el reglamento norteamericano ASTM D 1883, la cual tiene como fin determinar la relación de peso unitario-humedad, asimismo evalúa la fortaleza de los materiales cohesivos de tamaño máximo de partículas menores a 3/4" (19mm).

[17], Para esta prueba se emplean los siguientes materiales:

- Máquina de carga
- Molde cilíndrico metálico de medidas: Øinterno 152.4mm; altura 177.8mm.
- Disco espaciador circular de metal de medidas: Øexterno 150.8mm.
- Apisonador.
- Aparato para medir la expansión (vástago de metal).

- Pesas
- Pistón de Penetración metálico que esté comprendido entre 49.63mm y 101.6mm.
- Dial de deformación cuyas lecturas de 0.025mm con un rango mínimo de 0.2.

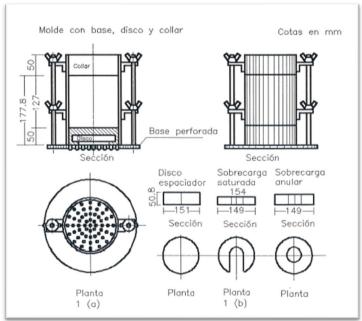


Figura 8. Aparato para ensayo de relaciones de soporte Fuente: Manual de Carreteras. Ensayo de Materiales, MTC

[17], Para este ensayo tenemos que calcular lo siguiente:

➤ Humedad de compactación, esto quiere decir que tenemos que hallar el % de agua q se debe agregar al suelo para que consiga la humedad estipulada.

% de agua a añadir =
$$\frac{H - h}{100 + h} x100$$

Donde:

H: Humedad Prefijada.

h: Humedad natural.

➤ Densidad o peso unitario, esto quiere decir que tenemos que estimar el peso antes de ser sumergido.

Agua absorbida, aquí hay dos opciones de como hallar este cálculo; la primera es la diferencia de humedades entre la inmersión realizada antes y después; y la segunda opción viene hacer con la humedad total de la muestra que está contenida en el molde, es decir, que se calculará el peso de la muestra seca y además el peso húmedo tanto antes como después de ser sumergido.

Presión de penetración, aquí se calculará la presión ejercida por el penetrómetro y los datos obtenidos a partir de fuerza se pasará a dibujar la curva.

Expansión, este valor se obtiene restando las lecturas del deformímetro antes y después de ser sumergido, cuya fórmula es:

$$\% expansión = \frac{L2 - L1}{127} x100$$

Donde:

L1: Lectura Inicial (mm).

L2: Lectura Final (mm).

Materiales y métodos

Tipo y Nivel de Investigación

Tipo de investigación

Referente al desarrollo de la tesis es de tipo **experimental**, ya que se pretende manipular una o más variables de estudio provocando así efectos en otras variables las cuales podrán ser observadas y medidas; en este caso las variables a ser manipuladas son las independientes, es decir, las diferentes dosificaciones de los aditivos AggreBind y MaxxSeal 200, la cual provocarán el efecto en las variables dependientes que es el mejoramiento de las propiedades físico-mecánicas de la estabilización del suelo de subrasante de baja capacidad en vías urbanas no pavimentadas del PJ Antonio Raymondi del ACQUA Sector 1 perteneciente al distrito de la Victoria.

Hay que mencionar, además que de acuerdo con el fin que se pretende alcanzar este estudio es de tipo **aplicada**, ya que lo que se quiere es dar solución al problema establecido.

Nivel de investigación

El nivel de la investigación es **explicativo**, ya que la meta es analizar, evaluar y con ello explicar la influencia que tiene la incorporación de los aditivos para el mejoramiento de la estabilización de la subrasante en las vías urbanas no pavimentadas.

Diseño de investigación

El diseño a ser empleado en esta investigación es **cuantitativa**, ya que los procedimientos están basados en la medición, lo que significa, que las variables serán expuestas a diversos tipos de pruebas con el fin de obtener valores numéricos y así poder comprobar las hipótesis establecidas.

Población, Muestra, Muestreo

Población

En este estudio, se asumió como población o universo a la subrasante de baja capacidad de las vías urbanas no pavimentadas del PJ. Antonio Raymondi del ACQUA Sector 1, la cual está ubicada en el distrito de La Victoria.

Según el INEI nos dice que el PJ. Antonio Raymondi del ACQUA Sector 1, cuenta con 2094 habitantes; por otra parte, esta urbanización comprende un área de 100664m2, de las cuales el 17.57% son vías sin pavimentar (17689m2) y el 2.51% son vías pavimentadas (2529m2).

Muestra de estudio

En esta tesis, con respecto a la muestra de estudio se realizó según la normativa CE.010 Pavimentos Urbanos, la cual nos indica que según el tipo de vía (Véase Tabla 3), se definirá el número de muestras a extraer; en este caso el área total de las vías sin pavimentar es de 17689m2, y por ser un tipo de vía local, lo dividiremos entre 3600m2 y como resultado se estaría extrayendo 5 calicatas a un nivel de profundidad de 1.50m.

Tabla 3. Número de puntos de exploración

TIPO DE VÍA	NÚMERO DE PUNTOS DE INVESTIGACIÓN	Área (m²)
Expresas	1 cada	2000
Arteriales	1 cada	2400
Colectoras	1 cada	3000
Locales	1 cada	3600

Fuente: NTE CE.010 Pavimentos Urbanos

Previamente, se determinó la distancia y el ancho de las vías sin pavimentar tal como se visualiza en la Tabla 4.

Tabla 4. Medidas del ancho y distancia de vías urbanas sin pavimentadas

X75	Ancho de vía	Longitud de vía	Área Parcial
Vías sin pavimentar	(m)	(m)	(m ²)
Demetrio Acosta Chavez	9	274	2466
José Quiñones	9	279	2511
Raúl Gustavo Jiménez Chávez	8	294	2352
Antonio Raymondi	8	356	2848
Pedro Ruiz	8	291	2328
Eloy G. Ureta	8	292	2336
Manuel Mesone Muro	8	356	2848
		Total de Área	17689
		Total de Muestras	4,91

Fuente: Elaboración propia

Como se muestra en la Tabla 4, el total de puntos de investigación a realizar son 4.91, pero asumimos un valor entero próximo al valor resultado, por lo que se estaría ejecutando un total de 5 puntos de exploración (calicatas).

Cabe mencionar que basándonos en la norma CE.010 Pavimentos Urbanos y MTC – E1109 para cada calicata se realizará las siguientes pruebas:

- ✓ Análisis Granulométrico por tamizado
- ✓ Ensayo de Contenido de Humedad Natural
- ✓ Ensayo de Límites de Atterberg, incluye Límite líquido y Límite Plástico
- ✓ Ensayo para determinar el peso específico relativo de sólidos de un suelo
- ✓ Ensayo de Sales Solubles Totales
- ✓ Ensayo Densidad Humedad
- ✓ Ensayo de California Bearing Ratio (CBR)

Con respecto a las muestras con los aditivos, ésta se analizará de acuerdo a la calicata más desfavorable a las diferentes dosificaciones, en el caso del aditivo AggreBind las dosificaciones será al 2, 4 y 6 lt/m3, y para el aditivo MaxxSeal 200 en dosificación de 3, 6 y 9 lt/m2.

Para el caso de las dosificaciones se realizará los siguientes ensayos:

- ✓ Ensayo de Límites de Consistencia, abarca Límite líquido y Límite Plástico.
- ✓ Ensayo Densidad Humedad (Proctor Modificado).
- ✓ Ensayo de California Bearing Ratio (CBR).

Muestreo

Acerca del muestreo, para esta investigación fue considerado de tipo no probabilístico, esto se refiere a que las muestras no dependerán de las probabilidades sino por el contrario, tendrán el criterio del investigador, en este caso se tomó como fundamento la Norma CE.010 Pavimentos Urbanos (Véase Tabla 3).

Criterio de selección

El criterio empleado en esta presente tesis, tal y como se afirma arriba en la muestra de estudio, esta selección se realizó según la normativa CE.010 Pavimentos Urbanos, la cual nos indica que, en base al tipo de vía, se definirá la cantidad de muestras a extraer; en este caso el área total de las vías sin pavimentar es de 17689m2, y por ser un tipo de vía local, lo dividiremos entre 3600m2 y como resultado se estaría extrayendo 5 calicatas a un nivel de profundidad de 1.50m.

Operacionalización de variables

1) Variables

Variable Independiente:

Estabilizantes químicos (MaxxSeal 200 y AggreBind)

Variable Dependiente:

Estabilización del Suelo de Subrasante (Propiedades físicas y mecánicas)

2) Operacionalización

VARIABLES	TIPO DE VARIABLE	DIMENSIONES	INDICADORES	ESCALA DE MEDICIÓN
Estabilizantes	Indopondianto	Aditivo polímero AggreBind	Dosificación del aditivo AggreBind	1t/m3
químicos	Independiente	Aditivo polímero MaxxSeal 200	Dosificación del aditivo MaxxSeal 200	lt/m2
			Granulometría del suelo	% de peso total que pasa
	Dependiente	Propiedades Físicas	Límites de consistencia	
			Contenido de humedad	% contenido de agua
T . 1 7			Peso específico relativo de solidos del suelo	Adimensional
Estabilización del Suelo de			Sistema de clasificación AASHTO	% que pasa en tamiz
Subrasante			Sistema de clasificación SUCS	% que pasa en tamiz
			Permeabilidad del suelo	cm/s
		Propiedades Mecánicas	Valor de capacidad de soporte del material (CBR)	% de carga patrón
			Compactación de Suelos	kg/m3

Tabla 5. Operacionalización de Variables

Fuente: Elaboración propia

Técnicas e instrumentos de recolección de datos

Técnicas

Para este presente proyecto, la técnica a emplearse es la observación directa, ya que nosotros visualizaremos las carencias que tiene la vía no pavimentada y además estaremos en contacto con los ensayos a realizar, con el fin de obtener los datos elaborados por los mismo.

Instrumentos de recolección de datos

Para este estudio se empleó como herramienta metodológico la exploración previa y la técnica de la observación con el fin de brindar información preliminar e indispensable sobre problemas y rasgos físicas, tales como la presencia de hundimientos, baches, desprendimientos de partículas, entre otros.

Para poder realizar los estudios de suelos se tomó en cuenta los siguientes formatos:

- ✓ Análisis Granulométrico por tamizado
- ✓ Ensayo de Contenido de Humedad Natural
- ✓ Ensayo de Límites de Atterberg, incluye Límite líquido y Límite Plástico
- ✓ Ensayo Densidad Humedad (Proctor Modificado)
- ✓ Ensayo de California Bearing Ratio (CBR)

Dichos formatos serán empleados tanto para la muestra sin y con estabilizante.

Además, como herramientas técnicas, los equipos e instrumentos serán empleados para el desarrollo de los ensayos de laboratorio, según estándares normativos.

Tabla 6. Instrumentos de Investigación

		DIGERLA COMO DE	
DESCRIPCIÓN	TÉCNICA	INSTRUMENTO DE	
Baselar eleli	120111011	INVESTIGACIÓN	
Mediante la exploración a	Observación	Apuntes, fotos	
campo se tomó apuntes y	Trabajos de	Herramientas para la	
fotos, para luego realizar las	Campo	extracción de muestras	
excavaciones	(Calicatas 1 - 5)	extracción de muestras	
Dosificación de los	Observación	Ficha Técnica de los	
estabilizadores	Directa	aditivos	
Análisis Granulométrico de	Observación	Ficha de resultados de	
suelos por Tamizado	Experimental	laboratorio (MTC E 107 /	
suelos por Tarrizado	Experimental	NTP 339.128)	
Determinación del limite	Observación	Ficha de resultados de	
liquido (LL)	Experimental	laboratorio (MTC E 110 /	
	Laperintental	NTP 339.129)	
Determinación del limite	Observación	Ficha de resultados de	
plástico (LP) e indice de	Experimental	laboratorio (MTC E 111 /	
plasticidad (IP)	Experimental	NTP 339.129)	
Contenido de Humedad de un	Observación	Ficha de resultados de	
Suelo	Experimental	laboratorio (MTC E 108 /	
Suelo	Experimental	NTP 339.127)	
Método de ensayo para la	Observación	Ficha de resultados de	
Compactación de Proctor		laboratorio (MTC E 115 /	
Modificado	Experimental	NTP 339.141)	
Método de ensayo de CBR	Observación	Ficha de resultados de	
(Relación de Soporte de	Experimental	laboratorio (MTC E 132 /	
California)	Laperintental	NTP 339.145)	

Fuente: Elaboración propia

Procedimientos

Para desarrollar la presente investigación, inicialmente se procedió al reconocimiento de la zona a estudiar, asimismo se observó el estado en que se encuentra las diversas calles que comprende el PJ. Antonio Raymondi del ACQUA Sector 1, en el distrito de La Victoria.

Según la normativa CE.010 Pavimentos Urbanos, el sitio donde se realizará dichas excavaciones, deberá estar situadas en las intersecciones de las vías, además nos indica que de acuerdo al tipo de vía (Ver Tabla 3) se definirá la cantidad de muestras a extraer; en este caso se realizaron 5 calicatas.

El área de la excavación de cada calicata fue de aproximadamente de 0.80m x 1.00m, lo que resultó ser un área conveniente para el fácil ingreso y extracción de los especímenes.

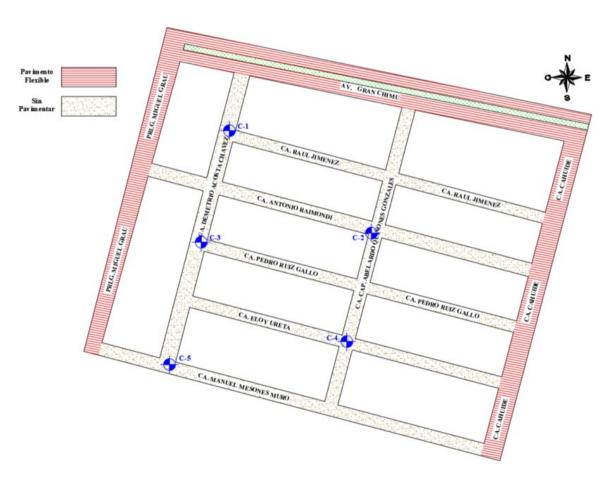


Figura 9. Localización de los puntos de estudio (calicatas)

Fuente: Elaboración propia

Dicho lo anterior, proseguiremos a realizar las calicatas de acuerdo a la normativa MTC-E101, en la que nos indica que para poder identificar el suelo, se debe realizar excavaciones con una profundidad por lo menos de 1.50m, la cual deberá estar por debajo del nivel proyectado para la subrasante [17].

Figura 10. Calicata 05, cruce de la calle Demetrio Acosta y Manuel Mesones Muro

Figura 11. Reconocimiento de la Calicata 5

Posterior a ello, se va desarrollando un perfil estratigráfico detallado por cada calicata con sus características, esto va a depender de la profundidad que se encuentre cada estrato.

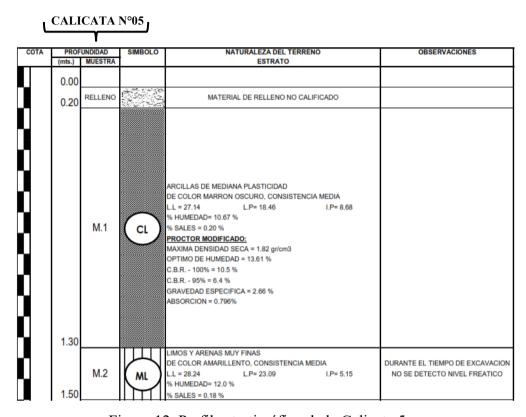


Figura 12. Perfil estratigráfico de la Calicata 5

Después del estudio de las calicatas, se ha encontrado los siguientes estratos:

N° CALICATAS	ESTRATO 1	ESTRATO 2	ESTRATO 3
Calicata 01	De 0.00 a 0.40: Material de relleno no clasificado	De 0.40 a 1.50: Arena arcillosa	
Calicata 02	De 0.00 a 0.30: Material de relleno no clasificado	De 0.30 a 1.50: Arena de mediana plasticidad	
Calicata 03	De 0.00 a 0.50: Material de relleno no clasificado	De 0.50 a 1.50: Arena arcillosa	
Calicata 04	De 0.00 a 0.30: Material de relleno no clasificado	De 0.30 a 1.20: Arena de mediana plasticidad	De 1.20 a 1.50: Limo y arena muy finas
Calicata 05	De 0.00 a 0.20: Material de relleno no clasificado	De 0.20 a 1.30: Arena de mediana plasticidad	De 1.30 a 1.50: Limo y arena muy finas

Por cada calicata se extrajo muestras significativas de aproximadamente 60 kg, para luego ser llevadas al laboratorio en costales, en total fueron 300 kg de muestra de suelo.

1. Proceso de secado, desintegración, mezclado y cuarteo de muestra

Según [23], la muestra alterada se seca exponiéndose al sol sobre una superficie limpia, o en todo caso sobre una bandeja en un horno a baja temperatura; en esta investigación la muestra se puso a secar durante 1 día. (Ver Figura 13)

Figura 13. Secado de la muestra sobre un área limpia

Una vez secas las muestras se realiza el proceso de dispersión, durante la cual se pasa el material por el tamiz N°4 y lo que es retenido se desintegra con un martillo similar al propuesto en obra [23].

Por último, la muestra desintegrada se combina con la que pasó el tamiz N°4 y se procede a realizar el fraccionamiento, en la que consiste en dividir en cuatro cuadrantes por medio de una regla, se elige la muestra representativa y se empieza a realizar los diferentes ensayos.

2. Ensayo de Análisis Granulométrico por Tamizado

Para esta prueba se pesaron 400 gramos de muestra, por el motivo de tener granos finos; posterior a ello se mezcla con agua el cual se lavará a través de las mallas, dichas proporciones que quedan retenidas se recogerán cuidadosamente de tal forma que no se

desperdicie nada a lo largo del proceso, luego se lleva a secar al horno y por último se procede a realizar el ensayo granulométrico y así poder precisar los pesos retenidos.

Figura 14. Agrupación de tamices para el análisis granulométrico

Figura 15. Análisis Granulométrico con muestra seca

3. Ensayo de Contenido de Humedad Natural del Suelo

Para esta prueba primero se debe pesar el recipiente de cada muestra a ensayar, luego se pesará la muestra en un recipiente que esté correctamente identificado para poder realizar bien el ensayo y que no haya confusiones.

Estas muestras, ya en sus respectivos recipientes, son colocadas en un horno por 24 horas a una temperatura de 110 ± 5 °C.

Pasado el tiempo, las muestras son retiradas del horno, para luego ser pesadas en una balanza digital y así registrar los datos obtenidos.

Figura 16. Muestra de cada calicata llevadas al horno

4. Ensayo para determinar el Límite Líquido, Límite Plástico, e Índice de Plasticidad

Para este ensayo, primero se tiene que tamizar la muestra seca por la malla N°40, es allí donde se obtiene una muestra representativa, ésta muestra se mezcla con agua gradualmente hasta formar una pasta, una vez que ya tengamos una consistencia trabajable para iniciar el ensayo, esta proporción de muestra con la ayuda de la espátula se agrega en la copa de Casagrande (Ver Figura 17).

Ya visualizando en la copa de Casagrande que la muestra está homogénea y de manera horizontal, procederemos con ayuda del ranurador a realizar un corte en la mitad de la muestra y con la manivela se empieza a girar la copa dejándose caer a partir de una altura de 1cm, ya iniciado el proceso se contabiliza el número de golpes hasta ver que el corte de la ranura central se cierre a una distancia aproximado de 1/2" (12.7mm), este proceso se debe realizar para 2 pruebas más, pero adicionando agua para incrementar su contenido de humedad y así menguar el número de golpes indispensables para cerrar la fisura.

Cabe señalar que estas pruebas se realizarán para un cierre requerido de 25 a 35 golpes, de 20 a 30 golpes y de 15 a 25 golpes (Ver Figura 18).

Figura 17. Preparación de la mezcla de suelo más agua

Figura 18. Ensayo de Límite Líquido en la Copa Casagrande

Para la prueba de límite plástico, ésta se realiza con el material que queda del límite líquido, luego se empieza a formar unos bastones o cilindros de 3.2mm de diámetro sobre una parcela de madera, dichos bastones se colocan en un recipiente y luego son llevadas al horno para que se sequen (Ver Figura 19).

Finalmente, las muestras se sacan del horno, se pesan y se anotan los datos obtenidos, y se determina el índice plástico, que es la resta entre el límite líquido y el límite plástico; este proceso se realiza para las 5 calicatas en estudio.

Figura 19. Ensayo de Límite Plástico

5. Ensayo de gravedad específica de sólidas de un suelo

Para esta prueba, la muestra seca representativa debe haber pasado por la malla N°40, primero se pesa la fiola sola, luego se vierte la muestra en la fiola cuidadosamente para evitar pérdidas de suelo, posterior a ello se llena con agua la fiola hasta las 3/4 partes de su capacidad. Después se calienta la fiola a una baja temperatura girando por momentos para así poder eliminar el aire; dichas muestras calentadas se dejan enfriar para posteriormente pesar y anotar los datos obtenidos.

Figura 20. Muestra de Suelo vertido en la matriz

6. Ensayo para la compactación de Proctor Modificado

En esta prueba se utilizó el método "A", debido a que el material retenido por la malla N°4 era menos del 20% según el análisis granulométrico realizado para cada una de las calicatas. Como muestra se utilizaron 10kg de suelo semiseco, se añadió un cierto porcentaje de agua a cada muestra de ensayo para acercarlas lo más posible al óptimo contenido de humedad estimado.

Ya teniendo las muestras para cada calicata, éstas se van vertiendo al molde en 5 capas, la cual se va compactando con 25 golpes por cada capa de acuerdo al MTC – E115; ya consistente la capa final, se retira el collar, se nivela la muestra para su posterior pesado y se anota los datos obtenidos; de la muestra restante retira una pequeña porción para que se seque y se determine el contenido de humedad de la muestra.

Figura 21. Compactación de la muestra de suelo

7. Ensayo de CBR de un suelo sin estabilizar

En esta prueba la muestra a emplearse fue de 18kg de suelo seco, es decir por cada punto de CBR será 6kg, la elaboración de cada muestra se efectúa teniendo en cuenta el óptimo contenido de humedad establecido en la prueba de Proctor Modificado.

Se pesará el molde junto con la base, posterior a ello se añadirá el collar y se colocará el disco espaciador, luego ya teniendo los especímenes preparados, éstos se van

vertiendo al molde en 5 capas, la cual se va compactando con energías diferentes a 56, 25 y 12 golpes respectivamente.

Ya solidificada la muestra, se invierte el molde para poder separar el disco espaciador, colocar el papel filtro y pesar. Luego sobre la superficie del molde se le coloca la placa perforadora con vástago y las sobrecarga anular y saturada se colocan sobre ella.

Se coloca el trípode sobre el borde del molde, el dial debe alinearse con el vástago de la placa perforada y es allí donde se marca la ubicación de las patas en el borde del molde.

Estos moldes que han sido preparados se llevan a una poza con agua, se sumergen durante 4 días y los valores de expansión son registrados cada 24 horas; pasado 96 horas se retiran los moldes de la poza, se dejan escurrir por unos minutos, se sacan las sobrecargas y se pesan antes de ser sometidas a la prensa de CBR.

Se asienta el pistón, se coloca en 0 el dial medidor electrónico y se empieza a tomar los valores de carga para las penetraciones de acuerdo al MTC – E132; este ensayo se hizo para las demás muestras concernientes a cada calicata, con el fin de determinar el CBR con menor valor.

Figura 22. Elaboración de los especímenes de prueba para ensayo CBR

Figura 23. Moldes de ensayo sumergido en la poza con agua

Figura 24. Penetración del espécimen de prueba

8. Ensayo de Permeabilidad

Para este ensayo, la muestra representativa se tamiza por la malla N°4, en el caso de que se tenga una muestra seca, ésta se debe saturar aproximadamente 1 hora.

Luego de saturar la muestra, el tubo de entrada se conecta a la bureta, se vierte agua en él y se nota la carga inicial de agua (h1).

Seguidamente, las válvulas tanto de entrada como de salida se abren sincronizadamente para dar inicio al proceso de flujo de agua por medio de la muestra con la ayuda de un cronómetro.

Finalmente se cierran las válvulas, registramos el periodo discurrido y la altura final de agua (h2).

Figura 25. Medición del espécimen de prueba en el ensayo de permeabilidad

9. Criterio para determinar las tres dosificaciones con estabilizante AggreBind

El raciocinio de la evaluación es que luego de identificar el CBR de todas las calicatas, se toma el menor valor y empezamos a trabajar sobre ella los ensayos de análisis granulométrico, límites de consistencia, Proctor Modificado y CBR.

Se determinaron 3 dosificaciones diferentes (2, 4, 6 lt/m3) para poder proyectar una curva de CBR vs Dosificación y fijar la dosis óptima.

Según la muestra con menor valor de CBR (Calicata 02), la MDS es 1.80 gr/cm3 y el OCH es de 14.04%.

Para calcular la cantidad de aditivo que se empleará, primero se tiene que hallar el peso de los sólidos teniendo en cuenta la humedad natural (W= 15.6%) y el peso inicial de 20kg.

$$W_S + W_W = 20kg$$
 $W_S = \frac{20kg}{1.156}$ $W_S + 0.156W_S = 20kg$ $W_S = 17.3kg$

Luego tenemos que hallar el volumen del suelo a ensayarse para ello se tiene que tener en cuenta la MDS, mientras tanto se debe obtener el peso del suelo que se empleará teniendo en cuenta el óptimo contenido de humedad (W= 14.04%).

$$W_S + W_W = 17.3 + 14.04\%W_S$$

$$V = \frac{19730.10gr}{1.80gr/cm3}$$

$$W_S + W_W = 19.73010kg$$

$$V = 10961.17cm^3$$

$$W_S + W_W = 19730.10gr$$

$$V = 0.01096171m^3$$

Finalmente, ya teniendo el volumen se realizará el cálculo para cada dosificación establecida con las siguientes ecuaciones:

Ecuación 1: Cálculo Total del líquido → AGB + H₂O en la muestra del suelo.

Ecuación 2: Cálculo Total del aditivo en la muestra del suelo.

Ecuación 3: Cálculo Total del agua en la muestra del suelo.

Total del líquido =
$$PM(OMC - Wn) \dots \dots \dots \dots (1)$$

Total del aditivo =
$$PMx \frac{Dosis \ AggreBind}{Densidad \ del \ suelo} \dots \dots \dots \dots (2)$$

$$Total del agua = Total del Líquido - Total del aditivo (3)$$

Donde:

PM: Peso de la muestra del suelo para CBR (gr)

OMC: Óptimo Contenido de Humedad del suelo que se ensayará.

Wn: Contenido de Humedad natural del suelo.

➤ Muestra equivalente a 2 lt/m3:

Peso de la Muestra Seca = 19.73 kg

Total del líquido = $19.73 * (14.04\% - 15.6\%) * 1000 = -308 \ gr \rightarrow -308 \ ml$

Total del aditivo AGB =
$$19.73 * \left(\frac{2 * 1000}{1.80 * 100^3} \right) = 0.022 \ lt \rightarrow 22 ml$$

Total del agua =
$$-308 - 22 = -330ml$$

Para este caso que sale negativo el total del agua, es recomendado por el proveedor que se adicione el 30% del agua.

Total del agua = $30\% * \text{Total del aditivo AB} = 30\% * 22ml = 6.6ml \approx 7ml$

También es posible determinar la cantidad de aditivo con respecto al volumen ensayado.

Volumen aditivo = $0.022 \text{ lt} \approx 22 \text{ ml}$

➤ Muestra equivalente a 4 lt/m3:

Peso de la Muestra Seca = 19.73 kg

Total del líquido =
$$19.73 * (14.04\% - 15.6\%) * 1000 = -308 \ gr \rightarrow -308 \ ml$$

Total del aditivo AGB =
$$19.73 * \left(\frac{4 * 1000}{1.80 * 100^3} \right) = 0.044 \ lt \rightarrow 44ml$$

Total del agua =
$$-308 - 22 = -330ml$$

Para este caso que sale negativo el total del agua, es recomendado por el proveedor que se adicione el 30% del agua.

Total del agua = 30% * Total del aditivo AB = 30% * 44ml = $13.2ml \approx 14ml$ También es posible determinar la cantidad de aditivo con respecto al volumen ensayado.

4 lt -----> 1 m3
X lt ----> 0.011 m3
Volumen aditivo = 0.044 lt
$$\approx$$
 44 ml

➤ Muestra equivalente a 6 lt/m3:

Peso de la Muestra Seca = 19.73 kg

Total del líquido = $19.73 * (14.04\% - 15.6\%) * 1000 = -308 \ gr \rightarrow -308 \ ml$

Total del aditivo AGB =
$$19.73 * \left(\frac{6 * 1000}{1.80 * 100^3} \right) = 0.066 \ lt \rightarrow 66 ml$$

Total del agua =
$$-308 - 22 = -330ml$$

Para este caso que sale negativo el total del agua, es recomendado por el proveedor que se adicione el 30% del agua.

Total del agua = $30\% * Total del aditivo AB = <math>30\% * 66ml = 19.8ml \approx 20ml$ También es posible determinar la cantidad de aditivo con respecto al volumen ensayado.

6 lt -----> 1 m3
X lt ----> 0.011 m3
Volumen aditivo = 0.066 lt
$$\approx$$
 66 ml

DOSIFICACIÓN	Dosificación Equivalente (ml)		
	AggreBind	Agua	
2 lt/m3	22	7	
4 lt/m3	44	14	
6 lt/m3	66	20	

En la siguiente tabla se sintetiza las cantidades equivalentes:

Tabla 7. Dosificaciones equivalentes en volumen de AggreBind

10. Criterio para determinar las tres dosificaciones con estabilizante MaxxSeal 200

El raciocinio de la evaluación es que después de identificar el CBR de todas las calicatas, se toma el menor valor y empezamos a aplicar sobre ella los mismos ensayos que se efectuaron con el producto AggreBind.

Se determinaron 3 dosificaciones diferentes (3, 6, 9 lt/m2) para poder proyectar una curva de CBR vs Dosificación y fijar la dosis óptima.

Según la muestra con menor valor de CBR (Calicata 02), la MDS es 1.80 gr/cm3 y el OCH es 14.04%.

Para calcular la cantidad de aditivo que se empleará, primero se tiene que hallar el peso de los sólidos teniendo en cuenta la humedad natural (W= 15.6%) y el peso inicial de 20kg.

$$W_S + W_W = 20kg$$
 $W_S = \frac{20kg}{1.156}$ $W_S + 0.156W_S = 20kg$ $W_S = 17.3kg$

Luego tenemos que ver cuál es el área que se va a ensayar, previo a ello se debe obtener el peso del suelo que se empleará teniendo en cuenta el óptimo contenido de humedad (W= 14.04%), además teniendo la MDS se hallará el volumen.

$$W_S + W_W = 17.3 + 14.04\%W_S$$

 $W_S + W_W = 19.73010kg$ $V = \frac{19730.10gr}{1.80gr/cm3}$
 $W_S + W_W = 19730.10gr$ $V = 10961.17cm3$

Finalmente, ya teniendo el volumen y el espesor (e = 15cm) del suelo que se ensayará, obtendremos el área.

$$V = A x e$$
 $A = \frac{10961.17 cm^3}{15 cm}$ $A = 730.75 cm^2$ $A = 0.0731 m^2$

Cabe señalar que este aditivo su tasa de dilución es de 1 a 10, es decir, 1 litro de MaxxSeal 200 por 10 litros de Agua.

➤ Muestra equivalente a 3 lt/m2:

Para esta dosificación primero se hallará el área que se requiere para los 3 lt/m2, luego se obtendrá el volumen del aditivo.

$$3.79 \text{ lt}$$
 ------> 6 m2

 3.00 lt -----> X m2

Área requerida = 4.75 m2

 3.00 lt -----> 4.75 m2

X lt ----> 0.073 m2

Volumen aditivo = 0.04616 lt \approx 47 ml

Volumen de agua = 470 ml

➤ Muestra equivalente a 6 lt/m2:

Para esta dosificación primero se hallará el área que se requiere para los 6 lt/m2, luego se obtendrá el volumen del aditivo.

Como se puede observar el área que se aplicará para la muestra equivalente a 6 lt/m2 es el doble del área que se obtuvo en la anterior relación, es por ello que se deduce que el volumen de la dosis será el doble.

➤ Muestra equivalente a 9 lt/m2:

Para esta dosificación primero se hallará el área que se requiere para los 9 lt/m2, luego se obtendrá el volumen del aditivo.

Como se puede observar el área que se aplicará para la muestra equivalente a 9 lt/m2 es el triple del área que se obtuvo en la primera relación, es por ello que se deduce que el volumen de la dosis será el triple.

En la siguiente tabla se sintetiza las cantidades equivalentes:

DOSIFICACIÓN	Dosificación Equivalente (ml)		
DOSIFICACION	MaxxSeal 200	Agua	
3 lt/m2	47	470	
6 lt/m2	94	940	
9 lt/m2	141	1410	

Tabla 8. Dosificaciones equivalentes en volumen de MaxxSeal 200

11. Ensayo de límite líquido, límite plástico, índice de plasticidad con estabilizante AggreBind, dosificación equivalente a 2 lt/m3

De la muestra preparada para realizar los diferentes ensayos, se saca una muestra representativa para poder realizar el ensayo de límite líquido y límite plástico del suelo con dichas dosificaciones.

El procedimiento de este ensayo es el mismo que se realizó para las muestras sin aditivos y de acuerdo a la norma del MTC – E110 y E111.

Este ensayo se realiza para cada una de las dosificaciones que se establecieron (2, 4 y 6 lt/m3).

Figura 26. Ensayo de Límite de Atterberg más estabilizante AggreBind

12. Ensayo de Proctor Modificado con estabilizante AggreBind, dosificación equivalente a 2 lt/m3

Para realizar este ensayo, se tuvo en cuenta las especificaciones técnicas del producto, se determinó la cantidad o dosificación equivalente de aditivo para cada muestra a emplearse; esta cantidad se agrega a la muestra del suelo seco con un compuesto agua-aditivo y se empieza a mezclar, posterior a ello se deja secar la muestra, pasado el tiempo de secado, ésta es vertida en moldes para ser comprimidas y así conocer las cualidades tanto de la MDS como del OCH.

Figura 27. Medición en peso de dosificación AggreBind

13. Ensayo de CBR con estabilizante AggreBind, dosificación equivalente a 2 lt/m3

Esta prueba se lleva a cabo teniendo en cuenta el OCH determinado en la prueba de Proctor Modificado, al igual que el ensayo de Proctor esta muestra se deja secar para luego ser compactadas con las dosificaciones que se establecieron (2, 4 y 6 lt/m3), estas muestras compactadas se dejan curar en un tiempo de 28 días según especificaciones técnicas del producto.

Cumpliendo el tiempo de curado se realiza el ensayo de CBR, cabe resaltar que este método se efectúa de acuerdo a la norma del MTC y es el mismo que se hizo para las muestras sin aditivos.

Figura 28. Penetración del espécimen de prueba más estabilizante AggreBind

14. Ensayo de límite líquido, límite plástico, índice de plasticidad con estabilizante MaxxSeal 200, dosificación equivalente a 3 lt/m2

De la muestra preparada para realizar los diferentes ensayos, se saca una muestra representativa para poder realizar el ensayo de límite líquido y límite plástico del suelo con dichas dosificaciones.

El procedimiento de este ensayo es el mismo que se realizó para las muestras sin aditivos y de acuerdo a la norma del MTC – E110 y E111.

Este ensayo se realiza para cada una de las dosificaciones que se establecieron (3, 6 y 9 lt/m2).

Figura 29. Ensayo de Límite de Atterberg más estabilizante MaxxSeal 200

15. Ensayo de Proctor Modificado con estabilizante MaxxSeal 200, dosificación equivalente a 3 lt/m2

Para realizar este ensayo, se tuvo en cuenta las especificaciones técnicas del producto, se determinó la cantidad o dosificación equivalente de aditivo para cada muestra a emplearse; esta cantidad se agrega a la muestra del suelo seco con un compuesto agua-aditivo y se empieza a mezclar, posterior a ello se deja secar la muestra, pasado el tiempo de secado, ésta es vertida en moldes para ser compactadas y así determinar las cualidades tanto de MDS como del OCH.

Figura 30. Medición en peso de dosificación MaxxSeal 200

16. Ensayo de CBR con estabilizante MaxxSeal 200, dosificación equivalente a 3 lt/m2

Esta prueba se lleva a cabo teniendo en cuenta el OCH determinado en la prueba de Proctor Modificado, al igual que el ensayo de Proctor esta muestra se deja secar para luego ser compactadas con las dosificaciones que se establecieron (3, 6 y 9 lt/m2), estas muestras compactadas se dejan curar en un tiempo de 7 días según especificaciones técnicas del producto.

Cumpliendo el tiempo de curado se realiza el ensayo de CBR, cabe resaltar que este método se efectúa de acuerdo a la norma del MTC y es el mismo que se hizo para las muestras sin aditivos.

Figura 31. Mezcla de la muestra más estabilizante MaxxSeal 200

Plan de procesamiento y análisis de datos

En la presente investigación se planteó 5 etapas, las cuales se mencionarán a continuación:

ETAPA 1. RECOLECCIÓN DE INFORMACIÓN

- * Revisión bibliográfica.
- * Revisión de las Normas MTC y NTP.
- * Revisión de diversos manuales para el desarrollo de los ensayos.
- * Recopilación de información sobre los estabilizantes (AggreBind y MaxxSeal 200).
- * Revisión semanal por el asesor.

ETAPA 2. PLANIFICACIÓN DE ENSAYOS y ADQUISICIÓN DE ADITIVOS

- Ubicación y elección de laboratorio.
- ❖ Adquisición de los aditivos AggreBind y MaxxSeal 200.
- Determinación de tipos de ensayos.

ETAPA 3. OBTENCIÓN DE LAS MUESTRAS Y REALIZACIÓN DE LOS ENSAYOS

- Extracción de la muestra de suelos
- ❖ Determinación de las propiedades físicas y mecánicas del suelo de fundación.
- ❖ Determinar la calicata con CBR menor.
- ❖ Estabilizar la calicata menor con los aditivos AggreBind y MaxxSeal 200.

ETAPA 4. ENSAYO DE RESISTENCIA DEL SUELO Y PROCESAMIENTO DE DATOS

- Ensayos de Proctor Modificado con las diferentes dosificaciones.
- * Ensayo de CBR con las diferentes dosificaciones.
- Costos y presupuestos para decretar el beneficio de la estabilización.
- Verificación semanal por el asesor

ETAPA 5. ANÁLISIS DE RESULTADOS Y PRESENTACIÓN FINAL DEL PROYECTO

- ❖ Análisis de resultados de ensayos.
- Conclusiones y recomendaciones.
- * Redacción del informe final
- Sustentación de tesis

Matriz de consistencia

FORMULACIÓN DEL PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIÓN	INDICADORES	METODOLOGÍA	
	General Analizar la influencia de la incorporación		Independiente	Aditivo polimero AggreBind	Dosificación del aditivo AggreBind	Tipo de Investigación Esta investigación es de tipo	
	de los aditivos AggreBind y MaxxSeal 200 en el mejoramiento de las propiedades fisico-mecánicas en la		Aditivos quimicos	Aditivo polimero MaxxSeal 200	Dosificación del aditivo MaxxSeal 200	experimental, ya que se pretende manipular una o más variables de estudio provocando así efectos en	
	estabilización de subrasante de baja capacidad en vias urbanas no		Dependiente		Granulometria del suelo	otras variables las cuales podrán ser observadas y medidas.	
¿Como influye la	pavimentadas en el distrito de La Victoria.				Limites de consistencia	Tipo explicativo, ya que pretende analizar, evaluar y por ende explicar la influencia que tiene la incorporación de los aditivos. De acuerdo con el fin que se pretende alcanzar la investigación es de tipo aplicada.	
incorporación de los aditivos AggreBind y	Específicos O1: Determinar las características fisico-	las caracteristicas físico- nelo de fundación. la dosificación óptima al vos AggreBind y en el suelo de subrasante. los resultados de la porte (CBR) de la polizar (muestra patrón) y estabilizadas con los estabilizadas con los estabilizadas con los urbanas no pavimentadas del distrito de La Victoria. Victoria.	as		Contenido de humedad		
MaxxSeal 200 en el mejoramiento de las propiedades fisico-	O2: Determinar la dosificación óptima al emplear los aditivos AggreBind y MaxxSeal 200 en el suelo de subrasante. O3: Comparar los resultados de la capa				Peso específico relativo de solidos del suelo		
mecánicas en la estabilización de				Propiedades Fisicas	Sistema de clasificación AASHTO		
subrasante de baja					Sistema de clasificación SUCS	Población: La subrasante de baja	
capacidad en vias urbanas no pavimentadas en el distrito de La Victoria?	muestra sin estabilizar (muestra patrón) y de las muestras estabilizadas con los polimeros AggreBind y MaxxSeal 200.			distrito de La de Subrasante		Permeabilidad del suelo	capacidad de las vias urbanas no pavimentadas del PJ. Antonio Raymondi del ACQUA Sector 1. Via sin pavimentar: 17689m2
	O4: Comparar los resultados de permeabilidad de la muestra sin estabilizar y con estabilizantes.				Valor de capacidad de soporte del material (CBR)	Muestra: 5 calicatas de acuerdo	
	O5: Comparar los costos de estabilización quimica para una via urbana no pavimentada con los aditivos AggreBind y MaxxSeal 200.		Propiedades Mecánicas	Compactación de Suelos	a la normativa CE. 010 Pavimentos Urbanos		

Tabla 9. Matriz de Consistencia

Fuente: Elaboración propia

Consideraciones éticas

Consideración		Antecedentes		Investigación Propia	Comentario
Consideration	Autor	Título	Elección	investigación Fropia	Сощентагіо
Ubicación y Número de puntos de Estudio	Reglamento Nacional de Edificaciones	Norma CE.010 Pavimentos Urbanos	El número de puntos de estudio fue elegido según el área total de las vias sin pavimentar siendo esto de 17689m2, y por considerarse un pavimento urbano de tipo local, lo dividiremos entre 3600m2 y como resultado se estaria extrayendo 5 calicatas (puntos de investigación) a un nivel de profundidad de 1.50m.	El número de puntos de estudio se tomaron respetando la norma CE,010 Pavimentos Urbanos teniendo como resultado 5 puntos de investigación en un área total de las vias sin pavimentar de 17689m2.	Los puntos tomados en el PJ. Antonio Raymondi del ACQUA Sector 1 fueron 5, ubicados en las intersecciones del área estudiada.
Elección del estrato a utilizar	Ministerio de transporte y comunicaciones	Manual de Suelos, Geología, Geotecnia y Pavimentos: Sección Suelos y Pavimentos	Clasifica a la subrasante como adecuado y estable cuando se obtiene un CBR mayor al 6%, por el contrario, se dice que la subrasante es pobre o inadecuada cuando el CBR es menor al 6%, en este último caso la subrasante se tendria que estabilizar.	En esta investigación se tomó el estrato conformado por arcillas de mediana plasticidad, encontrado entre las alturas de 0.30m a 1.50m	Se tomó el estrato encontrado en la Calicata 02, siendo un suelo CL
Elección de	Flores Castañeda, Lear William Baltazar	"Evaluación y mejoramiento con Maxxseal 200 de la subrasante en la Av. Maria Parado de Bellido, Paita, 2020"	En esta investigación trabaja con un suelo de tipo SC y se emplea dosificaciones de 3%, 6% y 9%.	Basándonos en las investigaciones previas de los autores mencionados y respetando las especificaciones técnicas	Las dosificaciones establecidas fueron de 3 lts/m2, 6 lts/m2 y 9 lts/m2, las
dosificaciones a emplear	Godoy Moreyra Smith César	"Modificación de la capacidad portante de la subrasante por estabilización quimica utilizando MAXX – SEAL 200 en pavimento flexible en la Av. Ganaderos - Surco, 2018"	En esta investigación trabaja con un suelo de tipo OL y se emplea dosificaciones de 6% , 8% y 10% .	del aditivo, se ha propuesto emplear dosificaciones de 3, 6, 9 lts/m2	cuales se probarán con la calicata más desfavorable (Calicata 02).
	Bazán Quiñones, Maelson Daniel	"Mejoramiento técnico económico de pavimentos con la aplicación del polimero acrilico AggreBind en la Av. Paramonga - San Martin de Porres – Lima - Lima - 2019"	En esta investigación trabaja con un suelo de tipo CL y se emplea dosificaciones de 3, 3.5, 4, 5 lts/m3.	Basándonos en las investigaciones previas de los autores mencionados y respetando las específicaciones técnicas fi del aditivo, se ha propuesto emplear dosificaciones de 2, 4	Las dosificaciones seleccionadas fueron de 2 lts/m3, 4 lts/m3 y 6 lts/m3, las cuales se probarán con la calicata más desfavorable (Calicata 02).
Elección de dosificaciones a	Mena Robles, Richard Henry	"Mejoramiento del suelo de una via no pavimentada adicionando estabilizador y sellante en la Ca. Morales Bermúdez, Provincia de Huaral, Lima, 2018"	En esta investigación trabaja con un suelo de tipo ML-CL y se consideró dosificaciones 2, 4 y 6 lts/m3		
emplear	Ortiz Roldan, Juan Sebastian	"Influencia de la aplicación del polimero acrilico AggreBind para estabilización de la subrasante, Jr. Brasil, Villa Maria, Nuevo Chimbote, 2021"	En esta investigación trabaja con un suelo de tipo SP y se emplea dosificaciones de 3, 5,7 lts/m3.		
	Tesen Tineo, Willy Harrinson	"Efecto del polimero acrilico AGGREBIND en el mejoramiento del pavimento flexible en la Av. La Esperanza, Olmos 2021"	En esta investigación trabaja con un suelo de tipo CL-ML y se consideró dosificaciones 2, 4 y 6 litros de aggrebind, dando un incremento en la capacidad portante		
Ensayos Realizados	Ministerio de transporte y comunicaciones	Manual Ensayo de Materiales	Los ensayos que se optaron para emplearse se hizo de acuerdo al Manual de Ensayo de Materiales (MTC E 1109), asimismo se tomó en cuenta la Norma CE.010 Pavimentos Urbanos	Análisis Granulométrico por tamizado, Ensayo de Contenido de Humedad Natural, Ensayo de Limites de Consistencia, incluye Limite liquido y Limite Plástico, Ensayo para determinar el peso específico relativo de sólidos de un suelo, Ensayo de Sales Solubles Totales, Ensayo Densidad – Humedad, Ensayo de California Bearing Ratio (CBR)	Los ensayos que se emplearon fueron análisis granulométrico, contenido de humedad natural, limites de consistencia, Proctor Modificado, CBR

Tabla 10. Consideraciones Éticas

Fuente: Elaboración propia

Resultados y discusión

Resultados

1. Granulometría por Tamizado

En la Tabla 11 se puede observar los resultados obtenidos de las proporciones que pasan la malla N°200, la cual indica que más del 50% de las muestras ensayadas pasan por dicho tamiza y se clasifican como suelo fino.

Nº CALICATA	NO MILECTO A	PROFUNDIDAD	GRANULOME	TRÍA (% pasa)
N° CALICATA	N° MUESIKA	(m)	Malla Nº 4	Malla Nº 200
C1	M1	0.40 - 1.50	97.44	39.45
C2	M1	0.30 - 1.50	99.70	72.99
C3	M1	0.50 - 1.50	90.31	41.51
C4	M1	0.30 - 1.20	99.41	87.73
C4	M2	1.20 - 1.50	98.75	69.21
C5	M1	0.20 - 1.30	93.89	54.95
C3	M2	1.30 - 1.50	97.24	66.35

Tabla 11. Resultado del análisis granulométrico en suelo natural

Enseguida, se mostrará los resultados de granulometría obtenidos por cada calicata.

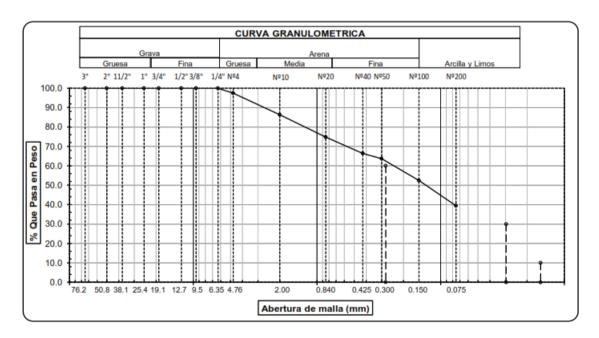


Figura 32. Curva Granulométrica, Calicata 1

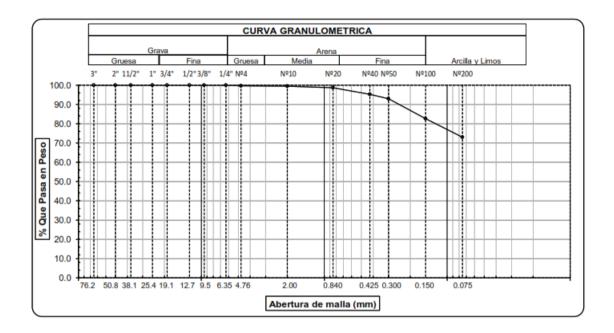


Figura 33. Curva Granulométrica, Calicata 2

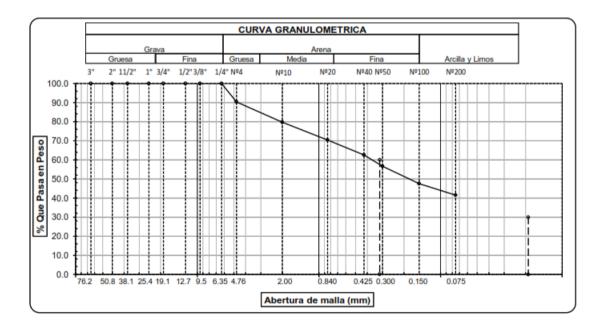


Figura 34. Curva Granulométrica, Calicata 3

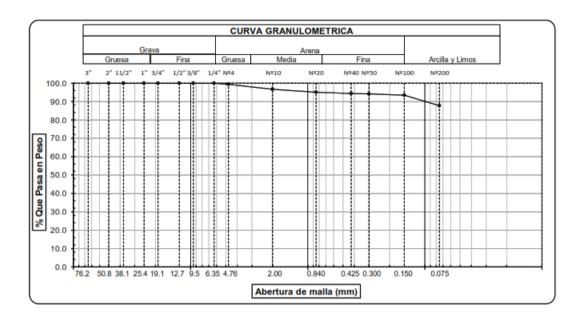


Figura 35. Curva Granulométrica, Calicata 4 – M1

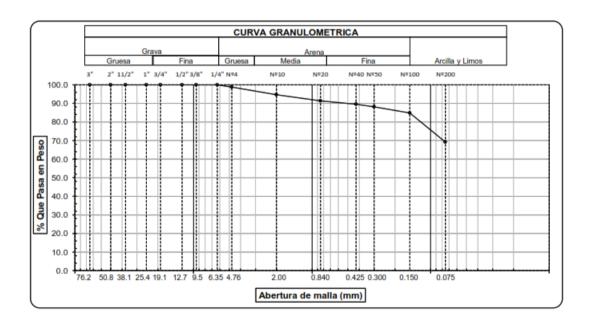


Figura 36. Curva Granulométrica, Calicata 4 – M2

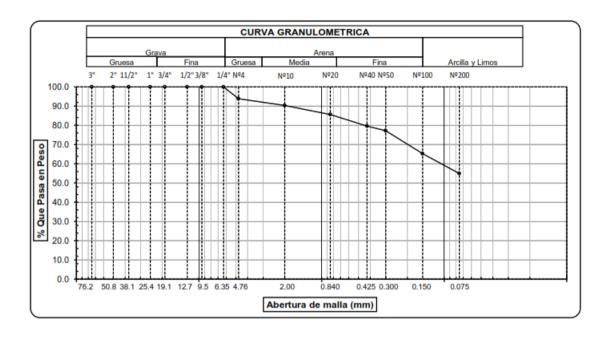


Figura 37. Curva Granulométrica, Calicata 5 – M1

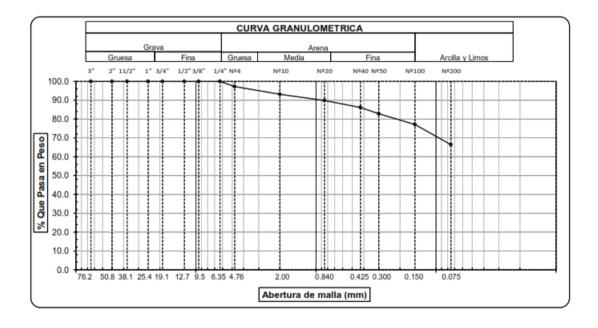


Figura 38. Curva Granulométrica, Calicata 5 – M2

2. Clasificación SUCS y AASHTO

La Tabla 12 expone la clasificación de las muestras de cada calicata obtenidas según los criterios SUCS y AASHTO.

N° CALICATA	NO MILECTEA	PROFUNDIDAD	CLASIFIC	CACIÓN
N° CALICATA	N° MUESIKA	(m)	AASHTO	SUCS
C1	M1	0.40 - 1.50	A-4 (1)	SC
C2	M1	0.30 - 1.50	A-6 (10)	CL
C3	M1	0.50 - 1.50	A-4 (1)	SC
C4	M1	0.30 - 1.20	A-6 (8)	CL
C4	M2	1.20 - 1.50	A-4 (7)	ML
C5	M1	0.20 - 1.30	A-4 (4)	CL
C.5	M2	1.30 - 1.50	A-4 (6)	ML

Tabla 12. Resultado de la clasificación SUCS y AASHTO en suelo natural

3. Contenido de Humedad Natural

La Tabla 13 indican los resultados obtenidos del ensayo de contenido de humedad natural de las muestras de cada calicata, en la que se visualiza que la profundidad mínima fue de 1.50m.

Nº CALICATA	Nº MUESTRA	PROFUNDIDAD (m)	HUMEDAD %
C1	M1	0.40 - 1.50	9.32
C2	M1	0.30 - 1.50	15.60
C3	M1	0.50 - 1.50	8.35
C4	M1	0.30 - 1.20	7.94
C4	M2	1.20 - 1.50	9.44
C5	M1	0.20 - 1.30	10.67
	M2	1.30 - 1.50	12.00

Tabla 13. Resultado del Contenido de Humedad Natural en suelo natural

4. Límites de Atterberg del suelo (Límite Líquido, Límite Plástico e Índice Plástico)

La Tabla 14 exhibe los resultados adquiridos del ensayo de límites de Atterberg o de Consistencia que se realizó a las muestras de cada calicata, con el fin de identificar el nivel de estabilidad que va a poseer el suelo de la subrasante.

Nº CALICATA	Nº MUESTRA	PROFUNDIDAD (m)	LÍMITE LÍQUIDO %	LÍMITE PLÁSTICO %	ÍNDICE PLÁSTICO %
C1	M1	0.40 - 1.50	25.17	15.00	10.17
C2	M1	0.30 - 1.50	35.60	19.04	16.56
C3	M1	0.50 - 1.50	24.87	14.72	10.15
C4	M1	0.30 - 1.20	31.36	20.06	11.30
C4	M2	1.20 - 1.50	31.81	26.55	5.26
C5	M1	0.20 - 1.30	27.14	18.46	8.68
C3	M2	1.30 - 1.50	28.24	23.09	5.15

Tabla 14. Resultado de los Límites de Atterberg

5. Gravedad Específica de sólidos

La Tabla 15 muestra los resultados alcanzados por la prueba de Gravedad Específica que se realizó a las muestras de cada calicata.

N° CALICATA	N° MUESTRA	PROFUNDIDAD (m)	GRAVEDAD ESPECÍFICA (gr/cm3)	GRADO DE ABSORCIÓN (%)
C1	M1	0.40 - 1.50	2.60	0.64
C2	M1	0.30 - 1.50	2.52	0.68
C3	M1	0.50 - 1.50	2.65	0.75
C4	M1	0.30 - 1.20	2.61	0.75
C5	M1	0.20 - 1.30	2.66	0.80

Tabla 15. Resultados del ensayo de gravedad específica

6. Compactación del suelo, Proctor Modificado

La Tabla 16 expone los resultados adquiridos del ensayo de Proctor Modificado, asimismo se indica la MDS y el OCH que se realizó a cada una de las muestras de cada calicata.

Nº CALICATA	N° MUESTRA	PROFUNDIDAD (m)	MÁXIMA DENSIDAD SECA (gr/cm3)	ÓPTIMO CONTENIDO DE HUMEDAD (%)
C1	M1	0.40 - 1.50	1.88	12.68
C2	M1	0.30 - 1.50	1.80	14.04
C3	M1	0.50 - 1.50	1.86	12.90
C4	M1	0.30 - 1.20	1.81	13.95
C5	M1	0.20 - 1.30	1.82	13.61

Tabla 16. Resultados de la prueba de Proctor Modificado

7. Relación California de Soporte, CBR

La Tabla 17 indica los resultados adquiridos de la prueba de CBR de las muestras de cada calicata, CBR al 95% y CBR al 100% de la MDS.

Nº CALICATA	NO MHESTDA	PROFUNDIDAD	CBI	R (%)
N° CALICATA	Nº MUESIKA	(m)	95% MDS	100% MDS
C1	M1	0.40 - 1.50	7.60	12.40
C2	M1	0.30 - 1.50	6.00	9.80
C3	M1	0.50 - 1.50	7.40	12.10
C4	M1	0.30 - 1.20	6.20	10.20
C5	M1	0.20 - 1.30	6.40	10.50

Tabla 17. Resultados de CBR, al 95% y 100% de la MDS

8. Contenido de Sales Solubles

La Tabla 18 expone los resultados adquiridos del ensayo de Contenido de Sales Solubles de las muestras de cada calicata.

Nº CALICATA	Nº MUESTRA	PROFUNDIDAD (m)	SALINIDAD %
C1	M1	0.40 - 1.50	0.15
C2	M1	0.30 - 1.50	0.18
C3	M1	0.50 - 1.50	0.16
C4	M1	0.30 - 1.20	0.17
C4	M2	1.20 - 1.50	0.16
C5	M1	0.20 - 1.30	0.20
	M2	1.30 - 1.50	0.18

Tabla 18. Resultados de Contenido de Sales Solubles

Para evaluar y comparar el suelo natural con la adición de los agentes estabilizadores como es el AggreBind y MaxxSeal 200, se escogió una muestra con valor menor de CBR al 95% en comparación a las demás; y en este caso la muestra con CBR menor fue la Calicata 02 cuyo valor de CBR es del 6% al 95% MDS.

9. Granulometría por Tamizado, adicionando estabilizante AggreBind, según sea las dosificaciones

En la Tabla 19 se puede observar los resultados adquiridos de las proporciones que pasan la malla N°200, la cual indica que más del 50% de las muestras ensayadas del suelo natural (Calicata 02) más las tres dosificaciones establecidas inicialmente para el aditivo AggreBind pasan por dicho tamiza y éstas son clasificadas como un suelo de partículas finas.

ADITIVO AGGREBIND				
Dosificación Equivalente	GRANULOMETRÍA (% pasa) Malla N° 4 Malla N° 200			
Equivalente				
2 lt/m3	97,43	59,17		
4 lt/m3	98,07	63,62		
6 lt/m3	97,69	66,30		

Tabla 19. Resultados de granulometría, con estabilizante AggreBind

A continuación, se mostrará los resultados de granulometría obtenidos para cada calicata.

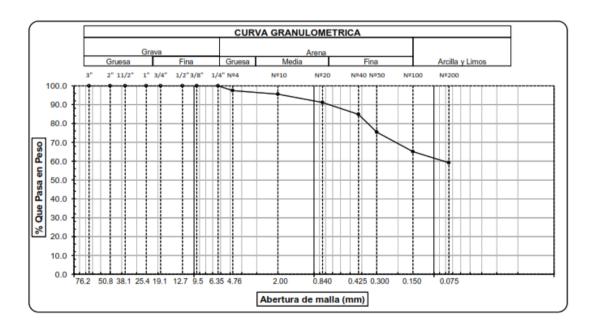


Figura 39. Curva Granulométrica, Calicata 2 + AggreBind (2lt/m3)

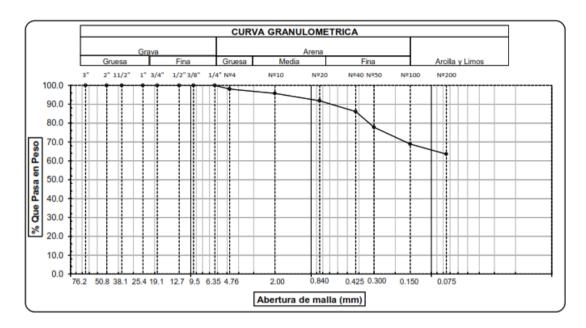


Figura 40. Curva Granulométrica, Calicata 2 + AggreBind (4lt/m3)

Figura 41. Curva Granulométrica, Calicata 2 + AggreBind (6lt/m3)

10. Límites de Atterberg, adicionando estabilizante AggreBind, según sea las dosificaciones

La Tabla 20 muestra los resultados adquiridos del ensayo de límites de Atterberg o de Consistencia que se realizó a la muestra de suelo natural (Calicata 02) más las tres dosificaciones establecidas inicialmente.

ADITIVO AGGREBIND					
Dosificación	Límite	Límite	Índice de		
Equivalente	Líquido	Plástico	Plasticidad		
2 lt/m3	29,75	15,85	13,90		
4 lt/m3	28,08	19,05	9,03		
6 lt/m3	23,41	16,17	7,24		

Tabla 20. Resultados de los Límites de Atterberg, con estabilizante AggreBind

11. Proctor Modificado, adicionando estabilizante AggreBind, según sea las dosificaciones

La Tabla 21 expone los resultados adquiridos del ensayo de Proctor Modificado, con las respectivas dosificaciones equivalentes.

ADITIVO AGGREBIND				
Dosificación Equivalente MDS (gr/cm3) OCH (%)				
2 lt/m3	1,82	13,92		
4 lt/m3	1,85	13,05		
6 lt/m3	1,91	12,19		

Tabla 21. Resultados del Proctor Modificado, con estabilizante AggreBind

12. Relación California de Soporte (CBR), adicionando estabilizante AggreBind, según sea las dosificaciones

La Tabla 22 indica los resultados adquiridos de la prueba de CBR al 95% y CBR al 100% de la MDS para cada dosificación de aditivo que se estableció al principio.

ADITIVO AGGREBIND				
Dosificación	CBR (%)			
Equivalente	95% MDS	100% MDS		
2 lt/m3	10,56	17,28		
4 lt/m3	11,84	19,36		
6 lt/m3	12,16	21,28		

Tabla 22. Resultados de CBR, con estabilizante AggreBind

13. Granulometría por Tamizado, adicionando estabilizante MaxxSeal 200, según sea las dosificaciones

En la Tabla 23 se puede observar los resultados adquiridos de las proporciones que pasan la malla N°200, la cual indica que más del 50% de las muestras ensayadas del suelo natural (Calicata 02) más las tres dosificaciones establecidas inicialmente para el aditivo AggreBind pasan por dicho tamiza y éstas son clasificadas como un suelo de partículas finas.

ADITIVO MAXXSEAL 200							
Dosificación	GRANULOMETRÍA (% pasa)						
Equivalente	Malla N° 4	Malla N° 200					
3 lt/m2	97,45	57,84					
6 lt/m2	98,57	57,11					
9 lt/m2	97,65	59,66					

Tabla 23. Resultados de granulometría, con estabilizante MaxxSeal 200

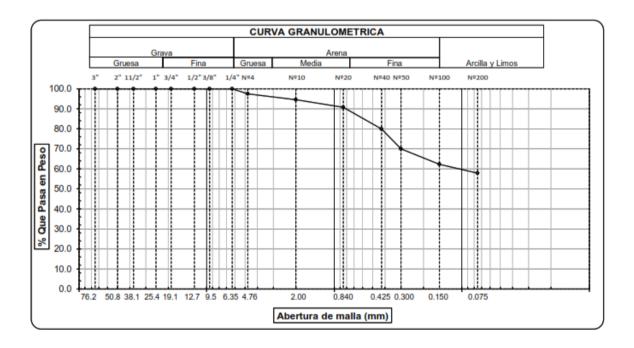


Figura 42. Curva Granulométrica, Calicata 2 + MaxxSeal 200 (3lt/m2)

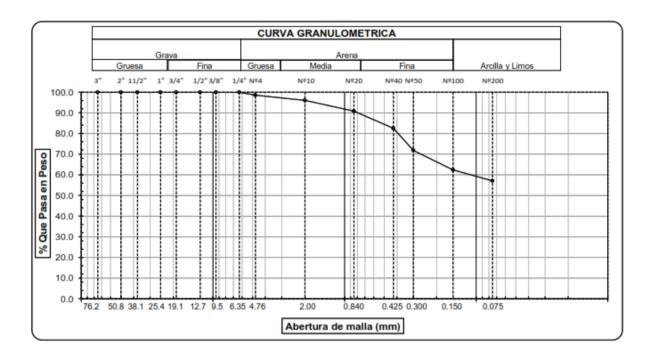


Figura 43. Curva Granulométrica, Calicata 2 + MaxxSeal 200 (6lt/m2)

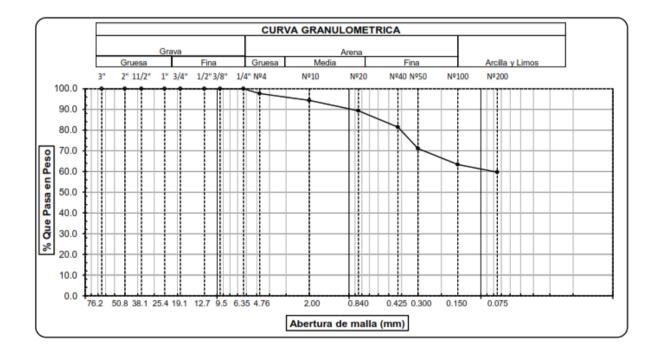


Figura 44. Curva Granulométrica, Calicata 2 + MaxxSeal 200 (9lt/m2)

14. Límites de Atterberg, adicionando estabilizante MaxxSeal 200, según sea las dosificaciones

La Tabla 24 indica los resultados adquiridos del ensayo de límites de Atterberg o de Consistencia que se realizó a la muestra de suelo natural (Calicata 02) más las tres dosificaciones establecidas inicialmente.

ADITIVO MAXXSEAL 200								
Dosificación Equivalente	Límite Líquido	Límite Plástico	Índice de Plasticidad					
3 lt/m2	31,56	15,65	15,91					
6 lt/m2	25,40	13,76	11,64					
9 lt/m2	21,75	15,32	6,43					

Tabla 24. Resultados de los Límites de Atterberg, con estabilizante MaxxSeal 200

15. Proctor Modificado, con adición de aditivo MaxxSeal 200, según sea las dosificaciones

La Tabla 25 expone los resultados adquiridos de la prueba de Proctor Modificado, con las respectivas dosificaciones equivalentes.

ADITIVO MAXXSEAL 200								
Dosificación Equivalente	MDS (gr/cm3)							
3 lt/m2	1,84	13,18						
6 lt/m2	1,89	12,24						
9 lt/m2	1,87	13,03						

Tabla 25. Resultados del Proctor Modificado, con estabilizante MaxxSeal 200

16. Relación California de Soporte (CBR), con adición de aditivo MaxxSeal 200, según sea las dosificaciones

La Tabla 26 expone los resultados adquiridos de la prueba de CBR al 95% y CBR al 100% de la MDS para cada dosificación de estabilizante que se estableció inicialmente.

ADITIVO MAXXSEAL 200								
Dosificación	CBR (%)							
Equivalente	95% MDS 100% MDS							
3 lt/m2	10,40	14,80						
6 lt/m2	11,80	17,20						
9 lt/m2	11,40	16,50						

Tabla 26. Resultados de CBR, con estabilizante MaxxSeal 200

17. Permeabilidad del suelo sin estabilizar y estabilizado

En las Tabla 27 y Tabla 28 se evidencian los resultados adquiridos del ensayo de Permeabilidad para cada dosificación de estabilizante que se estableció al principio.

		PERMEABILIDAD						
	Dosificación	Permeabilidad	Descripción					
	adoptada	K (cm/s)	Descripcion					
SUELO	0 lt/m3	0,0000427	Muy poco Permeable					
NATURAL	0 10/11/3	0,0000427	Muy poco Fermeable					
	2 lt/m3	0,000118	Muy poco Permeable					
AGB	4 lt/m3	0,000130	Poco Permeable					
	6 lt/m3	0,000168	Poco Permeable					

Tabla 27. Resultados de Permeabilidad de suelo natural y suelo adicionando estabilizante AggreBind

	PERMEABILIDAD							
	Dosificación	Permeabilidad	Descripción					
	adoptada	K (cm/s)	Descripcion					
SUELO	0 lt/m2	0,0000427	Muy poco Permeable					
NATURAL	0 10 1112	0,0000127	way poed remidable					
MAXXSEAL	3 lt/m2	0,000082	Muy poco Permeable					
200	6 lt/m2	0,000103	Poco Permeable					
200	9 lt/m2	0,000113	Poco Permeable					

Tabla 28. Resultados de Permeabilidad de suelo natural y suelo adicionando estabilizante MaxxSeal 200

18. Análisis Económico

18.1. Análisis de Precios Unitarios sin Estabilizar

Tabla 29. APU sin estabilizar							
Partida: TRAZO, REPLANTEO Y CONTROLI	ES TOPOG	RÁFICOS		Costo por :	m2	S/ 1.51	
Rendimiento	1000.00	m2 / día					
Jornada Laboral	8.00	horas/dia					
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)	
Mano de Obra						0.70	
OPERARIO		hh	1.00	0.0080	24.23	0.19	
TOPÓGRAFO		hh	1.00	0.0080	24.94	0.20	
AYUDANTE DE TOPOGRAFÍA		hh	2.00	0.0160	19.03	0.30	
Materiales						0.54	
YESO		bol		0.0410	13.12	0.54	
Equipos y Herramientas						0.27	
HERRAMIENTAS MANUALES		%MO		5.0000	0.70	0.04	
NIVEL TOPOGRÁFICO (EQUIPO COMPLETO)		hm	1.00	0.0080	11.50	0.09	
ESTACIÓN TOTAL		hm	1.00	0.0080	14.50	0.12	
WINCHA DE 30m + CORDEL		hm	1.00	0.0080	3.50	0.03	
D. CL. CODER A MINEL DE CURDACAMENT		NAT OTTE	T.T.O.	G .	2	0/15 10	
Partida: CORTE A NIVEL DE SUBRASANTE I	EN MATER	KIAL SUE.	LIO	Costo por :	m3	S/ 15.12	
Rendimiento	350.00	m3 / dia					
Jornada Laboral	8.00	horas/dia					
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)	
Mano de Obra				•		1.34	
OPERARIO		hh	1.00	0.0229	24.23	0.55	
PEÓN		hh	2.00	0.0457	17.29	0.79	
Equipos y Herramientas						13.78	
HERRAMIENTAS MANUALES		%MO		5.0000	1.34	0.07	
CARGADOR SOBRE LLANTAS 100-125 HP		hm	1.00	0.0229	215.38	4.92	
VOLQUETE		hm	1.00	0.0229	384.51	8.79	
Partida: ELIMINACIÓN EXTERNA DE MATE	RIAL EXC	EDENTE		Costo por :	m3	S/ 26.42	
				•			
Rendimiento	200.00	m3 / día					
Jornada Laboral	8.00	horas/dia					
DESCRIPCIÓN	0.00		CHADRILLA	CANTIDAD	PRECIO (S/)	PARCIAL (S/.)	
Mano de Obra		CIVIDIID	CCIDIGEE	CHIVIDIE	Tracero (6/1)	2.35	
OPERARIO		hh	1.00	0.0400	24.23	0.97	
PEÓN		hh	2.00	0.0800	17.29	1.38	
Equipos y Herramientas			2.00	2.3000		24.07	
HERRAMIENTAS MANUALES		%MO		3.0000	2.35	0.07	
CARGADOR SOBRE LLANTAS 100-125 HP		hm	1.00	0.0400	215.38	8.62	
VOLQUETE		hm	1.00	0.0400	384.51	15.38	
				2.3.00			

Partida: PERFILADO, NIVELACIÓN Y COMPAC	CTACIÓ	N DE LA S	UBRASANTE	Costo por :	m2	S/ 7.67
				_		
Rendimiento	750.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						1.02
OPERARIO		hh	1.00	0.0107	24.23	0.26
OFICIAL		hh	1.00	0.0107	19.13	0.20
PEÓN		hh	3.00	0.0320	17.29	0.55
Materiales						0.21
AGUA		m3		0.0350	6.00	0.21
Equipos y Herramientas						6.45
HERRAMIENTAS MANUALES		%MO		3.0000	1.02	0.03
CAMIÓN CISTERNA (2000 GLN.)		hm	1.00	0.0107	204.98	2.19
RODILLO LISO VIBRATORIO AUTOP. 7 - 9 Ton		hm	1.00	0.0107	140.38	1.50
MOTONIVELADORA 130 - 135 HP		hm	1.00	0.0107	256.31	2.73

Partida: ESTABILIZADO CON OVER (8" - 15")	, h=0.30m			Costo por :	m2	S/ 31.21
Rendimiento	600.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						1.05
CAPATAZ		hh	0.10	0.0013	29.08	0.04
OPERARIO		hh	1.00	0.0133	24.23	0.32
PEÓN		hh	3.00	0.0400	17.29	0.69
Materiales						22.10
OVER		m3		0.4000	48.00	19.20
ARENILLA		m3		0.1000	29.00	2.90
Equipos y Herramientas						8.05
HERRAMIENTAS MANUALES		%MO		3.0000	1.05	0.03
CARGADOR SOBRE LLANTAS 100-125 HP		hm	1.00	0.0133	204.98	2.73
RODILLO LISO VIBRATORIO AUTOP. 7 - 9 Ton		hm	1.00	0.0133	140.38	1.87
MOTONIVELADORA 130 - 135 HP		hm	1.00	0.0133	256.31	3.42

Fuente: Elaboración propia

	PRESUPUESTO RESUMEN - MEJORAMIENTO CON OVER							
PROYEC	CTO:	PLAZA:						
ESPECL	ALIDAD:	FECHA:	Noviembre 20	22				
ITEM	DESCRIPCIÓN	UND	METRADO	P.U. (S/.)	PARCIAL (S/.)			
01.00.00	OBRAS PROVISIONALES Y TRABAJOS PRELIMINARES							
01.01.00	TRAZO, REPLANTEO Y CONTROLES TOPOGRÁFICOS	m2	17,689.00	1.51	26,651.17			
02.00.00	MOVIMIENTO DE TIERRAS							
02.01.00	CORTE DE MATERIAL							
02.01.01	CORTE A NIVEL DE SUBRASANTE EN MATERIAL SUELTO	m3	5,306.70	15.12	80,254.35			
02.01.02	ELIMINACIÓN EXTERNA DE MATERIAL EXCEDENTE	m3	7,164.05	26.42	189,263.84			
02.01.03	PERFILADO, NIVELACIÓN Y COMPACTACIÓN DE LA SUBRASANTE	m2	17,689.00	7.67	135,746.69			
02.03.00	COLOCACIÓN DE MATERIAL							
02.03.01	ESTABILIZADO CON OVER (8" - 15"), h=0.30m	m2	17,689.00	30.51	539,633.86			
•			SUB TO	TAL	971,549.90			
			IGV	18%	174,878.98			
			COSTO T	OTAL	1,146,428.88			

Tabla 30. Resumen del presupuesto con Over

El presupuesto total de la estabilización solo con Over resultaría un aproximado de S/1,146,428.88

18.2. Análisis de Precios Unitarios con estabilizante AggreBind

Tabla 31. APU con estabilizante AggreBind

Partida: PERFILADO, NIVELACIÓN Y COMPA	CTACIÓ	N DE LA S	SUBRASANTE	Costo por :	m2	S/ 4.23
Rendimiento	750.00	m2 / dia				
Rendimiento	/30.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						0.65
OPERARIO		hh	1.00	0.0107	24.23	0.26
OFICIAL		hh	1.00	0.0107	19.13	0.20
PEÓN		hh	1.00	0.0107	17.29	0.18
Equipos y Herramientas						3.58
HERRAMIENTAS MANUALES		%MO		5.0000	0.65	0.03
RODILLO LISO VIBRATORIO AUTOP. 7 - 9 Ton		hm	1.00	0.0107	140.38	1.50
MOTONIVELADORA 130 - 135 HP		hm	0.75	0.0080	256.31	2.05

Partida: BATIDO DE MATERIAL CON AG	GREBIND EN	VÍA		Costo por :	m2	S/ 4.53
Rendimiento	800.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						0.59
OPERARIO		hh	1.00	0.0100	24.23	0.24
PEÓN		hh	2.00	0.0200	17.29	0.35
Materiales						0.33
AGGREBIND		1ts		0.0660	3.15	0.21
AGUA		m3		0.0200	6.00	0.12
Equipos y Herramientas						3.62
HERRAMIENTAS MANUALES		%MO		5.0000	0.59	0.03
CAMIÓN CISTERNA (2000 GLN.)		hm	0.50	0.0050	204.98	1.02
MOTONIVELADORA 130 - 135 HP		hm	1.00	0.0100	256.31	2.56

Fuente: Elaboración propia

PRESUPUESTO RESUMEN - MEJORAMIENTO CON AGGREBIND					
		PLAZA: FECHA: Noviembre 2022			
ITEM	DESCRIPCIÓN	UND			PARCIAL (S/.)
01.00.00	OBRAS PROVISIONALES Y TRABAJOS PRELIMINARES				
01.01.00	TRAZO, REPLANTEO Y CONTROLES TOPOGRÁFICOS	m2	17,689.00	1.51	26,651.17
02.00.00	MOVIMIENTO DE TIERRAS				
02.01.00	CORTE DE MATERIAL				
02.01.01	PERFILADO, NIVELACIÓN Y COMPACTACIÓN DE LA SUBRASANTE	m2	17,689.00	4.23	74,774.00
02.01.02	BATIDO DE MATERIAL CON AGGREBIND EN VÍA	m2	17,689.00	4.53	80,191.40
			SUB TOTAL		181,616.57
			IGV	18%	32,690.98
			COSTO TOTAL		214,307.55

Tabla 32. Resumen del presupuesto con estabilizante AggreBind

El presupuesto total de la estabilización solo con AggreBind resultaría un aproximado de S/214,307.55

18.1. Análisis de Precios Unitarios con estabilizante MaxxSeal 200

Tabla 33. APU con estabilizante MaxxSeal 200

Partida: PERFILADO, NIVELACIÓN Y COMPA	CTACIÓ	N DE LA S	UBRASANTE	Costo por :	m2	S/ 4.23
Rendimiento	750.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						0.65
OPERARIO		hh	1.00	0.0107	24.23	0.26
OFICIAL		hh	1.00	0.0107	19.13	0.20
PEÓN		hh	1.00	0.0107	17.29	0.18
Equipos y Herramientas					3.58	
HERRAMIENTAS MANUALES		%MO		5.0000	0.65	0.03
RODILLO LISO VIBRATORIO AUTOP. 7 - 9 Ton		hm	1.00	0.0107	140.38	1.50
MOTONIVELADORA 130 - 135 HP		hm	0.75	0.0080	256.31	2.05

Partida: BATIDO DE MATERIAL CON MA	AXXSEAL 200	EN VÍA		Costo por :	m2	S/ 10.17
Rendimiento	800.00	m2 / dia				
Jornada Laboral	8.00	horas/dia				
DESCRIPCIÓN		UNIDAD	CUADRILLA	CANTIDAD	PRECIO (S/.)	PARCIAL (S/.)
Mano de Obra						0.59
OPERARIO		hh	1.00	0.0100	24.23	0.24
PEÓN		hh	2.00	0.0200	17.29	0.35
Materiales						5.97
MAXXSEAL 200		1ts		0.0940	3.53	0.33
AGUA		m3		0.9400	6.00	5.64
Equipos y Herramientas						3.61
HERRAMIENTAS MANUALES		%MO		5.0000	0.59	0.02
CAMIÓN CISTERNA (2500 GLNS.)		hm	0.50	0.0050	204.98	1.02
MOTONIVELADORA 130 - 135 HP		hm	1.00	0.0100	256.31	2.56

Fuente: Elaboración propia

PRESUPUESTO RESUMEN - MEJORAMIENTO CON MAXXSEAL 200					
PROYECTO: ESPECIALIDAD:		PLAZA: FECHA: Noviembre 2022			
ITEM	DESCRIPCIÓN	UND	METRADO	P.U. (S/.)	PARCIAL (S/.)
01.00.00	OBRAS PROVISIONALES Y TRABAJOS PRELIMINARES				
01.01.00	TRAZO, REPLANTEO Y CONTROLES TOPOGRÁFICOS	m2	17,689.00	1.51	26,691.29
02.00.00	MOVIMIENTO DE TIERRAS				
02.01.00	CORTE DE MATERIAL				
02.01.01	PERFILADO, NIVELACIÓN Y COMPACTACIÓN DE LA SUBRASANTE	m2	17,689.00	4.23	74,774.00
02.01.02	BATIDO DE MATERIAL CON MAXXSEAL 200 EN VÍA	m2	17,689.00	10.18	180,026.70
			SUB TO	TAL	281,491.99
			IGV	18%	50,668.56
			COSTO T	332,160.54	

Tabla 34. Resumen del presupuesto con estabilizante MaxxSeal 200

El presupuesto total de la estabilización solo con MaxxSeal 200 resultaría un aproximado de S/332,160.54

La partida similar para las tres estabilizaciones es trazo, replanteo y controles topográficos; asimismo en la siguiente tabla se sintetiza el presupuesto resumen de las tres estabilizaciones:

ESTABILIZACIÓN	PRESUPUESTO
OVER	S/ 1,146,428.88
AGGREBIND	S/ 214,307.55
MAXXSEAL 200	S/ 332,160.54

Tabla 35. Resultados de evaluación económica

Discusión

1. Granulometría por Tamizado del suelo natural

En el Gráfico 1 se muestra que la Calicata 01 tiene un porcentaje de muestra que pasa el tamiz N°200 de 39.45% a comparación de las otras calicatas que casi la mayoría de las muestras que pasa el tamiz N°200 tienen un porcentaje mayor al 50%.

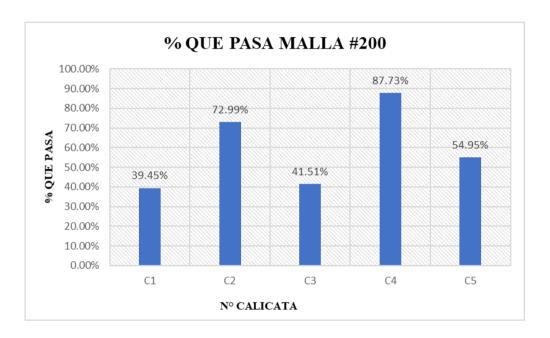


Gráfico 1. % de muestra que pasa la malla N°200

2. Clasificación SUCS y AASHTO

Tomando en cuenta el resultado del ensayo de granulometría por tamizado y los límites de Atterberg, se empieza a catalogar el suelo según la norma AASHTO y SUCS, dicha clasificación se visualiza en la Tabla 12.

En la tabla mencionada nos muestra que se encontró según AASHTO dos tipos de clase de suelo que es A-4 y A-6, hay que mencionar además que en 4 calicatas su índice de grupo es menor a 9; eso quiere decir que el suelo de subrasante va de insuficiente a muy bueno; por otro lado, la calicata restante, es decir la Calicata 02 su índice de grupo es mayor a 10, donde su suelo según el índice de grupo (IG > 9) es un suelo de subrasante inadecuado.

Con respecto a la clasificación SUCS aquí lo califica en dos tipos de suelo que es CL y SC.

Cabe resaltar que para ambos métodos tanto para AASHTO y SUCS la distribución del suelo es de partículas finas.

3. Contenido de Humedad Natural de las Calicatas

Según en el Manual de Carreteras: Sección de Suelos y Pavimentos [15], señala que si la humedad natural del suelo resulta igual o menor a la humedad óptima se tendría que sugerir adecuadamente la contribución de agua necesaria para poder alcanzar dicha humedad, caso contrario si la humedad natural del suelo resulta ser mayor a la humedad óptima se tendría que reemplazar el material saturado o airear el suelo.

El Gráfico 2 indica que la Calicata 02 contiene un gran porcentaje de contenido de humedad mientras que la Calicata 04 muestra un menor porcentaje de contenido de humedad, indicando que solamente la Calicata 02 es superior al contenido de humedad óptima realizada en la prueba de Proctor Modificado.

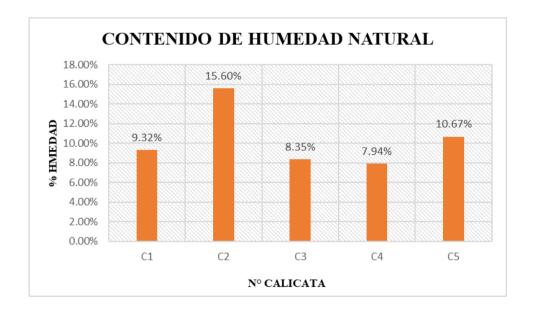


Gráfico 2. Contenido de Humedad Natural de cada calicata

4. Límites de Atterberg del suelo (Límite Líquido, Límite Plástico e Índice Plástico)

La Tabla 14 indica los valores obtenidos de límite líquido y límite plástico, en cambio en el Gráfico 3 se expone la comparación de los índices plásticos de las muestras de suelo de las 5 calicatas.

Según el Manual de Carreteras: Sección de Suelos y Pavimentos [15], señala que los rangos de plasticidad van de 0 a 7 (Plasticidad baja), de 7 a 20 (Plasticidad media) y mayores a 20 (Plasticidad alta); considerando lo antes mencionado y de acuerdo al gráfico podemos decir que las muestras de suelo de las calicatas representarían una plasticidad media con un valor mínimo de 8.68% (Calicata 05) y un máximo de 16.56% (Calicata 02).

Gráfico 3. Índice de plasticidad de las muestras de cada calicata

5. Peso Específico relativo de sólidos o gravedad específica

En el Gráfico 4 se observa las gravedades específicas, la cual nos indica que la Calicata 05 tiene una cifra máxima de 2.66 y la Calicata 02 tiene una cifra mínima de 2.52.

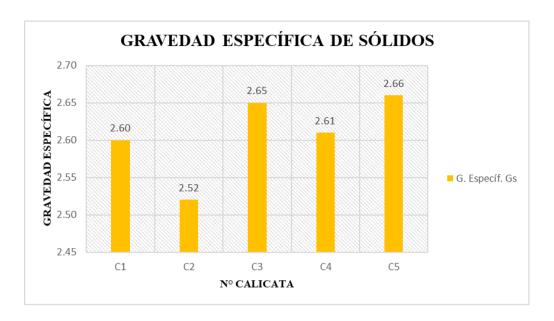


Gráfico 4. Gravedad específica de sólidos de cada calicata

6. Compactación del suelo, Proctor Modificado

El Gráfico 5 expone los valores de la MDS de las muestras de cada calicata, la cual se infiere que el valor máximo es de 1.88 gr/cm3 correspondiente a la Calicata 01, por el contrario, en la Calicata 02, 04 y 05 se colige que hay un descenso en los valores de 1.80 gr/cm3, 1.81 gr/cm3 y 1.82 gr/cm3.

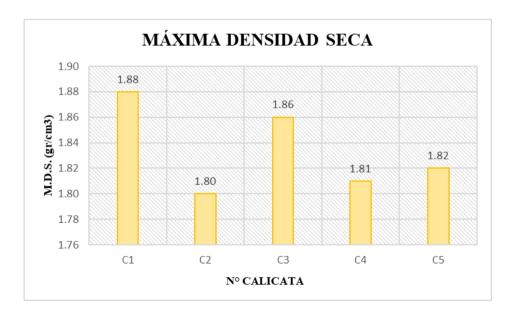


Gráfico 5. Máxima Densidad Seca de las muestras de cada calicata

El Gráfico 6 expone los valores del OCH de las muestras de cada calicata, la cual se infiere que la Calicata 02 presenta un OCH de 14.04% mientras que la muestra de la Calicata 01 tiene un OCH menor de 12.68%.

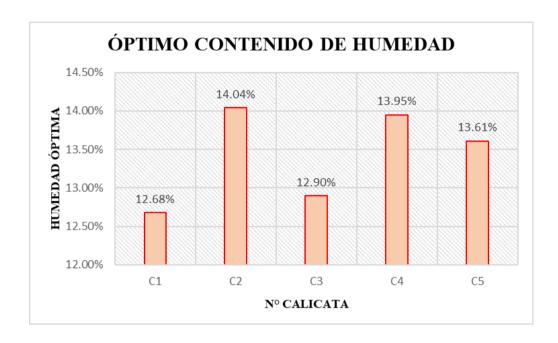


Gráfico 6. Óptimo Contenido de Humedad de las muestras de cada calicata

7. Relación California de Soporte, CBR

El Gráfico 7 expone los valores de CBR logrados tanto para la densidad al 95% como al 100%, en la cual se deduce que la muestra de la Calicata 02 presenta un CBR menor con un valor de 6.00% en comparación con las demás calicatas, mientras que la Calicata 01 presenta un CBR máximo con un valor de 7.60%

Según el Manual de Carreteras: Sección de Suelos y Pavimentos [15], nos precisa que un suelo de subrasante es estabilizado cuando su CBR al 95% de la MDS sea menor al 6%, en este caso por tener un suelo de subrasante de 6% se optó por estabilizar químicamente con aditivos AggreBind y MaxxSeal 200.

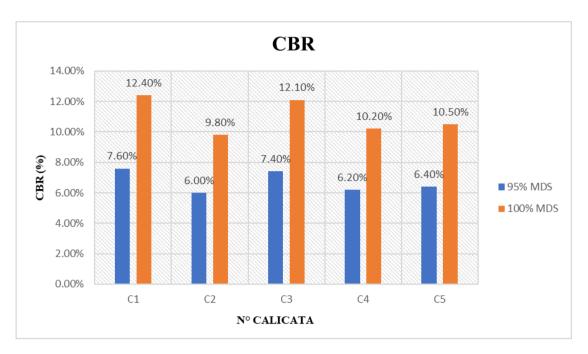


Gráfico 7. CBR de las muestras de cada calicata

8. Contenido de Sales Solubles

El Gráfico 8 indica los valores del Contenido de Sales Solubles de las muestras de cada calicata, la cual se infiere que el valor máximo es 0.20 perteneciente a la Calicata 05, mientras que en la Calicata 01 tiene un valor de 0.15.

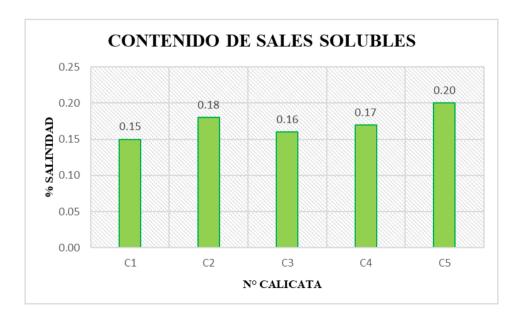


Gráfico 8. Contenido de Sales Solubles de las muestras de cada calicata

9. Granulometría por Tamizado, adicionando estabilizantes AggreBind y MaxxSeal 200

Como se mencionó precedentemente para poder evaluar y comprobar los resultados del suelo natural sin aditivos y con la incorporación de los agentes estabilizadores como es el AggreBind y MaxxSeal 200, se escogió la muestra cuyo CBR al 95% contenga el menor valor con relación a las demás; y en este caso la muestra con CBR menor fue la Calicata 2 cuyo valor es de 6% al 95% MDS.

El Gráfico 9 muestra que añadiéndole una dosificación equivalente de 2 lt/m3 de AggreBind, el porcentaje de muestra que pasa el tamiz N°200 disminuye en 59.17%, reduciéndose así en un 13.82% de la muestra de suelo natural sin aditivos.

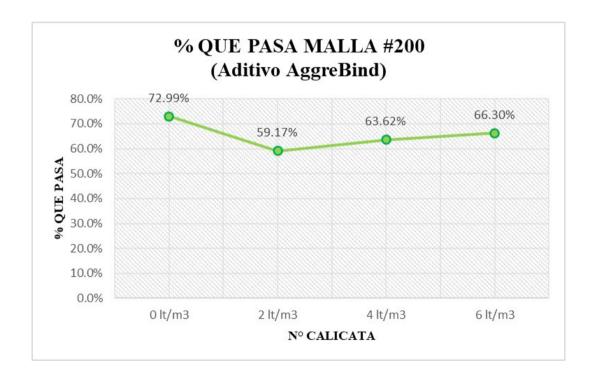


Gráfico 9. % de muestra que pasa la malla N°200, aditivo AggreBind

Por otro lado, en el Gráfico 10 se muestra que incorporando una dosificación equivalente de 3 lt/m2 de MaxxSeal 200, el porcentaje de muestra que pasa el tamiz N°200 disminuye en 57.11%, reduciéndose así en un 15.88% de la muestra de suelo natural sin aditivos.

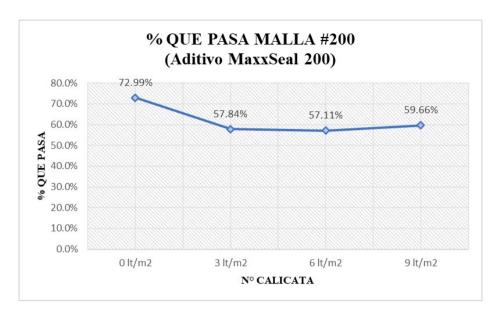


Gráfico 10. % de muestra que pasa la malla N°200, aditivo MaxxSeal 200

10. Límites de Atterberg, adicionando estabilizantes AggreBind y MaxxSeal 200

En el Gráfico 11 se muestra los Límites de Consistencia o Atterberg con el aumento del aditivo AggreBind, en este caso se visualiza que para el límite líquido mientras se aplica una dosificación mayor a lo especificado, éste va disminuyendo; por ejemplo, para una dosificación de 6 lt/m3 de AGB, éste disminuye en un 12.19% a comparación del suelo natural sin aditivo.

También se puede visualizar que, para el límite plástico, éste va variando a medida que se emplea una dosificación mayor a lo establecido, por ejemplo, para una dosificación de 2 lt/m3 de AGB el LP es de 15.85%, mientras tanto para una dosificación de 4 lt/m3 el LP es de 19.05% y para una dosificación de 6 lt/m3 el LP es de 16.17%; si llegamos a comparar con el suelo natural sin aditivos, decimos que la dosificación de 2 lt/m3 y 6 lt/m3 disminuyeron a comparación de la dosificación de 4 lt/m3 que aumento en un pequeño porcentaje.

Por último, el gráfico nos muestra que para el índice de plasticidad a medida que se aplica una dosificación mayor a lo especificado, éste va disminuyendo; por ejemplo, para una dosificación de 6 lt/m3 de AGB, éste disminuye en un 9.32% en comparación con el suelo natural sin aditivo.

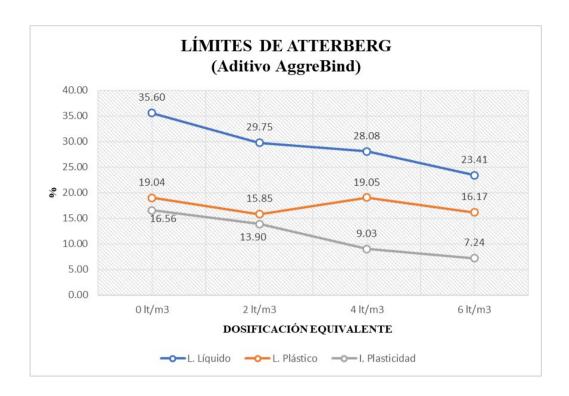


Gráfico 11. Límites de Atterberg con aditivo AggreBind

En el Gráfico 12 se muestra los Límites de Consistencia o Atterberg con el aumento del aditivo MaxxSeal 200, en este caso se observa que para el límite líquido mientras se aplica una dosificación mayor a lo especificado, éste va disminuyendo; por ejemplo, para una dosificación de 9 lt/m2 de MaxxSeal 200, éste disminuye en un 13.85% a comparación del suelo natural sin aditivo.

También se puede visualizar que, para el límite plástico, éste va variando a medida que se emplea una dosificación mayor a lo establecido, por ejemplo, para una dosificación de 3 lt/m2 de MaxxSeal 200 el LP es de 15.65%, mientras tanto para una dosificación de 6 lt/m2 el LP es de 13.76% y para una dosificación de 9 lt/m2 el LP es de 15.32%; si llegamos a comparar con el suelo natural sin aditivos, decimos que la dosificación de 6 lt/m2 disminuyó más que las demás dosificaciones en un 5.28%.

Por último, el gráfico nos muestra que para el índice de plasticidad a medida que se aplica una dosificación mayor a lo especificado, éste va disminuyendo; por ejemplo, para una dosificación de 9 lt/m2 de MaxxSeal 200, éste disminuye en un 10.13% en comparación con el suelo natural sin aditivo.

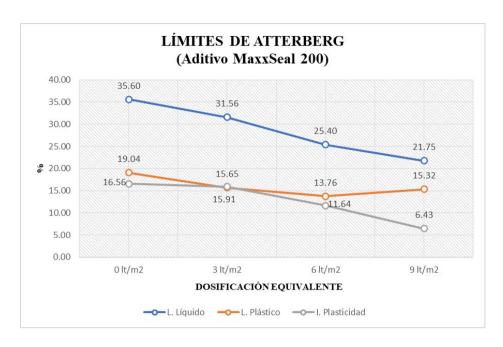


Gráfico 12. Límites de Atterberg con aditivo MaxxSeal 200

11. Proctor Modificado, adicionando estabilizantes AggreBind y MaxxSeal 200

En el Gráfico 13 se muestra la Máxima Densidad Seca (MDS) con la adición del estabilizante AggreBind, en este caso se percibe que mientras se aplica una dosificación mayor a lo especificado, éste va aumentando; por ejemplo, para una dosificación de 6 lt/m3 de AGB, éste aumenta en un 6% aproximadamente en comparación con el suelo natural sin aditivo.

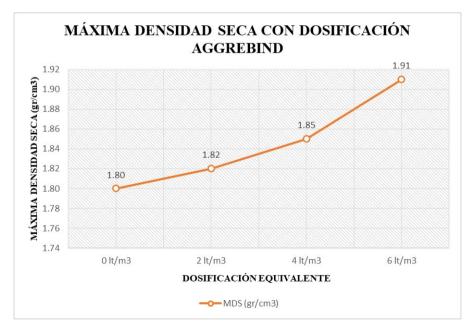


Gráfico 13. Máxima Densidad Seca, con aditivo AggreBind

En el Gráfico 14 se muestra el Óptimo Contenido de Humedad (OCH) con la adición del estabilizante AggreBind, en este caso se visualiza que mientras se aplica una dosificación mayor a lo especificado, éste sucede completamente lo opuesto a la densidad, es decir va disminuyendo; por ejemplo, para una dosificación de 6 lt/m3 de AGB, éste disminuye en un 13% aproximadamente en comparación con el suelo natural sin aditivo.

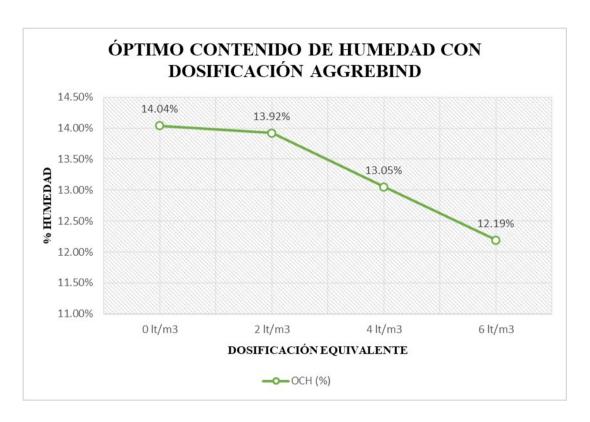


Gráfico 14. Óptimo Contenido de Humedad, con estabilizante AggreBind

En el Gráfico 15 se muestra la Máxima Densidad Seca (MDS) con la adición del aditivo MaxxSeal 200, en este caso se visualiza que mientras se aplica una dosificación mayor a lo especificado, éste va variando; por ejemplo, para una dosificación de 6 lt/m2 de MaxxSeal 200, éste aumenta en un 5% aproximadamente a comparación del suelo natural sin aditivo, pero si se le adiciona una dosificación de 9 lt/m2, éste disminuye un 4% aproximadamente con respecto al suelo natural sin aditivo.

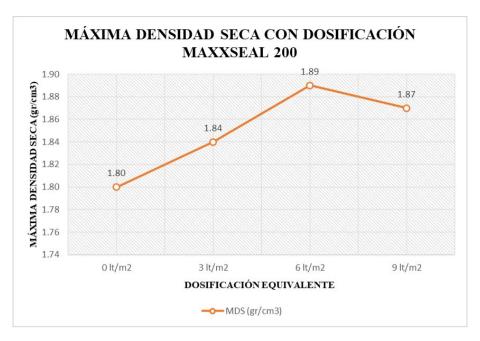


Gráfico 15. Máxima Densidad Seca, con estabilizante MaxxSeal 200

En el Gráfico 16 se muestra el Óptimo Contenido de Humedad (OCH) con la adición del estabilizante MaxxSeal 200, en este caso se percibe que mientras se aplica una dosificación mayor a lo especificado, éste sucede algo similar a la densidad; por ejemplo, para una dosificación de 6 lt/m2 de MaxxSeal 200, éste disminuye en un 12.8% aproximadamente a comparación del suelo natural sin aditivo, pero si se le adiciona una dosificación de 9 lt/m2, éste disminuye un 7% aproximadamente a comparación del suelo natural sin aditivo.

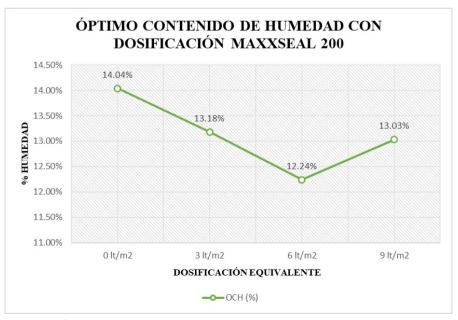


Gráfico 16. Óptimo Contenido de Humedad, con estabilizante MaxxSeal 200

12. Relación California de Soporte (CBR), adicionando estabilizantes AggreBind y MaxxSeal 200

En el Gráfico 17 se muestra la Curva de CBR vs Dosificación con la adición del estabilizante AggreBind y sus tres dosificaciones fijadas inicialmente, en este caso se percibe que a medida que se va aplicando una dosificación mayor a lo especificado en el CBR al 95% y al 100% de la MDS, éste va aumentando; por ejemplo, para una dosificación de 6 lt/m3 de AggreBind, éste aumenta en un 102.7% aproximadamente al 95% y en un 117% aproximadamente al 100% en comparación con el suelo natural sin aditivo.

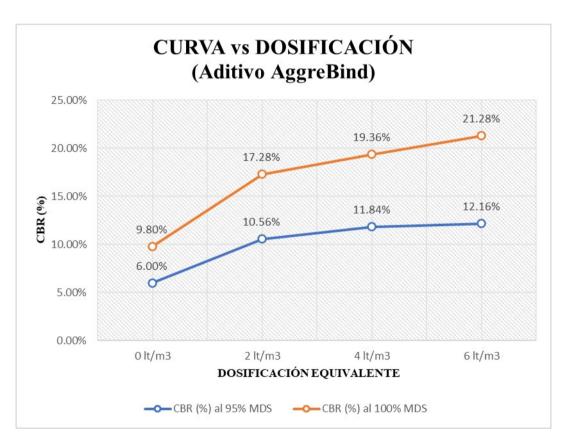


Gráfico 17. Curva de CBR vs dosificación, con estabilizante AggreBind

En el Gráfico 18 se muestra la Curva de CBR vs Dosificación con la adición del estabilizante MaxxSeal 200 y sus tres dosificaciones fijadas inicialmente, en este caso se visualiza que a medida que se va aplicando una dosificación mayor a lo especificado en el CBR al 95% y al 100% de la MDS, éste presenta un declive; por ejemplo, para una dosificación de 6 lt/m2 de MaxxSeal 200, éste aumenta en un 97% aproximadamente al 95% y en un 76% aproximadamente al 100% en comparación con

el suelo natural sin aditivo, es allí donde llega a su punto máximo, luego si se le adiciona una dosificación de 9 lt/m2, éste disminuye un 3.39% aproximadamente al 95% y en un 3.72% aproximadamente al 100% en comparación con la adición anterior, pero si hablamos en comparación con el suelo natural esta dosificación (9 lt/m2) aumentaría en un 90% aproximadamente al 95% y en un 68% aproximadamente al 100%.

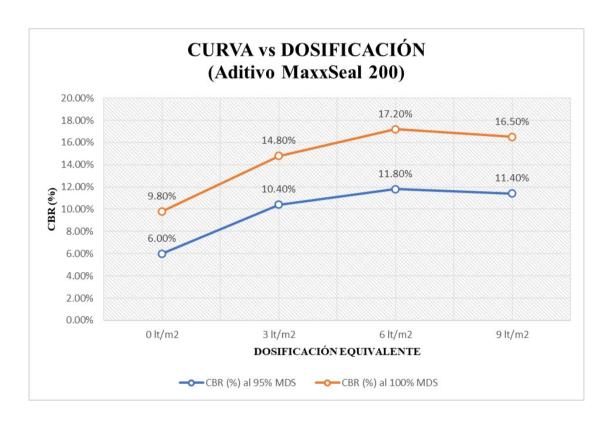


Gráfico 18. Curva de CBR vs dosificación, con estabilizante MaxxSeal 200

13. Permeabilidad del Suelo, con adición de aditivo AggreBind y MaxxSeal 200

Según la Tabla 27 nos muestra que a medida que se aplica una dosificación de AggreBind mayor a lo establecido la permeabilidad disminuye pasando de muy poco permeable a poco permeable.

Según la Tabla 28 nos muestra que a medida que se aplica una dosificación de MaxxSeal 200 mayor a lo establecido la permeabilidad disminuye pasando de muy poco permeable a poco permeable.

14. Análisis comparativo técnico-económico de la estabilización química con los estabilizantes AggreBind y MaxxSeal 200

Evaluación técnica

Para esta evaluación técnica se tomó en cuenta los criterios como la plasticidad del suelo, el óptimo contenido de humedad, la máxima densidad seca, así también como la capacidad de soporte y la permeabilidad.

Acerca de la plasticidad del suelo con la incorporación de los estabilizantes AggreBind y MaxxSeal 200 en sus tres dosificaciones cada uno, como se señala en el Gráfico 11 y Gráfico 12, éstos ayudaron a reducir el índice plástico convirtiéndolo en un suelo más estable.

Con respecto a la compactación del suelo, en los gráficos 13 y 15 se visualiza que para las tres dosificaciones con ambos estabilizantes la MDS aumenta; y en los gráficos 14 y 15 su OCH disminuye.

Con respecto al CBR al 95%MDS, se visualiza en el Gráfico 17 y Gráfico 18, que a medida que se va aplicando una dosificación mayor a lo especificado, el CBR va aumentando con ambos estabilizantes.

En cuanto a la permeabilidad, el suelo en estado natural es muy poco permeable, en cambio, si se le aplica los estabilizantes AggreBind y MaxxSeal 200 pasa a ser un suelo poco permeable.

Por consiguiente, la evaluación técnica es que éstos estabilizantes aportan en el incremento de las propiedades tanto físicas como mecánicas del suelo de subrasante.

Evaluación económica

Como se vio anteriormente, técnicamente ambos estabilizantes ayudan a mejorar las características físicas y mecánicas convirtiéndolo en un suelo apropiado, por otro lado refiriéndonos al análisis económico como nos muestra la Tabla 35, y enfocándonos al Gráfico 19 podemos observar que es con estos estabilizantes es menor el costo de ejecución de una vía que con el método tradicional (Over).

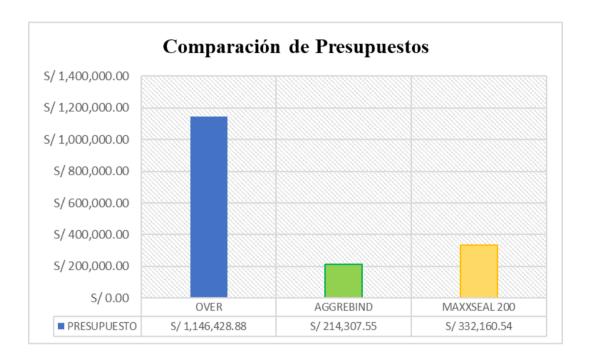


Gráfico 19. Comparación de Presupuestos

Conclusiones

- ➤ Para esta investigación se trabajó con el suelo de la calicata desfavorable, la cual es la Calicata 02, siendo este un suelo de subrasante de tipo CL (arcilla de mediana plasticidad) según clasificación SUCS, mientras que para AASHTO lo clasifica como un suelo A-6(10).
- ➤ Según la prueba de análisis granulométrico la Calicata 02 tiene un porcentaje de muestra que pasa el tamiz N°200 de 72.99% a comparación de las otras calicatas.
- ➤ Del estudio se colige que el contenido de humedad natural del suelo del PJ. Antonio Raymondi del ACQUA Sector 1, para la Calicata 02 es de 15.60%.
- ➤ De la investigación se infiere que el índice de plasticidad para la Calicata 02 fue de 16.56%, asimismo la gravedad específica del mismo fue de 2.52 gr/cm3.
- ➤ De la investigación se concluye que los ensayos con los que se determinaron las propiedades mecánicas del suelo natural son el Proctor Modificado y CBR, resultando para la Calicata 02 una MDS de 1.80 gr/cm3, un OCH de 14.04% y un CBR de 6%.
- ➤ De la investigación optando por la Calicata 02 se concluye que la dosis óptima con la incorporación del producto AggreBind es de 6lt/m3, mientras que con la adición del producto MaxxSeal 200 es de 6lt/m2, esto debido a que mejoró las propiedades mecánicas del suelo.
- ➤ De la investigación optando por la Calicata 02 se concluye que al adicionar el estabilizante AggreBind con la dosificación óptima de 6lt/m3 se logra un decrecimiento a 12.19% con respecto al OCH y un incremento de MDS a 1.91gr/cm3 estableciéndose un aumento del 6.11%, mientras que si se dispone la dosificación óptima de 6lt/m2 con el aditivo MaxxSeal 200 se logra un decrecimiento de 12.24% con respecto al OCH y un crecimiento de MDS a 1.89gr/cm3 estableciéndose un incremento del 5%, quedando por demostrado que en el caso del estabilizante AggreBind a mayor la dosificación empleada el OCH disminuirá y aumentará la MDS, mientras que con el estabilizante MaxxSeal 200 a mayor dosificación empleada tanto el OCH como la MDS variará.
- ➤ Conforme a los resultados adquiridos en el presente estudio se colige que el CBR al 95% MDS de la Calicata 02 es de 6.00% menor que las demás muestras, al adicionar el estabilizante AggreBind con la dosificación óptima de 6lt/m3 se logra un incremento a 12.16% constituyéndose un aumento del 102.7%, mientras que si se utiliza la dosificación óptima de 6lt/m2 con el aditivo MaxxSeal 200 se logra un incremento a

- 11.80% constituyéndose un aumento del 96.7%, quedando por demostrado que en el caso del aditivo AggreBind a mayor la dosificación empleada el CBR aumentará, mientras que con el aditivo MaxxSeal 200 el CBR varía de acuerdo a la dosificación empleada.
- ➤ Según el ensayo de Permeabilidad del terreno natural más la incorporación de los aditivos AggreBind y MaxxSeal 200 se llega a la conclusión que a medida que se aplica una dosificación mayor a lo establecido la permeabilidad disminuye pasando de muy poco permeable a poco permeable.
- ➤ Según los resultados presentados en la evaluación económica, se colige que empleando el estabilizante AggreBind saldría un presupuesto de S/214,307.55; mientras que si se emplea el aditivo MaxxSeal 200 se obtendría un presupuesto de para el S/332,160.54; por otro lado, con un mejoramiento tradicional (over) se obtuvo S/1,146,428.88.

Recomendaciones

- ➤ Se recomienda emplear en un futuro proyecto la dosificación de 6lt/m3 en el caso de emplearse el estabilizador AggreBind y una dosificación de 6lt/m2 para el caso de MaxxSeal 200.
- > Se recomienda realizar diferentes investigaciones empleando estos estabilizantes para cada tipo de suelo ya sea en la misma zona de estudio y/o en distritos aledaños donde sus vías estén sin pavimentar.
- Proseguir con investigaciones sobre estos estabilizantes aplicando otras dosificaciones distintas a las ya realizadas en este estudio.
- > Realizar los ensayos con sumo cuidado y seguir las instrucciones indicadas en las especificaciones técnicas de los aditivos

Referencias

- [1] CAF, Ed., Soluciones e Innovaciones Tecnológicas de Mejoramiento de Vías de Bajo Tránsito. Caracas, 2010.
- [2] C. C. Ikeagwuani y D. C. Nwonu, «Emerging trends in expansive soil stabilisation: A review», *J. Rock Mech. Geotech. Eng.*, vol. 11, n.° 2, pp. 423-440, abr. 2019, doi: 10.1016/j.jrmge.2018.08.013.
- [3] J. F. Rivera, A. Aguirre-Guerrero, R. Mejía de Gutiérrez, y A. Orobio, «Estabilización química de suelos Materiales convencionales y activados alcalinamente (revisión)», *Inf. Téc.*, vol. 84, n.º 2, pp. 43-67, mar. 2020, doi: 10.23850/22565035.2530.
- [4] A. Md Zahri y A. Zainorabidin, «An overview of traditional and non traditional stabilizer for soft soil», *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 527, n.° 1, p. 012015, may 2019, doi: 10.1088/1757-899X/527/1/012015.
- [5] T. W. Lambe, «The Effect of Polymers on Soil Properties», 3rd Int. Conf. Soil Mech. Found. Eng., p. 6.
- [6] J. Yamunaqué Miranda, «Soluciones Reales, Rápidas y Económicas para pavimentación asfáltica», p. 4.
- [7] Himalayan New Service, «'AggreBind soil stabilisation' technology for road maintenance works introduced», *The Himalayan*, 6 de noviembre de 2018.
- [8] R. H. Mena Robles, «Mejoramiento del suelo de una vía no pavimentada adicionando estabilizador y sellante en la Ca. Morales Bermúdez, Provincia de Huaral, Lima, 2018», Tesis de Pregrado, Universidad César Vallejo, Lima, 2018.
- [9] M. D. Bazán Quiñones, «Mejoramiento técnico económico de pavimentos con la aplicación del polímero acrílico AggreBind en la Av. Paramonga San Martín de Porres Lima Lima 2019», Tesis de Pregrado, Universidad César Vallejo, Lima, 2019.
- [10] J. S. Ortiz Roldan, «Influencia de la aplicación del polímero acrílico AggreBind para estabilización de la subrasante, Jr. Brasil, Villa María, Nuevo Chimbote, 2021», Tesis de Pregrado, Universidad César Vallejo, Lima, 2021.
- [11] W. H. Tesen Tineo, «Efecto del polímero acrílico AGGREBIND en el mejoramiento del pavimento flexible en la Av. La Esperanza, Olmos 2021», Tesis de Pregrado, Universidad César Vallejo, Chiclayo, 2021.
- [12] L. W. B. Flores Castañeda, «Evaluación y mejoramiento con Maxxseal 200 de la subrasante en la Av. María Parado de Bellido, Paita, 2020», Tesis de Pregrado, Universidad César Vallejo, Lima, 2020.
- [13] S. C. Godoy Moreyra, «Modificación de la capacidad portante de la subrasante por estabilización química utilizando MAXX SEAL 200 en pavimento flexible en la Av. Ganaderos Surco, 2018», Tesis de Pregrado, Universidad César Vallejo, Lima, 2018.
- [14] Reglamento Nacional de Edificaciones, Norma E.050 Suelos y Cimentaciones. 2020.
- [15] Ministerio de transporte y comunicaciones, Ed., Suelos, Geología, Geotecnia y Pavimentos: Sección Suelos y Pavimentos. Lima, Perú, 2014.
- [16] Ministerio de transporte y comunicaciones, Ed., *Especificaciones Técnicas Generales* para Construcción. Lima, Perú, 2013.
- [17] Ministerio de transporte y comunicaciones, Ed., *Manual Ensayo de Materiales*. Lima, Perú. 2017.
- [18] Reglamento Nacional de Edificaciones, NORMA CE.010 PAVIMENTOS URBANOS.
- [19] Braja M. Das, *Fundamentos de Ingeniería Geotécnica*, 4.ª ed. México: Cengage Learning, 2015.
- [20] A. Rico Rodríguez y H. Del Castillo, *La ingeniería de suelos en las vías terrestres:* carreteras, ferrocarriles y aeropistas, vol. 1, 2 vols. México: Limusa, 2005.

- [21] V. Pérez Alamá, *Materiales y Procedimientos de Construcción mecánica de Suelos y Cimentaciones*, 1.ª ed. México: Trillas, 1998.
- [22] «Apuntes Ingeniería Civil: Mecánica de Suelos Definiciones.», *APUNTES INGENIERÍA CIVIL*, 10 de octubre de 2010.
- [23] C. Crespo Villalaz, Mecánica de Suelos y Cimentaciones, 5.ª ed. México: Limusa, 2004.
- [24] J. Alfreds R, Soil Mechanics. New York: Princeton, 1967.
- [25] E. Juárez Badillo y A. Rico Rodríguez, *Mecánica De Suelos I: Fundamentos de la Mecanica de Suelos*, vol. 1. México: Editorial Limusa, 2005.
- [26] *Mecánica de suelos: Reunión de Ingenieros*. Barcelona: Editores Técnicos Asociados, 1975.
- [27] F. Villalobos, *Mecánica de Suelos: Segunda Edición*, 2.ª ed. Chile: Ediciones UCSC, 2016.
- [28] «Diccionario de la Construcción», Diccionario de la Construcción.
- [29] F. A. Reyes Lizcano y H. A. Rondón Quintana, *Pavimentos: Materiales, construcción y diseño*, 1.ª ed. Bogotá, Colombia: MACRO, 2015.
- [30] A. M. Fonseca, A. M. Piratova, y A. M. Piratova, *Estabilización de suelos*, 1.ª ed. Bogotá: Ediciones de la U, 2019.
- [31] J. Alarcón, M. Jiménez, y R. Benítez, «Estabilización de suelos mediante el uso de lodos aceitoso», *Rev. Ing. Constr.*, vol. 35, n.º 1, pp. 5-20, abr. 2020, doi: 10.4067/S0718-50732020000100005.
- [32] «La Cal, un producto-tres efectos, en la estabilización de suelos», *CALCINOR*. *Minerales industriales*, 26 de noviembre de 2020.
- [33] V. Yepes Piqueras, «La estabilización de suelos», *PoliBlogs*, 23 de enero de 2014.
- [34] H. Afrin, «A Review on Different Types Soil Stabilization Techniques», *Int. J. Transp. Eng. Technol.*, vol. 3, n.° 2, p. 19, 2017, doi: 10.11648/j.ijtet.20170302.12.
- [35] A. Montejo Fonseca, *Ingenieria de pavimentos*, 2.ª ed. Bogotá, Colombia: Stella Valbuena de Fierro, 2002.
- [36] F. L. Serrano Ramos y E. Mendizábal Mijares, *Introducción a la Ciencia de los Polímeros*, 1.ª ed. Guadalajara, México, 2015.
- [37] T. López Lara, J. B. Hernández Zaragoza, J. Horta Rangel, A. Coronado Márquez, y V. M. Castaño Meneses, «Polímeros para la Estabilización Volumétrica de Arcillas Expansivas», *Revista Iberoamericana de Polímeros*, vol. 11, n.º 3, p. 10, mayo de 2010.
- [38] M. Sosa *et al.*, «Guía para la evaluación y selección de aditivos estabilizadores de materiales granulares y suelos en caminos de bajo tránsito: Caso Paraguay», Inter-American Development Bank, sep. 2019. doi: 10.18235/0001895.
- [39] «Acerca de AggreBind», AggreBind, 2021.
- [40] «Maxx-Seal 200». LatinSeal.

Anexos

ANEXO 1. ENSAYOS DE CAMPO

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION N 0031616-2019/DSD-INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C1

FECHA : 08.04.2022

COTA				NATURALEZA DEL TERRENO	OBSERVACIONES
	(mts.)	MUESTRA		ESTRATO	
	0.00				
	0.40	RELLENO		MATERIAL DE RELLENO NO CALIFICADO	
	1.50		SC 000000	ARENAS ARCILLOSAS, MEZCLA DE ARENA Y ARCILLA DE COLOR MARRON OSCURO, CONSISTENCIA MEDIA L.L = 25.17 L.P= 15.00 I.P= 10.17 % HUMEDAD= 9.32 % % SALES = 0.15 % PROCTOR MODIFICADO: MAXIMA DENSIDAD SECA = 1.88 gr/cm3 OPTIMO DE HUMEDAD = 12.68 % C.B.R 100% = 12.4 % C.B.R 95% = 7.6 % GRAVEDAD ESPECIFICA = 2.60 % ABSORCION = 0.643%	DURANTE EL TIEMPO DE EXCAVACION NO SE DETECTO NIVEL FREATICO

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION Nº 0031616-2019/DSD - INDECOPI**

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C2

FECHA : 08.04.2022

COTA			SIMBOLO	NATURALEZA DEL TERRENO	OBSERVACIONES
	(mts.)	MUESTRA		ESTRATO	
	0.00				
	0.30	RELLENO		MATERIAL DE RELLENO NO CALIFICADO	
	1.50	M.1		ARCILLAS DE MEDIANA PLASTICIDAD DE COLOR MARRON OSCURO, CONSISTENCIA MEDIA L.L = 35.60 L.P= 19.04 I.P= 16.56 % HUMEDAD= 15.60 % % SALES = 0.18 % PROCTOR MODIFICADO: MAXIMA DENSIDAD SECA = 1.80 gr/cm3 OPTIMO DE HUMEDAD = 14.04 % C.B.R 100% = 9.8 % C.B.R 95% = 6.0 % GRAVEDAD ESPECIFICA = 2.52 % ABSORCION = 0.676%	DURANTE EL TIEMPO DE EXCAVACION NO SE DETECTO NIVEL FREATICO

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C3

FECHA : 08.04.2022

COTA									
	(mts.)	MUESTRA		ESTRATO					
	0.00								
	0.50	RELLENO		MATERIAL DE RELLENO NO CALIFICADO					
	1.50	M.1	sc)	ARENAS ARCILLOSAS, MEZCLA DE ARENA Y ARCILLA DE COLOR MARRON OSCURO, CONSISTENCIA MEDIA L.L = 24.87 L.P= 14.72 I.P= 10.15 % HUMEDAD= 8.35 % % SALES = 0.16 % PROCTOR MODIFICADO: MAXIMA DENSIDAD SECA = 1.86 gr/cm3 OPTIMO DE HUMEDAD = 12.90 % C.B.R 100% = 12.1 % C.B.R 95% = 7.4 % GRAVEDAD ESPECIFICA = 2.65 % ABSORCION = 0.745%	DURANTE EL TIEMPO DE EXCAVACION NO SE DETECTO NIVEL FREATICO				

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C4

FECHA : 08.04.2022

COTA			SIMBOLO	NATURALEZA DEL TERRENO	OBSERVACIONES
	(mts.)	MUESTRA		ESTRATO	
	0.00				
	0.30	RELLENO		MATERIAL DE RELLENO NO CALIFICADO	
	1.20	M.1	C	ARCILLAS DE MEDIANA PLASTICIDAD DE COLOR MARRON OSCURO, CONSISTENCIA MEDIA L.L = 31.36 L.P= 20.06 I.P= 11.30 % HUMEDAD= 7.94 % % SALES = 0.17 % PROCTOR MODIFICADO: MAXIMA DENSIDAD SECA = 1.81 gr/cm3 OPTIMO DE HUMEDAD = 13.95 % C.B.R 100% = 10.2 % C.B.R 95% = 6.2 % GRAVEDAD ESPECIFICA = 2.61 % ABSORCION = 0.752%	
0	1.50	M.2	ML	LIMOS Y ARENAS MUY FINAS DE COLOR AMARILLENTO, CONSISTENCIA MEDIA L.L = 31.81 L.P= 26.55 I.P= 5.26 % HUMEDAD= 9.44 % % SALES = 0.16 %	DURANTE EL TIEMPO DE EXCAVACION NO SE DETECTO NIVEL FREATICO

CALLE MANUEL SEOANE $\,\mathrm{N}^{\mathrm{o}}$ 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C5

FECHA : 08.04.2022

COTA			SIMBOLO	NATURALEZA DEL TERRENO	OBSERVACIONES
	(mts.)	MUESTRA		ESTRATO	
	0.00				
	0.20	RELLENO	*	MATERIAL DE RELLENO NO CALIFICADO	
	1.30	M.1	d	ARCILLAS DE MEDIANA PLASTICIDAD DE COLOR MARRON OSCURO, CONSISTENCIA MEDIA L.L = 27.14 L.P= 18.46 I.P= 8.68 % HUMEDAD= 10.67 % % SALES = 0.20 % PROCTOR MODIFICADO: MAXIMA DENSIDAD SECA = 1.82 gr/cm3 OPTIMO DE HUMEDAD = 13.61 % C.B.R 100% = 10.5 % C.B.R 95% = 6.4 % GRAVEDAD ESPECIFICA = 2.66 % ABSORCION = 0.796%	
	1.50	M.2	ML	LIMOS Y ARENAS MUY FINAS DE COLOR AMARILLENTO, CONSISTENCIA MEDIA L.L = 28.24 L.P= 23.09 I.P= 5.15 % HUMEDAD= 12.0 % % SALES = 0.18 %	DURANTE EL TIEMPO DE EXCAVACION NO SE DETECTO NIVEL FREATICO

ANEXO 2. ENSAYOS DE LABORATORIO

ANEXO 2.1. ENSAYOS EN SUELO NATURAL

CALICATA 1

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C1

FECHA : 08.04.2022

HUMEDAD NATURAL				
CALICATA-MUESTRA	C1-M1			
PROFUNDIDAD (m)	0.40 - 1.50			
Nº RECIPIENTE	2			
1 PESO SUELO HUMEDO + RECIPIENTE	54.88			
2 PESO SUELO SECO + RECIPIENTE	51.95			
3 PESO DEL AGUA	2.93			
4 PESO RECIPIENTE	20.51			
5 PESO SUELO SECO	31.44			
6 PORCENTAJE DE HUMEDAD	9.32%			

DETERMINACION DE LA SAL			
CALICATA-MUESTRA	C1-M1		
PROFUNDIDAD (m)	0.40 - 1.50		
Nº RECIPIENTE	411		
(1) PESO DEL TARRO	25.51		
(2) PESO TARRO + AGUA + SAL	32.00		
(3) PESO TARRO SECO + SAL	25.52		
(4) PESO SAL (3 - 1)	0.01		
(5) PESO AGUA (2 - 3)	6.48		
(6) PORCENTAJE DE SAL	0.15%		

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

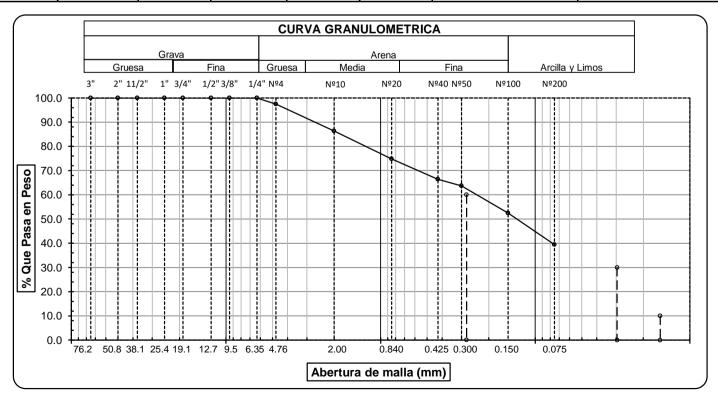
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA. PROVINCIA CHICLAYO. DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.40 mts. - 1.50 mts.

CALICATA : C1M1 **FECHA** : 08.04.2022

	- 0010 112022						
ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA		
3"	76.200					PESO TOTAL :	400.0 g.
2 1/2"	63.500					PESO LAVADO :	157.8 g.
2"	50.800						
1 1/2"	38.100					LIMITE LIQUIDO :	25.17 %
1"	25.400					LIMITE PLASTICO :	15.00 %
3/4"	19.050					INDICE PLASTICIDAD :	10.17 %
1/2"	12.700					CLASF. AASHTO :	A-4 (1)
3/8"	9.525					CLASF. SUCS :	sc
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO
Nº4	4.760	10.24	2.56	2.56	97.44	Arena arcillosa	
Nº10	2.000	44.23	11.06	13.62	86.38	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200
Nº20	0.840	46.42	11.61	25.22	74.78		400.0 158 60.5
N40	0.425	33.51	8.38	33.60	66.40		
Nº50	0.300	10.76	2.69	36.29	63.71		
Nº100	0.150	45.14	11.29	47.58	52.43	MODULO DE FINEZA	1.589
Nº200	0.075	51.89	12.97	60.55	39.45	Coef. Uniformidad	17.9
< Nº 200	FONDO	157.81	39.45	100.00	0.00	Coef. Curvatura	0.2

Observaciones:

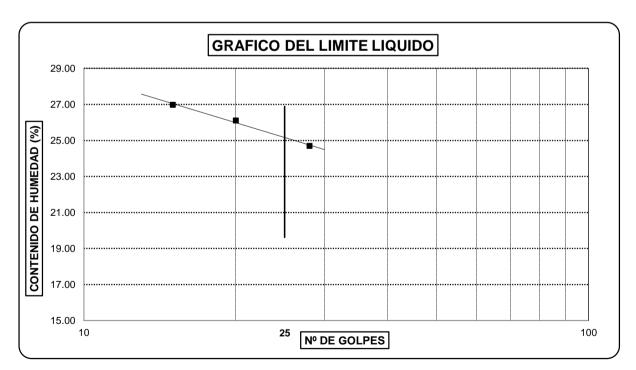
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.40 mts. - 1.50 mts.

CALICATA : C1M1 **FECHA** : 08.04.2022

DATOS DE ENSAYO	L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		15	20	28			
1. Recipiente N°		422	446	401	437		
2. Peso suelo húmedo + tara	(gr)	59.35	62.99	59.39	47.24		
3. Peso suelo seco + Tara	(gr)	55.05	58.47	55.49	46.16		
4. Peso de la Tara	(gr)	39.05	41.27	39.65	38.96		
5. Peso del agua	(gr)	4.30	4.52	3.90	1.08		
6. Peso del suelo seco	(gr)	16	17.2	15.84	7.20		
7. Contenido de humedad	(%)	26.88	26.28	24.62	15.00		

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Límite Líquido	25.17
Límite Plástico	15.00
Índice de Plasticidad	10.17

MUESTRA: C	1M1
Clasificación SUCS	sc
Clasificación AASHTO	A-4 (1)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

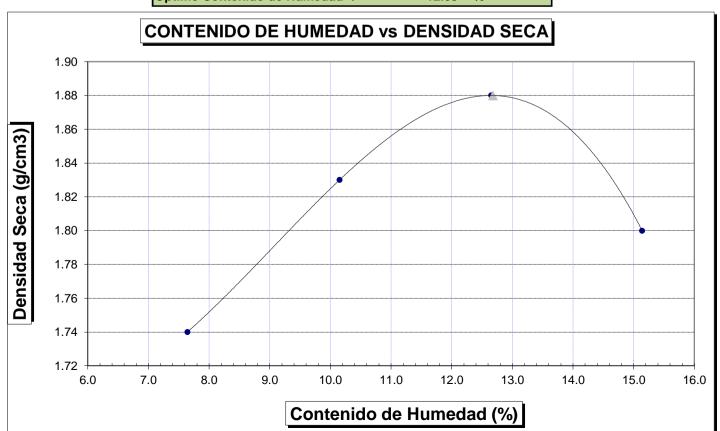
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL

CALICATA : C1M1


FECHA : 08.04.2022

PROCTOR MODIFICADO AASHTO T - 180 D

		<u> </u>			
MOLDE Nº	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION					
Peso Suelo Humedo + Molde	(g)	6584	6891	7096	6994
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3834	4141	4346	4244
Peso Volumétrico Húmedo	(g)	1.870	2.020	2.120	2.070
Recipiente Nº		2	22	20	75
Peso de Suelo Húmedo + Tara	(g)	55.66	53.95	56.32	57.10
Peso de Suelo Seco + Tara	(g)	53.32	51.03	52.30	52.16
Tara	(g)	22.68	22.27	20.53	19.54
Peso de Agua	(g)	2.34	2.92	4.02	4.94
Peso de Suelo Seco	(g)	30.64	28.76	31.77	32.62
Contenido de agua	(%)	7.64	10.15	12.65	15.14
Peso Volumétrico Seco	(g/cm ³)	1.74	1.83	1.88	1.80
			ĺ	1	

Máxima Densidad Seca : 1.88 gr/cm³

Optimo Contenido de Humedad : 12.68 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE ANGELLO ARANA CUMPA EFFIO

PROYECTO EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C1M1 08.04.2022 FECHA

C.B.R.

			U.D.	`			
MOLDE Nº		1	11	2	26	3	7
Nº DE GOLPES POR CAPA		Ę	56	25		1	2
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	11,426	11,503	11,497	11,602	11,260	11,463
PESO DEL MOLDE	(g)	6,887	6,887	7,087	7,087	7,055	7,055
PESO DEL SUELO HUMEDO	(g)	4539	4616	4410	4515	4205	4408
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.12	2.15	2.06	2.11	1.96	2.06
CAPSULA №		199	221	250	278	292	322
PESO CAPSULA + SUELO HUMEDO	(g)	57.73	67.84	66.66	64.02	49.52	75.64
PESO CAPSULA + SUELO SECO	(g)	53.77	62.55	61.83	58.42	46.39	67.94
PESO DE AGUA CONTENIDA	(g)	3.96	5.29	4.83	5.60	3.13	7.7
PESO DE CAPSULA	(g)	22.51	24.69	24.88	21.44	21.82	24.11
PESO DE SUELO SECO	(g)	31.26	37.86	36.95	36.98	24.57	43.83
HUMEDAD	(%)	12.67%	13.97%	13.07%	15.14%	12.74%	17.57%
DENSIDAD SECA		1.88	1.89	1.82	1.83	1.74	1.75

EXPANSION

FECHA	HORA	TIEMPO DIAL _		EXPANSION		DIAL	IAL EXPANSION		DIAL	EXPANSIO	N	
1 2011/	110101			DIXE	mm.	%		mm.	%		mm.	%
3-Abr	2.28 p.m.	0	hrs	0.000			0.000			0.000		0.000
4-Abr	2.28 p.m.	24	hrs	0.003	0.003	0.003	0.242	0.242	0.208	0.452	0.452	0.389
5-Abr	2.28 p.m.	48	hrs	0.085	0.085	0.073	0.338	0.338	0.291	0.560	0.560	0.482
6-Abr	2.28 p.m.	72	hrs	0.209	0.209	0.180	0.452	0.452	0.389	0.655	0.655	0.563
7-Abr	2.28 p.m.	96	hrs	0.341	0.341	0.293	0.567	0.567	0.488	0.754	0.754	0.648

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	11		MOLDE	Nº	26		MOLDE	Nº	37
pulg.	ESTANDAR	CARGA	•	CORECCIO	N	CARGA	C	ORECCIO	N	CARGA CORECCION		N	
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg²	%	Lectura	lbs	lbs/pulg²	%
0.020		6.40	75	25.00		4.60	54	18.00		2.80	33	11.00	
0.040		13.30	156	52.00		9.70	114	38.00		5.90	69	23.00	
0.060		19.50	228	76.00		14.10	165	55.00		8.50	99	33.00	
0.080		25.40	297	99.00		18.50	216	72.00		11.00	129	43.00	
0.100	1000	31.80	372	124.00	12.40	23.10	270	90.00	9.00	13.80	162	54.00	5.40
0.200	1500	51.80	606	202.00		37.70	441	147.00		22.60	264	88.00	
0.300		65.90	771	257.00		47.70	558	186.00		28.70	336	112.00	
0.400		76.40	894	298.00		55.40	648	216.00		33.30	390	130.00	
0.500		79.50	930	310.00		57.70	675	225.00		34.60	405	135.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

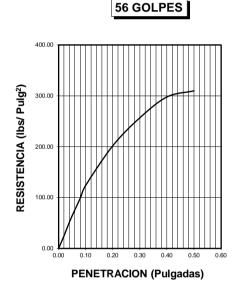
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

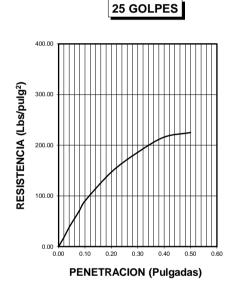
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

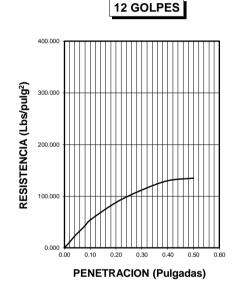
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

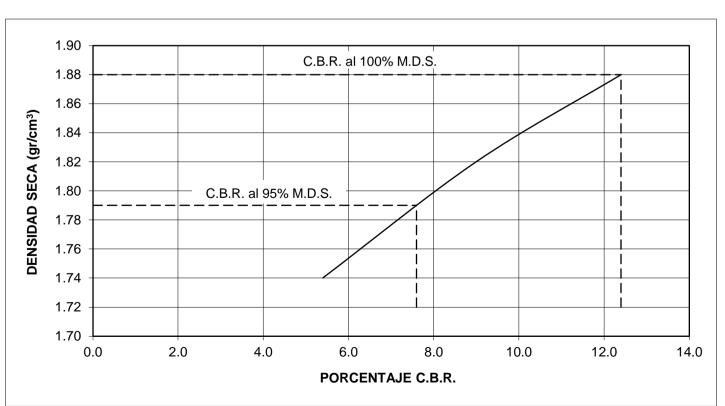
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C1M1


FECHA : 08.04.2022


DATOS DEL PROCTOR								
Densidad Máxima (gr/cm ³)	1.88							
Humedad Optima (%)	12.68							

DATOS DEL C.I	3.R.
C.B.R. al 100% de M.D.S. (%)	12.40
C.B.R. al 95% de M.D.S. (%)	7.60

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITADO: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C1

FECHA : 08.04.2022

GRADO DE ABSORCION %

CALICATA	CALICATA 01
MUESTRA	MUESTRA 1
N° FRASCO	N° 01
PESO FRASCO + MUESTRA SUP. SECA	56.34
PESO FRASCO + MUESTRA SECA	56.10
PESO AGUA CONTENIDO	0.24
PESO FRASCO	37.31
PESO SUELO SECO	18.79
GRADO DE ABSORCION %	0.643

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C1

FECHA : 08.04.2022

DETERMINACION DE LA GRAVEDAD ESPECÍFICA DE LOS SÓLIDOS DEL SUELO (G_s)

CALICATA	C - 1
MUESTRA	M -1
PROFUNDIDAD (m.)	0.40 - 1.50 mts
N° FIOLA	2
PESO DE FIOLA + PESO SUELO SECO (gr.)	217.00
PESO FIOLA (gr.)	138.05
PESO SUELO SECO (gr.)	78.95
PESO DE FIOLA + PESO SUELO + PESO AGUA (gr.) 440.09
PESO DE FIOLA + PESO AGUA (gr.)	391.51
DETERMINACIÓN $lpha$	0.9983
GRAVEDAD ESPECÍFICA (gr/cm³)	2.60

CALICATA 2

Calle Manuel Seoane $\,N^{\circ}$ 717 - Cel. 954853683 - Lambayeque

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C2

FECHA : 08.04.2022

HUMEDAD NATURAL						
CALICATA-MUESTRA	C2-M1					
PROFUNDIDAD (m)	0.30 - 1.50					
Nº RECIPIENTE	188					
1 PESO SUELO HUMEDO + RECIPIENTE	62.53					
2 PESO SUELO SECO + RECIPIENTE	56.50					
3 PESO DEL AGUA	6.03					
4 PESO RECIPIENTE	17.84					
5 PESO SUELO SECO	38.66					
6 PORCENTAJE DE HUMEDAD	15.60%					

DETERMINACION DE LA SAL					
CALICATA-MUESTRA	C2-M1				
PROFUNDIDAD (m)	0.30 - 1.50				
Nº RECIPIENTE	111				
(1) PESO DEL TARRO	31.11				
(2) PESO TARRO + AGUA + SAL	36.65				
(3) PESO TARRO SECO + SAL	31.12				
(4) PESO SAL (3 - 1)	0.01				
(5) PESO AGUA (2 - 3)	5.53				
(6) PORCENTAJE DE SAL	0.18%				

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

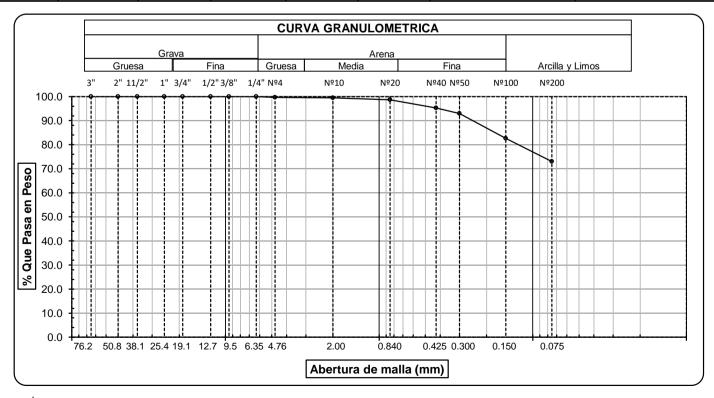
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.30 mts. - 1.50 mts.

CALICATA : C2M1 **FECHA** : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA			
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA MOESTRA			
3"	76.200					PESO TOTAL :	200.0 g	J.	
2 1/2"	63.500					PESO LAVADO :	146.0 g	J.	
2"	50.800								
1 1/2"	38.100					LIMITE LIQUIDO :	35.60 %	6	
1"	25.400					LIMITE PLASTICO :	19.04 %	6	
3/4"	19.050					INDICE PLASTICIDAD :	16.56 %	6	
1/2"	12.700					CLASF. AASHTO :	A-6 (10)		
3/8"	9.525					CLASF. SUCS :	CL		
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEL	O: MALO		
Nº4	4.760	0.60	0.30	0.30	99.70	Arcilla de baja plasticida	d con arena		
Nº10	2.000	0.54	0.27	0.57	99.43	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	1.44	0.72	1.29	98.71		200.0 146	27.0	
N40	0.425	6.88	3.44	4.73	95.27				
Nº50	0.300	4.65	2.33	7.06	92.95				
Nº100	0.150	20.60	10.30	17.36	82.65	MODULO DE FINEZA	0.313		
Nº200	0.075	19.31	9.66	27.01	72.99	Coef. Uniformidad	0.0		
< Nº 200	FONDO	145.98	72.99	100.00	0.00	Coef. Curvatura	0.0		

Observaciones: _____

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.30 mts. - 1.50 mts.

CALICATA : C2M1 **FECHA** : 08.04.2022

DATOS DE ENSAYO	L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		15	24	29			
1. Recipiente N°		449	445	419	405		
2. Peso suelo húmedo + tara	(gr)	54.59	54.68	54.50	47.54		
3. Peso suelo seco + Tara	(gr)	49.94	50.79	50.69	46.19		
4. Peso de la Tara	(gr)	38.06	40.17	39.48	39.10		
5. Peso del agua	(gr)	4.65	3.89	3.81	1.35		
6. Peso del suelo seco	(gr)	11.88	10.62	11.21	7.09		
7. Contenido de humedad	(%)	39.14	36.63	33.99	19.04		

LIMITE DE CONSISTENCIA DE	LIMITE DE CONSISTENCIA DE LA MUESTRA				
Límite Líquido	35.60				
Límite Plástico	19.04				
Índice de Plasticidad	16.56				

MUESTRA: C	2M1
Clasificación SUCS	CL
Clasificación AASHTO	A-6 (10)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

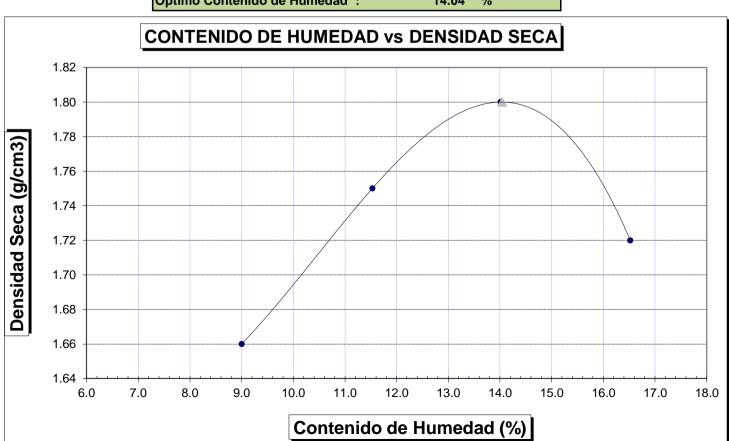
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL

CALICATA : C2M1


FECHA : 08.04.2022

PROCTOR MODIFICADO AASHTO T - 180 D

		7 7 11 10	<u> </u>		
MOLDE Nº	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6461	6748	6953	6850
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3711	3998	4203	4100
Peso Volumétrico Húmedo	(g)	1.810	1.950	2.050	2.000
Recipiente Nº		269	289	287	342
Peso de Suelo Húmedo + Tara	(g)	57.98	56.27	58.70	59.52
Peso de Suelo Seco + Tara	(g)	55.14	52.85	54.12	53.98
Tara	(g)	23.59	23.18	21.44	20.45
Peso de Agua	(g)	2.84	3.42	4.58	5.54
Peso de Suelo Seco	(g)	31.55	29.67	32.68	33.53
Contenido de agua	(%)	9.00	11.53	14.01	16.52
Peso Volumétrico Seco	(g/cm ³)	1.66	1.75	1.80	1.72

Máxima Densidad Seca : 1.80 gr/cm³

Optimo Contenido de Humedad : 14.04 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

ANGELLO ARANA CUMPA EFFIO SOLICITANTE

EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD PROYECTO

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C2M1

FECHA 08.04.2022

C.B.R.

			J.	~-				
MOLDE Nº	MOLDE №			4	10	51		
Nº DE GOLPES POR CAPA		Ę	56	25 12			2	
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PESO MOLDE + SUELO HUMEDO	(g)	11,222	11,294	11,289	11,389	11,049	11,246	
PESO DEL MOLDE	(g)	6,822	6,822	7,022	7,022	6,990	6,990	
PESO DEL SUELO HUMEDO	(g)	4400	4472	4267	4367	4059	4256	
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA	(g/cm ³)	2.05	2.09	1.99	2.04	1.89	1.99	
CAPSULA №		166	188	217	245	259	289	
PESO CAPSULA + SUELO HUMEDO	(g)	60.51	70.76	69.53	66.97	52.21	78.80	
PESO CAPSULA + SUELO SECO	(g)	55.52	64.30	63.58	60.17	48.14	69.69	
PESO DE AGUA CONTENIDA	(g)	4.99	6.46	5.95	6.80	4.07	9.11	
PESO DE CAPSULA	(g)	19.98	22.16	22.35	18.91	19.29	21.58	
PESO DE SUELO SECO	(g)	35.54	42.14	41.23	41.26	28.85	48.11	
HUMEDAD	(%)	14.04%	15.33%	14.43%	16.48%	14.11%	18.94%	
DENSIDAD SECA		1.80	1.81	1.74	1.75	1.66	1.67	

EXPANSION

FECHA	HORA	TIEMPO		DIAL	EXPANSION		DIAL	EXPANSIO	N	DIAL	EXPANSIO	N
. 20	110101			DI) (2	mm.	%		mm.	%		mm.	%
3-Abr	1.18 p.m.	0	hrs	0.000			0.000			0.000		0.000
4-Abr	1.18 p.m.	24	hrs	0.154	0.154	0.132	0.393	0.393	0.338	0.603	0.603	0.518
5-Abr	1.18 p.m.	48	hrs	0.236	0.236	0.203	0.489	0.489	0.420	0.711	0.711	0.611
6-Abr	1.18 p.m.	72	hrs	0.360	0.360	0.310	0.603	0.603	0.518	0.806	0.806	0.693
7-Abr	1.18 p.m.	96	hrs	0.492	0.492	0.423	0.718	0.718	0.617	0.905	0.905	0.778

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	25		MOLDE	Nº	40		MOLDE	Nº	51
pulg.	ESTANDAR	CARGA	(CORECCIO	N	CARGA	C	ORECCIO	N	CARGA	CARGA CORECCI		N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg²	%	Lectura	lbs	lbs/pulg ²	%
0.020		5.10	60	20.00		3.60	42	14.00		2.10	24	8.00	
0.040		10.50	123	41.00		7.70	90	30.00		4.60	54	18.00	
0.060		15.40	180	60.00		11.00	129	43.00		6.70	78	26.00	
0.080		20.00	234	78.00		14.60	171	57.00		8.70	102	34.00	
0.100	1000	25.10	294	98.00	9.80	18.20	213	71.00	7.10	10.80	126	42.00	4.20
0.200	1500	41.00	480	160.00		29.70	348	116.00		17.40	204	68.00	
0.300		52.10	609	203.00		37.70	441	147.00		22.30	261	87.00	
0.400		60.30	705	235.00		43.60	510	170.00		25.90	303	101.00	
0.500		62.80	735	245.00		45.60	534	178.00		26.90	315	105.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

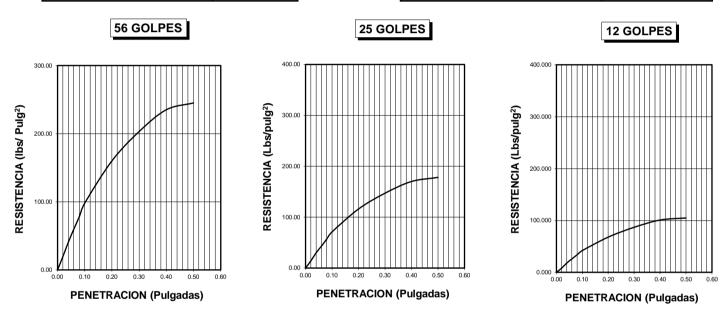
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

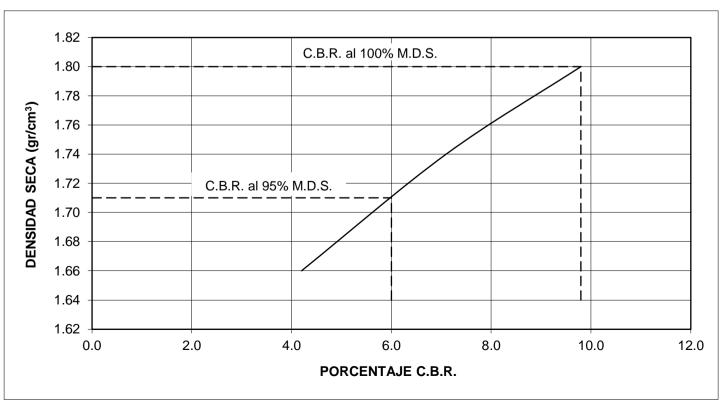
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C2M1

FECHA : 08.04.2022

DATOS DEL PROCTOR					
Densidad Máxima (gr/cm³) 1.80					
Humedad Optima (%)	14.04				

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%)	9.80					
C.B.R. al 95% de M.D.S. (%)	6.00					

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITADO: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C2

FECHA : 08.04.2022

GRADO DE ABSORCION %

CALICATA	CALICATA 02
MUESTRA	MUESTRA 1
N° FRASCO	N° 25
PESO FRASCO + MUESTRA SUP. SECA	61.62
PESO FRASCO + MUESTRA SECA	61.38
PESO AGUA CONTENIDO	0.24
PESO FRASCO	35.51
PESO SUELO SECO	25.87
GRADO DE ABSORCION %	0.676

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C2

FECHA : 08.04.2022

DETERMINACION DE LA GRAVEDAD ESPECÍFICA DE LOS SÓLIDOS DEL SUELO (G_s)

CALICATA	C - 2
MUESTRA	M -1
PROFUNDIDAD (m.)	0.30 - 1.50 mts
N° FIOLA	1
PESO DE FIOLA + PESO SUELO SECO (gr.)	202.11
PESO FIOLA (gr.)	185.55
PESO SUELO SECO (gr.)	16.56
PESO DE FIOLA + PESO SUELO + PESO AGUA (gr.) 411.00
PESO DE FIOLA + PESO AGUA (gr.)	401.00
DETERMINACIÓN $lpha$	0.9983
GRAVEDAD ESPECÍFICA (gr/cm³)	2.52

CALICATA 3

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C3

FECHA : 08.04.2022

HUMEDAD NATURAL			
CALICATA-MUESTRA	C3-M1		
PROFUNDIDAD (m)	0.50 - 1.50		
Nº RECIPIENTE	211		
1 PESO SUELO HUMEDO + RECIPIENTE	87.84		
2 PESO SUELO SECO + RECIPIENTE	82.66		
3 PESO DEL AGUA	5.18		
4 PESO RECIPIENTE	20.62		
5 PESO SUELO SECO	62.04		
6 PORCENTAJE DE HUMEDAD	8.35%		

DETERMINACION DE LA SAL						
CALICATA-MUESTRA	C3-M1					
PROFUNDIDAD (m)	0.50 - 1.50					
Nº RECIPIENTE	212					
(1) PESO DEL TARRO	22.53					
(2) PESO TARRO + AGUA + SAL	29.00					
(3) PESO TARRO SECO + SAL	22.54					
(4) PESO SAL (3 - 1)	0.01					
(5) PESO AGUA (2 - 3)	6.46					
(6) PORCENTAJE DE SAL	0.16%					

LINUS

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

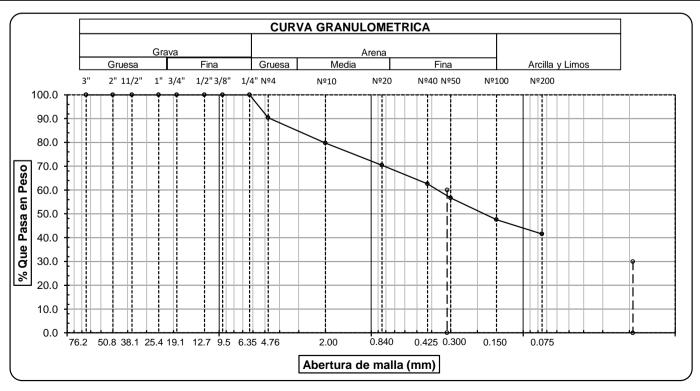
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.50 mts. - 1.50 mts.

CALICATA : C3M1 FECHA : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION	DE LA MUESTRA
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRII GION	I DE LA MIOLOTRA
3"	76.200					PESO TOTAL :	300.0 g.
2 1/2"	63.500					PESO LAVADO :	124.5 g.
2"	50.800						
1 1/2"	38.100					LIMITE LIQUIDO :	24.87 %
1"	25.400					LIMITE PLASTICO :	14.72 %
3/4"	19.050					INDICE PLASTICIDAD :	10.15 %
1/2"	12.700					CLASF. AASHTO :	A-4 (1)
3/8"	9.525					CLASF. SUCS :	sc
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO
Nº4	4.760	29.06	9.69	9.69	90.31	Arena arcillosa	
Nº10	2.000	31.90	10.63	20.32	79.68	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200
Nº20	0.840	27.76	9.25	29.57	70.43		300.0 125 58.5
N40	0.425	23.50	7.83	37.41	62.59		
Nº50	0.300	17.77	5.92	43.33	56.67		
Nº100	0.150	27.23	9.08	52.41	47.59	MODULO DE FINEZA	1.927
Nº200	0.075	18.25	6.08	58.49	41.51	Coef. Uniformidad	152.7
< Nº 200	FONDO	124.53	41.51	100.00	0.00	Coef. Curvatura	0.6

Observaciones:

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

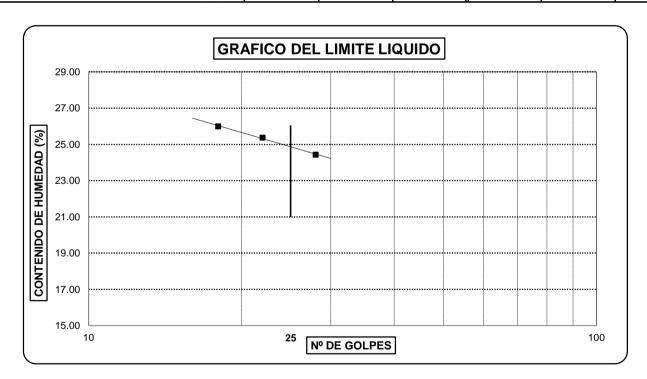
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.50 mts. - 1.50 mts.

CALICATA : C3M1 **FECHA** : 08.04.2022

DATOS DE ENSAYO		LI	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		28	22	18				
1. Recipiente N°		317	342	351	332			
2. Peso suelo húmedo + tara	(gr)	33.50	33.06	31.69	40.39			
3. Peso suelo seco + Tara	(gr)	30.57	30.00	28.72	37.62			
4. Peso de la Tara	(gr)	18.59	17.92	17.31	18.80			
5. Peso del agua	(gr)	2.93	3.06	2.97	2.77			
6. Peso del suelo seco	(gr)	11.98	12.08	11.41	18.82			
7. Contenido de humedad	(%)	24.46	25.33	26.03	14.72			

LIMITE DE CONSISTENCIA DE LA MUESTRA						
Límite Líquido	24.87					
Límite Plástico	14.72					
Índice de Plasticidad	10.15					

MUESTRA:	C3M1
Clasificación SUCS	sc
Clasificación AASHTO	A-4 (1)

Observaciones:			

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS

PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

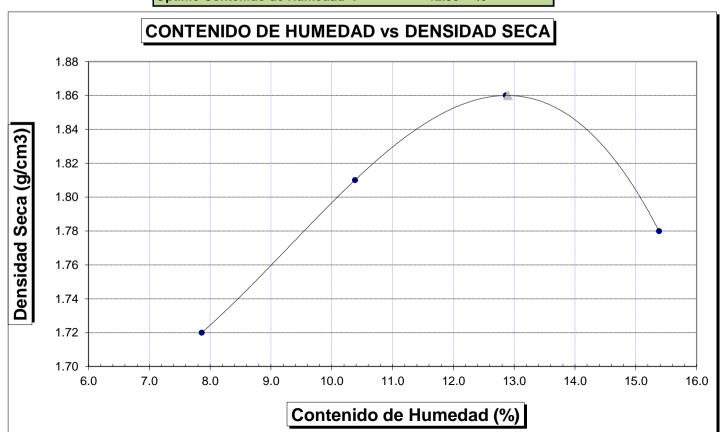
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL


CALICATA : C3M1

FECHA : 08.04.2022

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE №	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6563	6850	7055	6953
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3813	4100	4305	4203
Peso Volumétrico Húmedo	(g)	1.860	2.000	2.100	2.050
Recipiente Nº		93	113	111	166
Peso de Suelo Húmedo + Tara	(g)	56.60	54.90	57.28	58.08
Peso de Suelo Seco + Tara	(g)	54.16	51.87	53.14	53.00
Tara	(g)	23.10	22.69	20.95	19.96
Peso de Agua	(g)	2.44	3.03	4.14	5.08
Peso de Suelo Seco	(g)	31.06	29.18	32.19	33.04
Contenido de agua	(%)	7.86	10.38	12.86	15.38
Peso Volumétrico Seco	(g/cm ³)	1.72	1.81	1.86	1.78

Máxima Densidad Seca:1.86gr/cm³Optimo Contenido de Humedad:12.90%

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

ANGELLO ARANA CUMPA EFFIO SOLICITANTE

EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD PROYECTO

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE UBICACION

CALICATA C3M1 **FECHA** 08.04.2022

C.B.R.

MOLDE Nº	,	18	3	33	44		
Nº DE GOLPES POR CAPA		Ę	56 25 12			2	
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	11,299	11,376	11,371	11,474	11,131	11,334
PESO DEL MOLDE	(g)	6,799	6,799	6,999	6,999	6,967	6,967
PESO DEL SUELO HUMEDO	(g)	4500	4577	4372	4475	4164	4367
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.10	2.14	2.04	2.09	1.94	2.04
CAPSULA Nº		258	280	309	337	351	381
PESO CAPSULA + SUELO HUMEDO	(g)	54.54	64.64	63.48	60.78	46.32	72.36
PESO CAPSULA + SUELO SECO	(g)	50.82	59.60	58.88	55.47	43.44	64.99
PESO DE AGUA CONTENIDA	(g)	3.72	5.04	4.60	5.31	2.88	7.37
PESO DE CAPSULA	(g)	21.95	24.13	24.32	20.88	21.26	23.55
PESO DE SUELO SECO	(g)	28.87	35.47	34.56	34.59	22.18	41.44
HUMEDAD	(%)	12.89%	14.21%	13.31%	15.35%	12.98%	17.78%
DENSIDAD SECA		1.86	1.87	1.8	1.81	1.72	1.73

EXPANSION

FECHA	HORA	TIE	MPO	DIAL	EXPANSIO	EXPANSION		EXPANSIO	N	DIAL	EXPANSIO	N
0					mm.	%		mm.	%		mm.	%
3-Abr	12.14 p.m.	0	hrs	0.000			0.000			0.000		0.000
4-Abr	12.14 p.m.	24	hrs	0.004	0.004	0.003	0.243	0.243	0.209	0.453	0.453	0.390
5-Abr	12.14 p.m.	48	hrs	0.086	0.086	0.074	0.339	0.339	0.291	0.561	0.561	0.482
6-Abr	12.14 p.m.	72	hrs	0.210	0.210	0.181	0.453	0.453	0.390	0.656	0.656	0.564
7-Abr	12.14 p.m.	96	hrs	0.342	0.342	0.294	0.568	0.568	0.488	0.755	0.755	0.649

PENETRACION

PENETRACION	CARGA		MOLDE Nº 18 MOLDE Nº 33				№ 18 MOLDE № 33 M				MOLDE	Nº	44
pulg.	ESTANDAR	CARGA	(CORECCIO	N	CARGA	C	ORECCIO	N	CARGA	С	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		6.20	72	24.00		4.60	54	18.00		2.60	30	10.00	
0.040		12.80	150	50.00		9.50	111	37.00		5.60	66	22.00	
0.060		19.00	222	74.00		13.80	162	54.00		8.20	96	32.00	
0.080		24.90	291	97.00		17.90	210	70.00		10.80	126	42.00	
0.100	1000	31.00	363	121.00	12.10	22.60	264	88.00	8.80	13.30	156	52.00	5.2
0.200	1500	50.50	591	197.00		36.70	429	143.00		21.80	255	85.00	
0.300		64.10	750	250.00		46.70	546	182.00		27.70	324	108.00	
0.400		74.40	870	290.00		54.10	633	211.00		32.10	375	125.00	
0.500		77.70	909	303.00		56.40	660	220.00		33.30	390	130.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

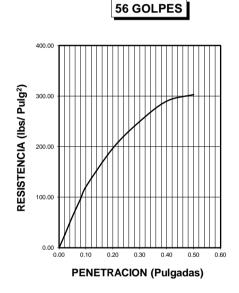
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

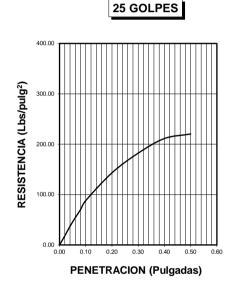
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

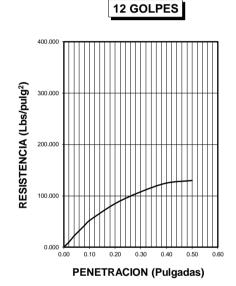
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

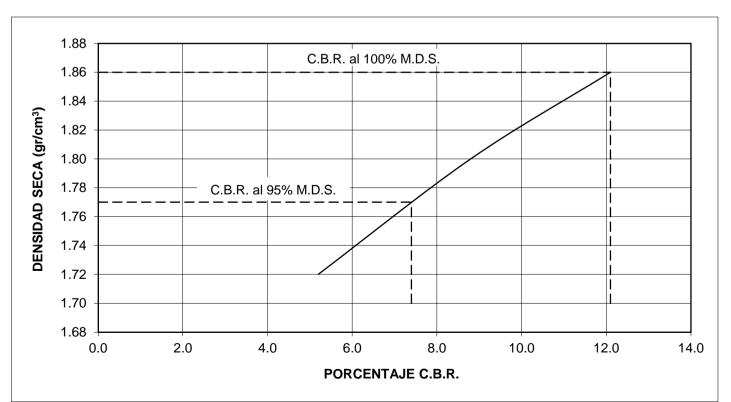
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C3M1


FECHA : 08.04.2022


DATOS DEL PROCTOR							
Densidad Máxima (gr/cm ³)	1.86						
Humedad Optima (%)	12.90						

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%) 12.10							
C.B.R. al 95% de M.D.S. (%)	7.40						

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITADO: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C3

FECHA : 08.04.2022

GRADO DE ABSORCION %

CALICATA	CALICATA 03
MUESTRA	MUESTRA 1
N° FRASCO	N° 12
PESO FRASCO + MUESTRA SUP. SECA	88.84
PESO FRASCO + MUESTRA SECA	88.65
PESO AGUA CONTENIDO	0.19
PESO FRASCO	25.51
PESO SUELO SECO	63.14
GRADO DE ABSORCION %	0.745

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C3

FECHA : 08.04.2022

DETERMINACION DE LA GRAVEDAD ESPECÍFICA DE LOS SÓLIDOS DEL SUELO (G_s)

CALICATA	C - 3
MUESTRA	M -1
PROFUNDIDAD (m.)	0.50 - 1.50 mts
N° FIOLA	1
PESO DE FIOLA + PESO SUELO SECO (gr.)	216.00
PESO FIOLA (gr.)	185.55
PESO SUELO SECO (gr.)	30.45
PESO DE FIOLA + PESO SUELO + PESO AGUA (gr.) 420.00
PESO DE FIOLA + PESO AGUA (gr.)	401.00
DETERMINACIÓN $lpha$	0.9983
GRAVEDAD ESPECÍFICA (gr/cm³)	2.65

CALICATA 4

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C4

FECHA : 08.04.2022

HUMEDAD NATURAL CALICATA-MUESTRA C4-M1 C4-M2 0.30 - 1.20 1.20 - 1.50 PROFUNDIDAD (m) Nº RECIPIENTE 25 95 1.- PESO SUELO HUMEDO + RECIPIENTE 55.52 62.25 2.- PESO SUELO SECO + RECIPIENTE 53.00 58.74 2.52 3.51 3.- PESO DEL AGUA 4.- PESO RECIPIENTE 21.26 21.55 5.- PESO SUELO SECO 31.74 37.19 6.- PORCENTAJE DE HUMEDAD 7.94% 9.44%

<u>DETERMINACION I</u>	DE LA SAL	
CALICATA-MUESTRA	C4-M1	C4-M2
PROFUNDIDAD (m)	0.30 - 1.20	1.20 - 1.50
Nº RECIPIENTE	148	10
(1) PESO DEL TARRO	29.95	41.57
(2) PESO TARRO + AGUA + SAL	36	48.00
(3) PESO TARRO SECO + SAL	29.96	41.58
(4) PESO SAL (3 - 1)	0.01	0.01
(5) PESO AGUA (2 - 3)	6.04	6.42
(6) PORCENTAJE DE SAL	0.17%	0.16%

LINUS

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

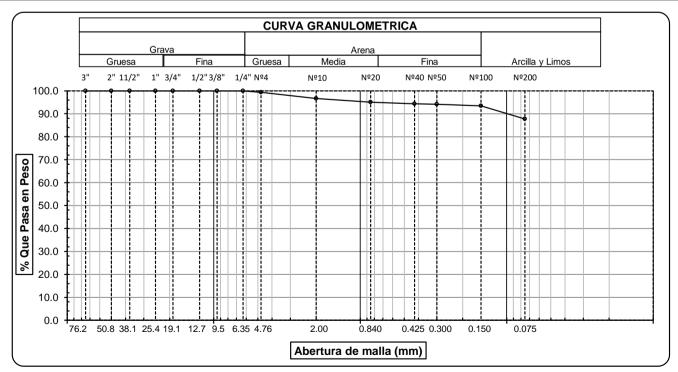
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.30 mts. - 1.20 mts.

CALICATA : C4M1 FECHA : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA		
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	DE LA MUESTRA	
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	175.5 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	31.36 %	
1"	25.400					LIMITE PLASTICO :	20.06 %	
3/4"	19.050					INDICE PLASTICIDAD :	11.30 %	
1/2"	12.700					CLASF. AASHTO :	A-6 (8)	
3/8"	9.525					CLASF. SUCS :	CL	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEL	O: MALO	
Nº4	4.760	1.19	0.60	0.60	99.41	Arcilla de baja plasticida	d	
Nº10	2.000	5.44	2.72	3.32	96.69	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	3.19	1.60	4.91	95.09		200.0 175 12.3	
N40	0.425	1.51	0.76	5.67	94.34			
Nº50	0.300	0.28	0.14	5.81	94.20			
Nº100	0.150	1.53	0.77	6.57	93.43	MODULO DE FINEZA	0.269	
Nº200	0.075	11.41	5.71	12.28	87.73	Coef. Uniformidad	0.0	
< Nº 200	FONDO	175.45	87.73	100.00	0.00	Coef. Curvatura	0.0	

Observaciones:

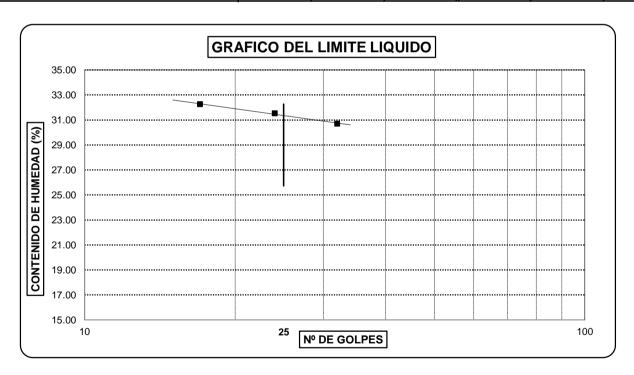
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.30 mts. - 1.20 mts.

CALICATA : C4M1 **FECHA** : 08.04.2022

DATOS DE ENSAYO)	L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		17	24	32				
1. Recipiente N°		411	418	406	405			
2. Peso suelo húmedo + tara	(gr)	53.62	54.44	56.70	56.34			
3. Peso suelo seco + Tara	(gr)	50.07	50.28	52.19	53.46			
4. Peso de la Tara	(gr)	39.07	37.08	37.51	39.10			
5. Peso del agua	(gr)	3.55	4.16	4.51	2.88			
6. Peso del suelo seco	(gr)	11	13.2	14.68	14.36			
7. Contenido de humedad	(%)	32.27	31.52	30.72	20.06			

LIMITE DE CONSISTENCIA D	LIMITE DE CONSISTENCIA DE LA MUESTRA							
Límite Líquido	31.36							
Límite Plástico	20.06							
Índice de Plasticidad	11.30							

MUESTRA:	C4M1
Clasificación SUCS	CL
Clasificación AASHTO	A-6 (8)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

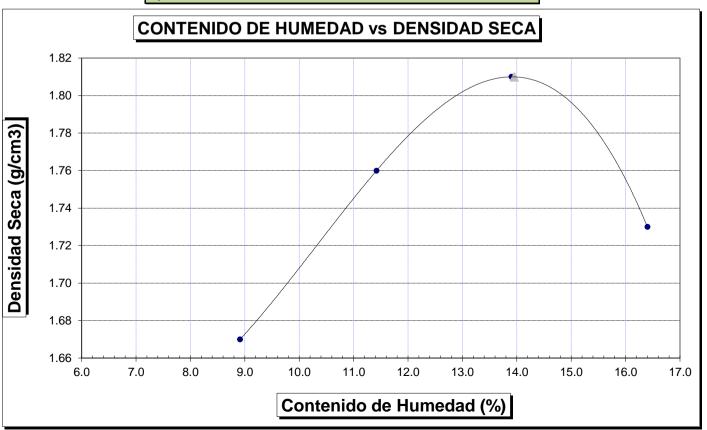
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL


CALICATA : C4M1
FECHA : 08.04.2022

PROCTOR MODIFICADO AASHTO T - 180 D

	11 1 0 7 11				
MOLDE Nº	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6481	6768	6973	6871
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3731	4018	4223	4121
Peso Volumétrico Húmedo	(g)	1.820	1.960	2.060	2.010
Recipiente Nº		392	412	410	465
Peso de Suelo Húmedo + Tara	(g)	61.65	59.98	62.45	63.31
Peso de Suelo Seco + Tara	(g)	58.68	56.39	57.66	57.52
Tara	(g)	25.36	24.95	23.21	22.22
Peso de Agua	(g)	2.97	3.59	4.79	5.79
Peso de Suelo Seco	(g)	33.32	31.44	34.45	35.30
Contenido de agua	(%)	8.91	11.42	13.90	16.40
Peso Volumétrico Seco	(g/cm ³)	1.67	1.76	1.81	1.73
		i e	I	ı	

Máxima Densidad Seca : 1.81 gr/cm³

Optimo Contenido de Humedad : 13.95 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

ANGELLO ARANA CUMPA EFFIO SOLICITANTE

PROYECTO EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA C4M1

FECHA 08.04.2022

MOLDE Nº	LDE Nº		9	2	24	35			
Nº DE GOLPES POR CAPA		5	56	2	25	1	12		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA		
PESO MOLDE + SUELO HUMEDO	(g)	10,682	10,759	10,751	10,854	10,511	10,711		
PESO DEL MOLDE	(g)	6,263	6,263	6,463	6,463	6,431	6,431		
PESO DEL SUELO HUMEDO	(g)	4419	4496	4288	4391	4080	4280		
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143		
DENSIDAD HUMEDA	(g/cm ³)	2.06	2.10	2.00	2.05	1.90	2.00		
CAPSULA Nº		287	309	338	366	380	410		
PESO CAPSULA + SUELO HUMEDO	(g)	61.46	71.72	70.48	67.94	53.17	79.77		
PESO CAPSULA + SUELO SECO	(g)	56.41	65.19	64.47	61.06	49.03	70.58		
PESO DE AGUA CONTENIDA	(g)	5.05	6.53	6.01	6.88	4.14	9.19		
PESO DE CAPSULA	(g)	20.19	22.37	22.56	19.12	19.50	21.79		
PESO DE SUELO SECO	(g)	36.22	42.82	41.91	41.94	29.53	48.79		
HUMEDAD	(%)	13.94%	15.25%	14.34%	16.40%	14.02%	18.84%		
DENSIDAD SECA		1.81	1.82	1.75	1.76	1.67	1.68		

EXPANSION

FECHA	HORA	TIEMPO DIAL		TIEMPO DIAL		EXPANSION		EXPANSIO	N	DIAL	EXPANSIO	N
0					mm.	%		mm.	%		mm.	%
3-Abr	2.22 p.m.	0	hrs	0.000			0.000			0.000		0.000
4-Abr	2.22 p.m.	24	hrs	0.211	0.211	0.181	0.450	0.450	0.387	0.660	0.660	0.567
5-Abr	2.22 p.m.	48	hrs	0.293	0.293	0.252	0.546	0.546	0.469	0.768	0.768	0.660
6-Abr	2.22 p.m.	72	hrs	0.417	0.417	0.359	0.660	0.660	0.567	0.863	0.863	0.742
7-Abr	2.22 p.m.	96	hrs	0.549	0.549	0.472	0.775	0.775	0.666	0.962	0.962	0.827

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	9		MOLDE	Nº	24		MOLDE	Nº	35
pulg.	ESTANDAR	CARGA	O	CORECCIO	N	CARGA	C	ORECCIO	N	CARGA	С	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		5.10	60	20.00		3.80	45	15.00		2.30	27	9.00	
0.040		11.00	129	43.00		7.90	93	31.00		4.60	54	18.00	
0.060		15.90	186	62.00		11.50	135	45.00		6.90	81	27.00	
0.080		21.00	246	82.00		15.10	177	59.00		9.00	105	35.00	
0.100	1000	26.20	306	102.00	10.20	19.00	222	74.00	7.40	11.30	132	44.00	4.40
0.200	1500	42.60	498	166.00		31.00	363	121.00		18.50	216	72.00	
0.300		54.10	633	211.00		39.20	459	153.00		23.30	273	91.00	
0.400		62.80	735	245.00		45.60	534	178.00		27.20	318	106.00	
0.500		65.40	765	255.00		47.40	555	185.00		28.20	330	110.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

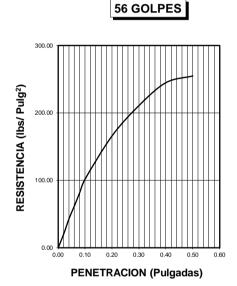
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

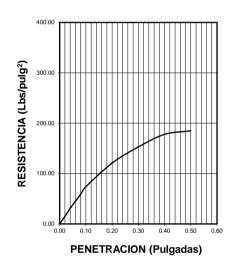
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

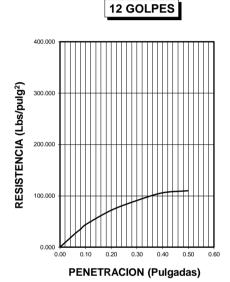
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

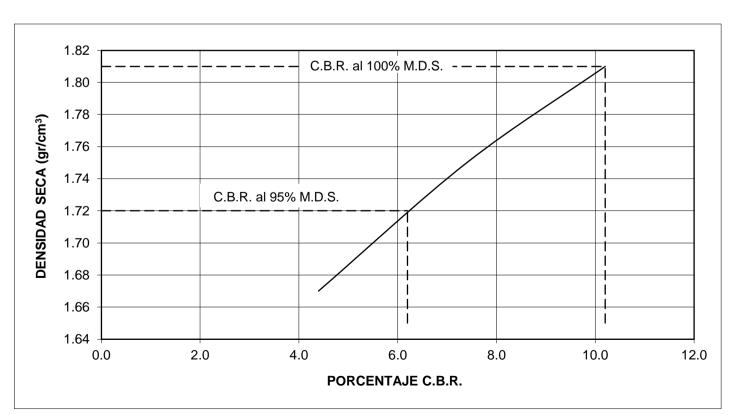
25 GOLPES

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C4M1


FECHA : 08.04.2022


DATOS DEL PROCTOR					
Densidad Máxima (gr/cm³) 1.81					
Humedad Optima (%)	13.95				

DATOS DEL C.B.R.					
C.B.R. al 100% de M.D.S. (%)	10.20				
C.B.R. al 95% de M.D.S. (%)	6.20				

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITADO: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C4

FECHA : 08.04.2022

GRADO DE ABSORCION %

CALICATA	CALICATA 04
MUESTRA	MUESTRA 1
N° FRASCO	N° 10
PESO FRASCO + MUESTRA SUP. SECA	61.52
PESO FRASCO + MUESTRA SECA	61.40
PESO AGUA CONTENIDO	0.12
PESO FRASCO	15.95
PESO SUELO SECO	45.45
GRADO DE ABSORCION %	0.752

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C4

FECHA : 08.04.2022

DETERMINACION DE LA GRAVEDAD ESPECÍFICA DE LOS SÓLIDOS DEL SUELO (G_s)

CALICATA	C - 4
MUESTRA	M -1
PROFUNDIDAD (m.)	0.30 - 1.20 mts
N° FIOLA	3
PESO DE FIOLA + PESO SUELO SECO (gr.)	224.15
PESO FIOLA (gr.)	199.85
PESO SUELO SECO (gr.)	24.30
PESO DE FIOLA + PESO SUELO + PESO AGUA (gr.)	415.00
PESO DE FIOLA + PESO AGUA (gr.)	400.00
DETERMINACIÓN $lpha$	0.9983
GRAVEDAD ESPECÍFICA (gr/cm³)	2.61

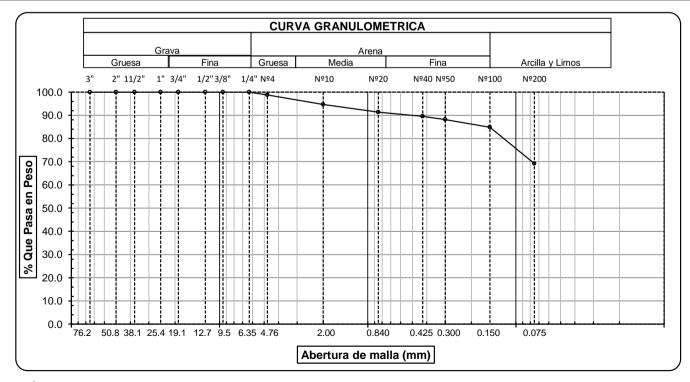
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 1.20 mts. - 1.50 mts.

CALICATA : C4M2 **FECHA** : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA		
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA			
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	138.4 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	31.81 %	
1"	25.400					LIMITE PLASTICO :	26.55 %	
3/4"	19.050					INDICE PLASTICIDAD :	5.26 %	
1/2"	12.700					CLASF. AASHTO :	A-4 (7)	
3/8"	9.525					CLASF. SUCS :	ML	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEI	LO: REGULAR-MALO	
Nº4	4.760	2.51	1.26	1.26	98.75	Limo arenoso de baja pla	asticidad	
Nº10	2.000	8.22	4.11	5.37	94.64	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	6.61	3.31	8.67	91.33		200.0 138 30.8	
N40	0.425	3.52	1.76	10.43	89.57			
Nº50	0.300	2.84	1.42	11.85	88.15			
Nº100	0.150	6.62	3.31	15.16	84.84	MODULO DE FINEZA	0.527	
Nº200	0.075	31.26	15.63	30.79	69.21	Coef. Uniformidad	0.0	
< Nº 200	FONDO	138.42	69.21	100.00	0.00	Coef. Curvatura	0.0	

Observaciones: _____

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 1.20 mts. - 1.50 mts.

CALICATA : C4M2 **FECHA** : 08.04.2022

DATOS DE ENSAYO	L	LIMITE LIQUIDO			LIMITE PLASTICO		
N° de golpes		22	32	16			
1. Recipiente N°		252	255	211	298		
2. Peso suelo húmedo + tara	(gr)	31.55	29.17	34.45	43.92		
3. Peso suelo seco + Tara	(gr)	28.35	26.70	30.28	38.53		
4. Peso de la Tara	(gr)	18.22	18.56	18.77	18.23		
5. Peso del agua	(gr)	3.20	2.47	4.17	5.39		
6. Peso del suelo seco	(gr)	10.13	8.14	11.51	20.30		
7. Contenido de humedad	(%)	31.59	30.34	36.23	26.55		

LIMITE DE CONSISTENCIA DE LA MUESTRA					
Límite Líquido	31.81				
Límite Plástico	26.55				
Índice de Plasticidad	5.26				

MUESTRA:	C4M2
Clasificación SUCS	ML
Clasificación AASHTO	A-4 (7)

Observaciones:			
•			

CALICATA 5

Calle Manuel Seoane $\,N^{\rm o}$ 717 - Cel. 954853683 $\,$ - Lambayeque

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C5

FECHA : 08.04.2022

HUMEDAD NATUR	AL	
CALICATA-MUESTRA	C5-M1	C5-M2
PROFUNDIDAD (m)	0.20 - 1.30	1.30 - 1.50
Nº RECIPIENTE	311	362
1 PESO SUELO HUMEDO + RECIPIENTE	84.52	91.55
2 PESO SUELO SECO + RECIPIENTE	78.54	83.87
3 PESO DEL AGUA	5.98	7.68
4 PESO RECIPIENTE	22.51	19.85
5 PESO SUELO SECO	56.03	64.02
6 PORCENTAJE DE HUMEDAD	10.67%	12.00%

<u>DETERMINACION DE LA SAL</u>				
CALICATA-MUESTRA	C5-M1	C5-M2		
PROFUNDIDAD (m)	0.20 - 1.30	1.30 - 1.50		
Nº RECIPIENTE	148	10		
(1) PESO DEL TARRO	22.51	54.50		
(2) PESO TARRO + AGUA + SAL	27.45	60.00		
(3) PESO TARRO SECO + SAL	22.52	54.51		
(4) PESO SAL (3 - 1)	0.01	0.01		
(5) PESO AGUA (2 - 3)	4.93	5.49		
(6) PORCENTAJE DE SAL	0.20%	0.18%		

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

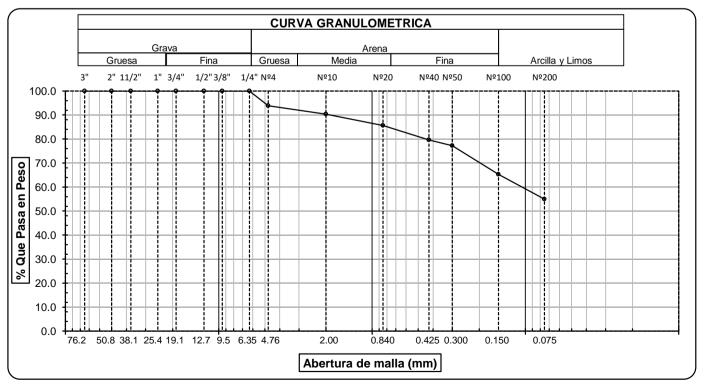
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.20 mts. - 1.30 mts.

CALICATA : C5M1 FECHA : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION	DE LA MUESTRA
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRII CION	DE LA MOESTRA
3"	76.200					PESO TOTAL :	200.0 g.
2 1/2"	63.500					PESO LAVADO :	109.9 g.
2"	50.800						
1 1/2"	38.100					LIMITE LIQUIDO :	27.14 %
1"	25.400					LIMITE PLASTICO :	18.46 %
3/4"	19.050					INDICE PLASTICIDAD:	8.68 %
1/2"	12.700					CLASF. AASHTO :	A-4 (4)
3/8"	9.525					CLASF. SUCS :	CL
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO
Nº4	4.760	12.23	6.12	6.12	93.89	Arcilla arenosa de baja p	olasticidad
Nº10	2.000	7.13	3.57	9.68	90.32	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200
Nº20	0.840	9.34	4.67	14.35	85.65		200.0 110 45.1
N40	0.425	11.96	5.98	20.33	79.67		
Nº50	0.300	4.87	2.44	22.77	77.24		
Nº100	0.150	23.90	11.95	34.72	65.29	MODULO DE FINEZA	1.080
Nº200	0.075	20.67	10.34	45.05	54.95	Coef. Uniformidad	1.9
< Nº 200	FONDO	109.90	54.95	100.00	0.00	Coef. Curvatura	0.0

Observaciones:

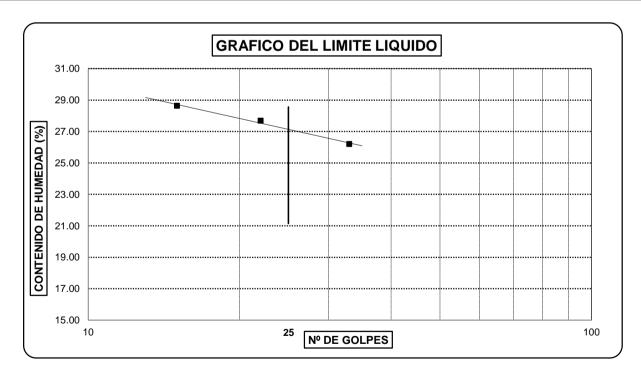
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 0.20 mts. - 1.30 mts.

CALICATA : C5M1 **FECHA** : 08.04.2022

DATOS DE ENSAYO		L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		15	22	33				
1. Recipiente N°		445	406	411	427			
2. Peso suelo húmedo + tara	(gr)	57.68	59.75	54.36	52.01			
3. Peso suelo seco + Tara	(gr)	53.79	54.91	51.19	50.09			
4. Peso de la Tara	(gr)	40.17	37.51	39.07	39.69			
5. Peso del agua	(gr)	3.89	4.84	3.17	1.92			
6. Peso del suelo seco	(gr)	13.62	17.4	12.12	10.40			
7. Contenido de humedad	(%)	28.56	27.82	26.16	18.46			

LIMITE DE CONSISTENCIA DE LA MUESTRA					
Límite Líquido	27.14				
Límite Plástico	18.46				
Índice de Plasticidad	8.68				

MUESTRA: C	5M1
Clasificación SUCS	CL
Clasificación AASHTO	A-4 (4)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEOUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

: ANGELLO ARANA CUMPA EFFIO SOLICITANTE

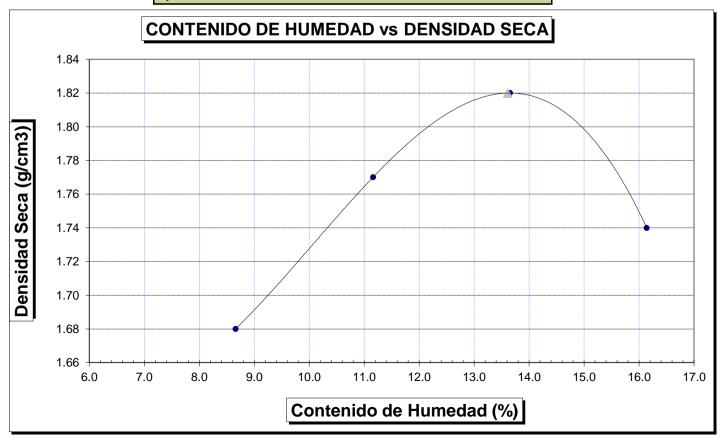
: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD **PROYECTO**

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE **UBICACION**

MATERIAL : TERRENO NATURAL


CALICATA : C5M1

FECHA : 08.04.2022

PROCTOR MODIFICADO AASHTO T - 180 D

1 ITO OT OTT III OD	11 1 07 11		11101	100 -	
MOLDE Nº	:				
VOLUMEN	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6502	6789	6994	6891
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3752	4039	4244	4141
Peso Volumétrico Húmedo	(g)	1.830	1.970	2.070	2.020
Recipiente Nº		295	315	313	368
Peso de Suelo Húmedo + Tara	(g)	56.16	54.43	56.83	57.62
Peso de Suelo Seco + Tara	(g)	53.50	51.21	52.48	52.34
Tara	(g)	22.77	22.36	20.62	19.63
Peso de Agua	(g)	2.66	3.22	4.35	5.28
Peso de Suelo Seco	(g)	30.73	28.85	31.86	32.71
Contenido de agua	(%)	8.66	11.16	13.65	16.14
Peso Volumétrico Seco	(g/cm ³)	1.68	1.77	1.82	1.74
		I	1		1

gr/cm³ Máxima Densidad Seca 1.82 Optimo Contenido de Humedad: 13.61

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C5M1 FECHA : 08.04.2022

C.B.R.

			O.D.i	\.			
MOLDE Nº	2	20	3	35	46		
Nº DE GOLPES POR CAPA		Ę	56	25 12			2
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	11,209	11,284	11,278	11,379	11,038	11,235
PESO DEL MOLDE	(g)	6,777	6,777	6,977	6,977	6,945	6,945
PESO DEL SUELO HUMEDO	(g)	4432	4507	4301	4402	4093	4290
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.07	2.10	2.01	2.05	1.91	2.00
CAPSULA Nº		144	166	195	223	237	267
PESO CAPSULA + SUELO HUMEDO	(g)	53.85	63.99	62.83	60.13	45.58	71.75
PESO CAPSULA + SUELO SECO	(g)	49.94	58.72	58.00	54.59	42.56	64.11
PESO DE AGUA CONTENIDA	(g)	3.91	5.27	4.83	5.54	3.02	7.64
PESO DE CAPSULA	(g)	21.19	23.37	23.56	20.12	20.50	22.79
PESO DE SUELO SECO	(g)	28.75	35.35	34.44	34.47	22.06	41.32
HUMEDAD	(%)	13.60%	14.91%	14.02%	16.07%	13.69%	18.49%
DENSIDAD SECA		1.82	1.83	1.76	1.77	1.68	1.69

EXPANSION

FECHA	HORA	TIE	EMPO .	DIAL	EXPANSION		DIAL	EXPANSIO	N	DIAL	EXPANSIO	N
					mm.	%		mm.	%		mm.	%
3-Abr	2.40 p.m.	0	hrs	0.000			0.000			0.000		0.000
4-Abr	2.40 p.m.	24	hrs	0.197	0.197	0.169	0.436	0.436	0.375	0.646	0.646	0.555
5-Abr	2.40 p.m.	48	hrs	0.279	0.279	0.240	0.532	0.532	0.457	0.754	0.754	0.648
6-Abr	2.40 p.m.	72	hrs	0.403	0.403	0.347	0.646	0.646	0.555	0.849	0.849	0.730
7-Abr	2.40 p.m.	96	hrs	0.535	0.535	0.460	0.761	0.761	0.654	0.948	0.948	0.815

PENETRACION

					,								
PENETRACION	CARGA		MOLDE	Nº	20		MOLDE	Nº	35		MOLDE	Nº	46
pulg.	ESTANDAR	CARGA	A CORECCION		N	CARGA	C	ORECCIO	N	CARGA	С	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		5.40	63	21.00		3.80	45	15.00		2.30	27	9.00	
0.040		11.30	132	44.00		8.20	96	32.00		4.90	57	19.00	
0.060		16.40	192	64.00		11.80	138	46.00		6.90	81	27.00	
0.080		21.50	252	84.00		15.60	183	61.00		9.20	108	36.00	
0.100	1000	26.90	315	105.00	10.50	19.50	228	76.00	7.60	11.50	135	45.00	4.5
0.200	1500	43.80	513	171.00		31.80	372	124.00		18.70	219	73.00	
0.300		55.60	651	217.00		40.30	471	157.00		23.80	279	93.00	
0.400		64.60	756	252.00		46.70	546	182.00		27.70	324	108.00	
0.500		67.40	789	263.00		48.70	570	190.00		29.00	339	113.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

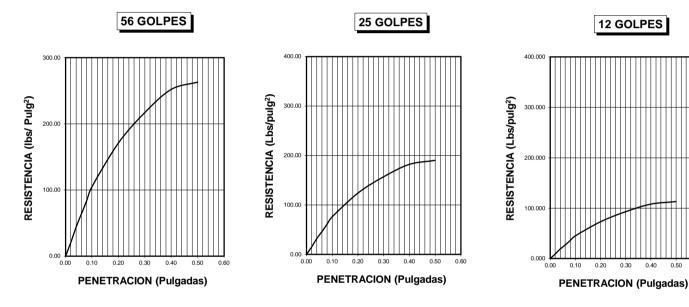
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

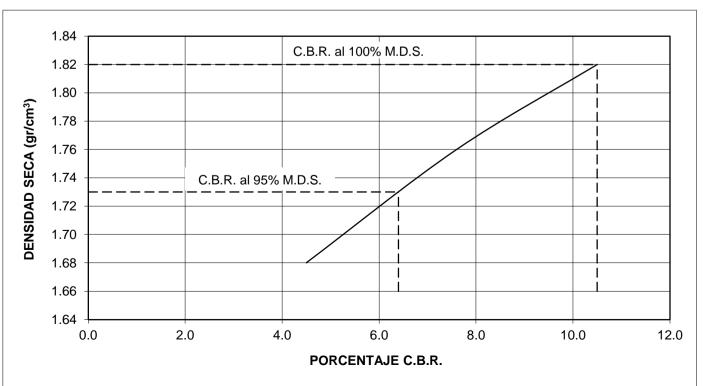
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : C5M1

FECHA : 08.04.2022

DATOS DEL PROCTOR						
Densidad Máxima (gr/cm³)	1.82					
Humedad Optima (%)	13.61					

DATOS DEL C.B.R.						
C.B.R. al 100% de M.D.S. (%) 10.50						
C.B.R. al 95% de M.D.S. (%)	6.40					

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITADO: ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA: C5

FECHA : 08.04.2022

GRADO DE ABSORCION %

CALICATA	CALICATA 05
MUESTRA	MUESTRA 1
N° FRASCO	N° 32
PESO FRASCO + MUESTRA SUP. SECA	71.45
PESO FRASCO + MUESTRA SECA	71.28
PESO AGUA CONTENIDO	0.17
PESO FRASCO	21.35
PESO SUELO SECO	49.93
GRADO DE ABSORCION %	0.796

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : C5

FECHA : 08.04.2022

DETERMINACION DE LA GRAVEDAD ESPECÍFICA DE LOS SÓLIDOS DEL SUELO (G_s)

CALICATA	C - 5
MUESTRA	M -1
PROFUNDIDAD (m.)	0.20 - 1.30 mts
N° FIOLA	5
PESO DE FIOLA + PESO SUELO SECO (gr.)	255.00
PESO FIOLA (gr.)	192.55
PESO SUELO SECO (gr.)	62.45
PESO DE FIOLA + PESO SUELO + PESO AGUA (gr.) 441.00
PESO DE FIOLA + PESO AGUA (gr.)	402.00
DETERMINACIÓN $lpha$	0.9983
GRAVEDAD ESPECÍFICA (gr/cm³)	2.66

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

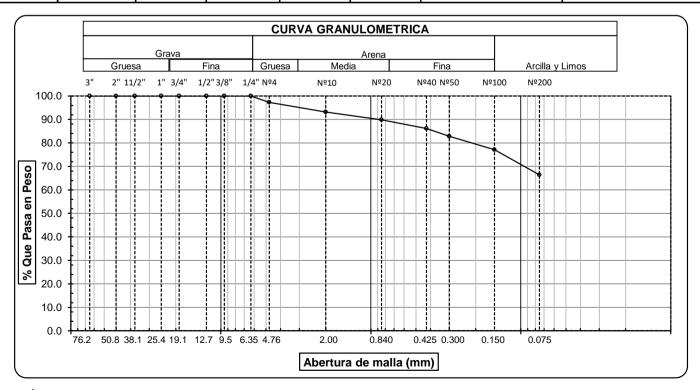
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 1.30 mts. - 1.50 mts.

CALICATA : C5M2 **FECHA** : 08.04.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION	DE LA MUESTRA	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPTION DE LA MOLOTRA		
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	132.7 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	28.24 %	
1"	25.400					LIMITE PLASTICO :	23.09 %	
3/4"	19.050					INDICE PLASTICIDAD :	5.15 %	
1/2"	12.700					CLASF. AASHTO :	A-4 (6)	
3/8"	9.525					CLASF. SUCS :	ML	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO	
Nº4	4.760	5.52	2.76	2.76	97.24	Limo arenoso de baja pl	asticidad	
Nº10	2.000	8.15	4.08	6.84	93.17	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	6.62	3.31	10.15	89.86		200.0 133 33.7	
N40	0.425	7.42	3.71	13.86	86.15			
Nº50	0.300	6.58	3.29	17.15	82.86			
Nº100	0.150	11.51	5.76	22.90	77.10	MODULO DE FINEZA	0.736	
Nº200	0.075	21.51	10.76	33.66	66.35	Coef. Uniformidad	0.2	
< Nº 200	FONDO	132.69	66.35	100.00	0.00	Coef. Curvatura	0.0	

Observaciones: _____

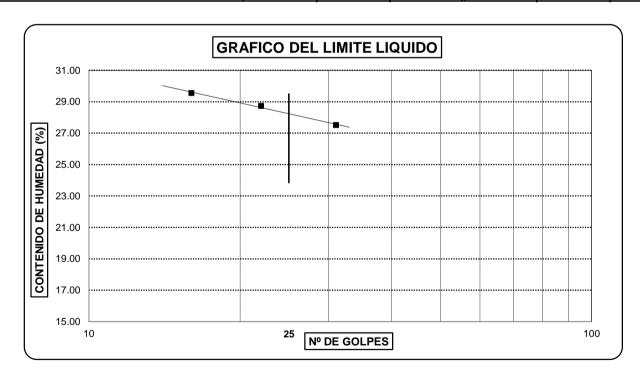
CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

PROFUNDIDAD: 1.30 mts. - 1.50 mts.

CALICATA : C5M2 **FECHA** : 08.04.2022

DATOS DE ENSAYO	L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		31	16	22			
1. Recipiente N°		312	333	352	338		
2. Peso suelo húmedo + tara	(gr)	34.38	30.36	34.60	37.6		
3. Peso suelo seco + Tara	(gr)	30.94	27.37	30.88	34.03		
4. Peso de la Tara	(gr)	18.42	17.23	17.99	18.57		
5. Peso del agua	(gr)	3.44	2.99	3.72	3.57		
6. Peso del suelo seco	(gr)	12.52	10.14	12.89	15.46		
7. Contenido de humedad	(%)	27.48	29.49	28.86	23.09		

LIMITE DE CONSISTENCIA DE	LIMITE DE CONSISTENCIA DE LA MUESTRA					
Límite Líquido	28.24					
Límite Plástico	23.09					
Índice de Plasticidad	5.15					

MUESTRA:	C5M2	
Clasificación SUCS	ML	
Clasificación AASHTO	A-4 (6)	

Observaciones:		
•		

ANEXO 2.2. ENSAYOS CON ADICIÓN DE AGGREBIND

CALICATA 2 AGREGANDO ADITIVO AGGREBIND 23 ml

CALLE MANUEL SEOANE N° 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION N^{\circ} 0031616-2019/DSD - INDECOPI RUC. 20605369139**

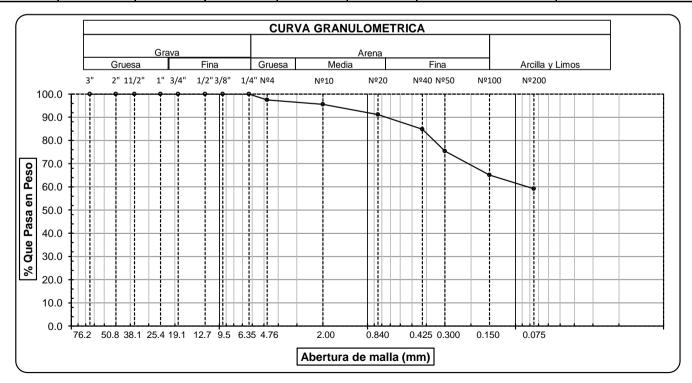
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 23 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION	DE LA MUESTRA	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA MIDESTRA		
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	118.3 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	29.75 %	
1"	25.400					LIMITE PLASTICO :	15.85 %	
3/4"	19.050					INDICE PLASTICIDAD :	13.90 %	
1/2"	12.700					CLASF. AASHTO :	A-6 (6)	
3/8"	9.525					CLASF. SUCS :	CL	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEI	O: MALO	
Nº4	4.760	5.15	2.58	2.58	97.43	Arcilla arenosa de baja p	lasticidad	
Nº10	2.000	3.67	1.84	4.41	95.59	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	8.84	4.42	8.83	91.17		200.0 118 40.8	
N40	0.425	12.65	6.33	15.16	84.85			
Nº50	0.300	18.95	9.48	24.63	75.37			
Nº100	0.150	20.57	10.29	34.92	65.09	MODULO DE FINEZA	0.905	
Nº200	0.075	11.84	5.92	40.84	59.17	Coef. Uniformidad	7.8	
< Nº 200	FONDO	118.33	59.17	100.00	0.00	Coef. Curvatura	0.0	

Observaciones:

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : A

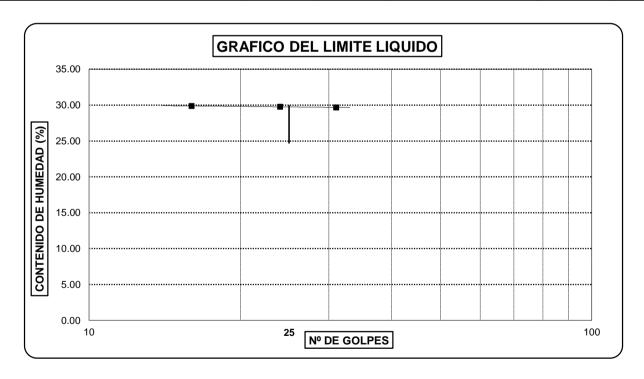
: ANGELLO ARANA CUMPA EFFIO

PROYECTO

: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACIÓN

: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 23 ml

FECHA : 10.05.2022

DATOS DE ENSAYO	L	MITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		16	24	31			
1. Recipiente N°		574	259	588	566		
2. Peso suelo húmedo + tara	(gr)	36.74	35.64	33.40	40.47		
3. Peso suelo seco + Tara	(gr)	32.52	31.79	29.78	37.4		
4. Peso de la Tara	(gr)	18.41	18.83	17.60	18.03		
5. Peso del agua	(gr)	4.22	3.85	3.62	3.07		
6. Peso del suelo seco	(gr)	14.11	12.96	12.18	19.37		
7. Contenido de humedad	(%)	29.91	29.71	29.72	15.85		

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Límite Líquido	29.75
Límite Plástico	15.85
Índice de Plasticidad	13.90

MUESTRA:	
Clasificación SUCS	CL
Clasificación AASHTO	A-6 (6)

Observaciones:			
•			

LINUS LINUS

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS. ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION N 0031616-2019/DSD-INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

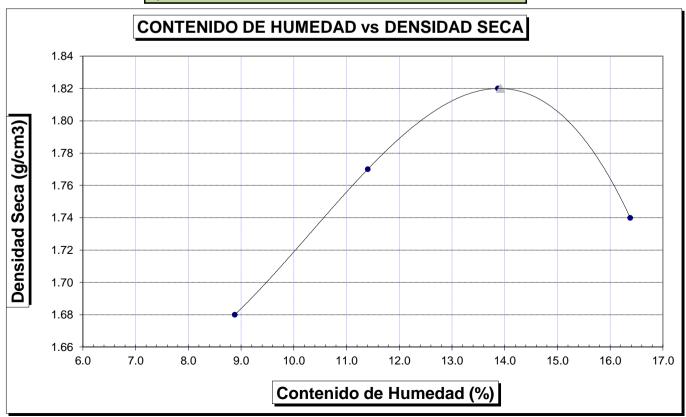
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL


CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 23 ml

FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº					
MOLDE IN	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6502	6789	6994	6891
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3752	4039	4244	4141
Peso Volumétrico Húmedo	(g)	1.830	1.970	2.070	2.020
Recipiente Nº		159	179	177	232
Peso de Suelo Húmedo + Tara	(g)	57.92	56.21	58.63	59.45
Peso de Suelo Seco + Tara	(g)	55.12	52.83	54.10	53.96
Tara	(g)	23.58	23.17	21.43	20.44
Peso de Agua	(g)	2.80	3.38	4.53	5.49
Peso de Suelo Seco	(g)	31.54	29.66	32.67	33.52
Contenido de agua	(%)	8.88	11.40	13.87	16.38
Peso Volumétrico Seco	(g/cm ³)	1.68	1.77	1.82	1.74

Máxima Densidad Seca : 1.82 gr/cm³
Optimo Contenido de Humedad : 13.92 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 23 ml

FECHA : 04.06.2022

C.B.R. MOLDE Nº 12 27 38 Nº DE GOLPES POR CAPA 56 SIN MOJAR MOJADA SIN MOJAR MOJADA SIN MOJAR MOJADA CONDICION DE MUESTRA 11,597 11,592 PESO MOLDE + SUELO HUMEDO 11,525 11,695 11,352 11,551 (g) PESO DEL MOLDE (g) 7,080 7,080 7,280 7,280 7,248 7,248 4517 4312 4415 4104 4303 PESO DEL SUELO HUMEDO 4445 (g) 2,143 2,143 VOLUMEN DEL SUELO 2,143 2,143 2,143 2,143 (g) DENSIDAD HUMEDA (q/cm³) 2.07 2.11 2.01 2.06 1.92 2.01 CAPSULA Nº 208 230 259 287 301 331 PESO CAPSULA + SUELO HUMEDO 52.37 62.51 61.35 58.63 44.07 70.26 (g) PESO CAPSULA + SUELO SECO (g) 48.49 57.27 56.55 53.14 41.11 62.66 PESO DE AGUA CONTENIDA 3.88 5.24 4.80 5.49 2.96 7.6 (g) PESO DE CAPSULA (g) 20.65 22.83 23.02 19.58 19.96 22.25 PESO DE SUELO SECO (g) 27.84 34.44 33.53 33.56 21.15 40.41 13.94% 15.21% 14.32% 16.36% 14.00% 18.81% HUMEDAD (%) DENSIDAD SECA 1.82 1.83 1.76 1.77 1.68 1.69

EXPANSION

FECHA HORA TIEMPO DIAL		DIAL	EXPANSION		DIAL EXP		EXPANSION		DIAL	EXPANSIO	N	
120131		1121111		mm.	%		mm		%		mm.	%
				N	NO REGIS							

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	12		MOLDE	Nº	27		MOLDE	Nº	38
pulg.	ESTANDAR	CARGA	(CORECCIO	N	CARGA	C	ORECCIO	N	CARGA	С	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		9.00	105	35.00		6.40	75	25.00		3.80	45	15.00	
0.040		18.50	216	72.00		13.30	156	52.00		7.90	93	31.00	
0.060		26.90	315	105.00		19.50	228	76.00		11.80	138	46.00	
0.080		35.40	414	138.00		25.60	300	100.00		15.40	180	60.00	
0.100	1000	44.30	518.4	172.80	17.28	32.10	375	125.00	12.50	19.20	225	75.00	7.50
0.200	1500	72.30	846	282.00		52.30	612	204.00		31.30	366	122.00	
0.300		91.80	1074	358.00		66.40	777	259.00		39.70	465	155.00	
0.400		106.40	1245	415.00		76.90	900	300.00		46.20	540	180.00	
0.500		110.80	1296	432.00		80.30	939	313.00		48.20	564	188.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

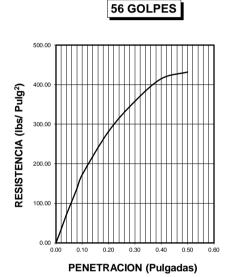
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

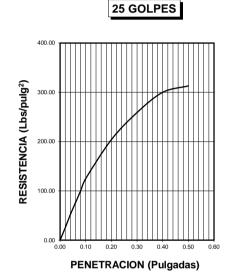
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

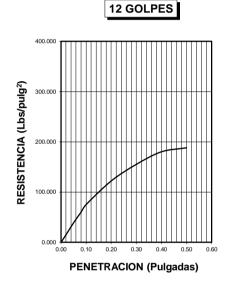
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

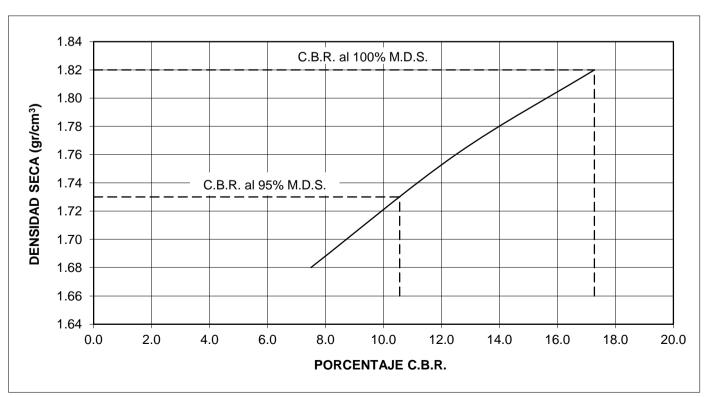
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 23 ml


FECHA : 04.06.2022


DATOS DEL PROCTOR							
Densidad Máxima (gr/cm³)	1.82						
Humedad Optima (%)	13.92						

DATOS DEL C.B.	.R.
C.B.R. al 100% de M.D.S. (%)	17.28
C.B.R. al 95% de M.D.S. (%)	10.56

CALICATA 2 AGREGANDO ADITIVO AGGREBIND 45 ml

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

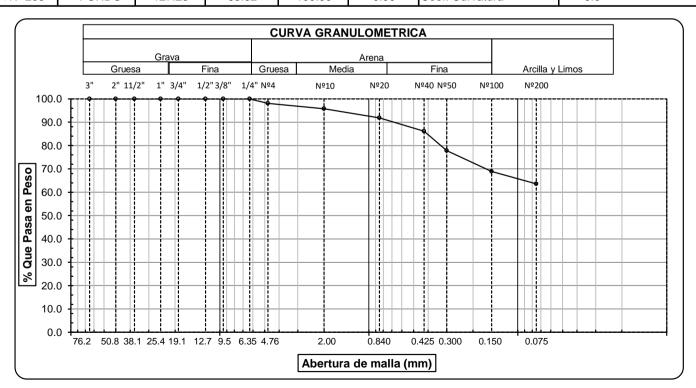
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 45 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA			
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIFCION DE LA MIDESTRA			
3"	76.200					PESO TOTAL :	200.0 g.		
2 1/2"	63.500					PESO LAVADO :	127.2 g.		
2"	50.800								
1 1/2"	38.100					LIMITE LIQUIDO :	28.08 %		
1"	25.400					LIMITE PLASTICO :	19.05 %		
3/4"	19.050					INDICE PLASTICIDAD:	9.03 %		
1/2"	12.700					CLASF. AASHTO :	A-4 (6)		
3/8"	9.525					CLASF. SUCS :	CL		
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: REGULAR-MALO		
Nº4	4.760	3.87	1.94	1.94	98.07	Arcilla arenosa de baja p	olasticidad		
Nº10	2.000	4.55	2.28	4.21	95.79	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200		
Nº20	0.840	7.84	3.92	8.13	91.87		200.0 127 36.4		
N40	0.425	11.51	5.76	13.89	86.12				
Nº50	0.300	16.62	8.31	22.20	77.81				
Nº100	0.150	17.84	8.92	31.12	68.89	MODULO DE FINEZA	0.815		
Nº200	0.075	10.54	5.27	36.39	63.62	Coef. Uniformidad	11.2		
< Nº 200	FONDO	127.23	63.62	100.00	0.00	Coef. Curvatura	0.0		

Observaciones:			

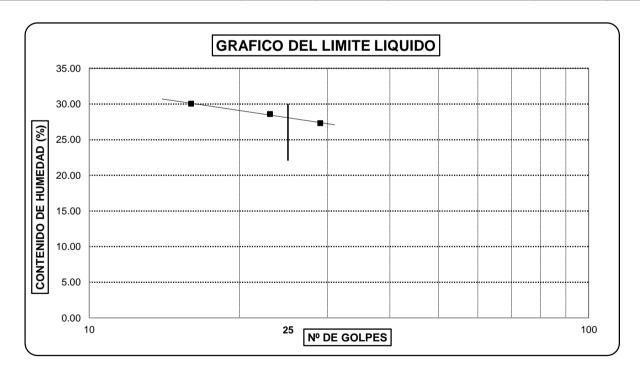
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 45 ml

FECHA : 10.05.2022

DATOS DE ENSAYO	LI	LIMITE LIQUIDO			LIMITE PLASTICO			
N° de golpes		16	23	29				
1. Recipiente N°		347	329	309	344			
2. Peso suelo húmedo + tara	(gr)	35.03	32.59	29.35	44.7			
3. Peso suelo seco + Tara	(gr)	31.05	29.32	26.76	40.55			
4. Peso de la Tara	(gr)	17.74	18.00	17.22	18.77			
5. Peso del agua	(gr)	3.98	3.27	2.59	4.15			
6. Peso del suelo seco	(gr)	13.31	11.32	9.54	21.78			
7. Contenido de humedad	(%)	29.90	28.89	27.15	19.05			

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Límite Líquido	28.08
Límite Plástico	19.05
Índice de Plasticidad	9.03

MUESTRA:	
Clasificación SUCS	CL
Clasificación AASHTO	A-4 (6)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

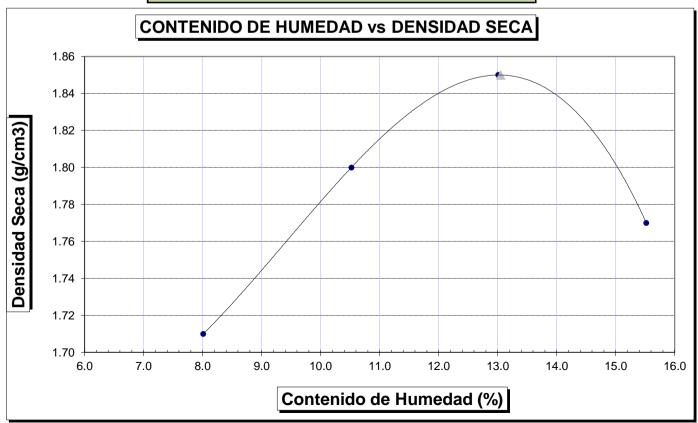
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL


CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 45 ml

FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE №	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6543	6830	7035	6932
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3793	4080	4285	4182
Peso Volumétrico Húmedo	(g)	1.850	1.990	2.090	2.040
Recipiente Nº		244	264	262	317
Peso de Suelo Húmedo + Tara	(g)	60.04	58.37	60.80	61.64
Peso de Suelo Seco + Tara	(g)	57.42	55.13	56.40	56.26
Tara	(g)	24.73	24.32	22.58	21.59
Peso de Agua	(g)	2.62	3.24	4.40	5.38
Peso de Suelo Seco	(g)	32.69	30.81	33.82	34.67
Contenido de agua	(%)	8.01	10.52	13.01	15.52
Peso Volumétrico Seco	(g/cm ³)	1.71	1.80	1.85	1.77

Máxima Densidad Seca:1.85gr/cm³Optimo Contenido de Humedad:13.05%

Calle manuel seoane $\,\text{N}^{\text{o}}$ 717 - Cel. 954853683 - Lambayeque RESOLUCION N^{o} 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 45 ml

FECHA : 04.06.2022

			C.B.I	₹.			
MOLDE Nº		3	30	4	15	5	6
Nº DE GOLPES POR CAPA		5	56	25		12	
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA
PESO MOLDE + SUELO HUMEDO	(g)	11,306	11,383	11,377	11,480	11,140	11,341
PESO DEL MOLDE	(g)	6,825	6,825	7,025	7,025	6,993	6,993
PESO DEL SUELO HUMEDO	(g)	4481	4558	4352	4455	4147	4348
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143
DENSIDAD HUMEDA	(g/cm ³)	2.09	2.13	2.03	2.08	1.94	2.03
CAPSULA Nº		323	345	374	402	416	446
PESO CAPSULA + SUELO HUMEDO	(g)	55.53	65.65	64.48	61.81	47.30	73.44
PESO CAPSULA + SUELO SECO	(g)	51.59	60.37	59.65	56.24	44.21	65.76
PESO DE AGUA CONTENIDA	(g)	3.94	5.28	4.83	5.57	3.09	7.68
PESO DE CAPSULA	(g)	21.37	23.55	23.74	20.30	20.68	22.97
PESO DE SUELO SECO	(g)	30.22	36.82	35.91	35.94	23.53	42.79
HUMEDAD	(%)	13.04%	14.34%	13.45%	15.50%	13.13%	17.95%
DENSIDAD SECA		1.85	1.86	1.79	1.80	1.71	1.72

EXPANSION

FECHA	HORA	TIEMPO	DIAL	EXPANSION		DIAL	EX	PANSION		DIAL	EXPANSION	
				mm.	%		mm		%		mm.	%
				N	O REGIS	TRA						
_												

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	30		MOLDE	Nº	45		MOLDE	Nº	56
pulg.	ESTANDAR	CARGA	CORECCION			CARGA	CORECCION			CARGA	CORECCION		
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		10.00	117	39.00		7.20	84	28.00		4.40	51	17.00	
0.040		20.80	243	81.00		14.90	174	58.00		9.00	105	35.00	
0.060		30.30	354	118.00		21.80	255	85.00		13.10	153	51.00	
0.080		39.70	465	155.00		28.70	336	112.00		17.20	201	67.00	
0.100	1000	49.60	580.8	193.60	19.36	35.90	420	140.00	14.00	21.50	252	84.00	8.40
0.200	1500	81.00	948	316.00		58.50	684	228.00		35.10	411	137.00	
0.300		102.80	1203	401.00		74.40	870	290.00		44.60	522	174.00	
0.400		119.20	1395	465.00		86.20	1008	336.00		51.80	606	202.00	
0.500		124.10	1452	484.00		89.70	1050	350.00		53.80	630	210.00	
·													

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

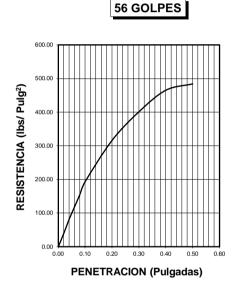
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

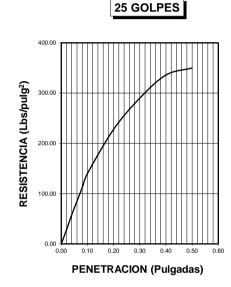
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

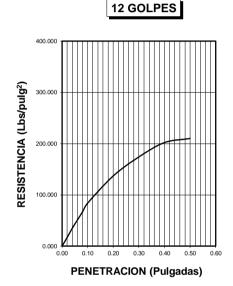
PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

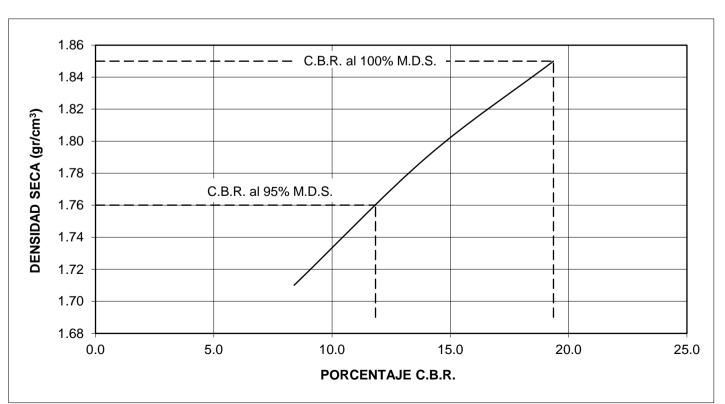
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 45 ml


FECHA : 04.06.2022


DATOS DEL PROCTOR									
Densidad Máxima (gr/cm³) 1.85									
Humedad Optima (%)	13.05								

DATOS DEL C.B.	.R.
C.B.R. al 100% de M.D.S. (%)	19.36
C.B.R. al 95% de M.D.S. (%)	11.84

CALICATA 2 AGREGANDO ADITIVO AGGREBIND 67 ml

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

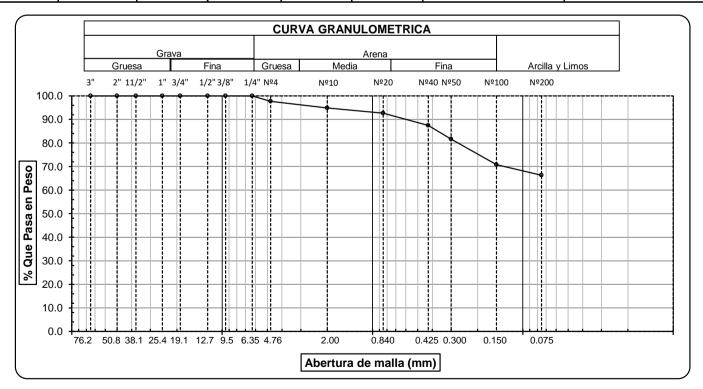
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 67 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA				
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRII CION DE LA MICESTRA				
3"	76.200					PESO TOTAL :	200.0 g.			
2 1/2"	63.500					PESO LAVADO :	132.6 g.			
2"	50.800									
1 1/2"	38.100					LIMITE LIQUIDO :	23.41 %			
1"	25.400					LIMITE PLASTICO :	16.17 %			
3/4"	19.050					INDICE PLASTICIDAD :	7.24 %			
1/2"	12.700					CLASF. AASHTO :	A-4 (6)			
3/8"	9.525					CLASF. SUCS :	CL			
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUELO	: REGULAR-MALO			
Nº4	4.760	4.62	2.31	2.31	97.69	Arcilla arenosa de baja plas	sticidad			
Nº10	2.000	5.58	2.79	5.10	94.90	Ensayo Malla Nº200 P.	S.Sec P.S.Lav (%) 200			
Nº20	0.840	4.51	2.26	7.36	92.65	2	200.0 133 33.7			
N40	0.425	10.51	5.26	12.61	87.39					
Nº50	0.300	11.62	5.81	18.42	81.58					
Nº100	0.150	21.62	10.81	29.23	70.77	MODULO DE FINEZA	0.750			
Nº200	0.075	8.95	4.48	33.71	66.30	Coef. Uniformidad	0.2			
< Nº 200	FONDO	132.59	66.30	100.00	0.00	Coef. Curvatura	0.0			

Observaciones: _____

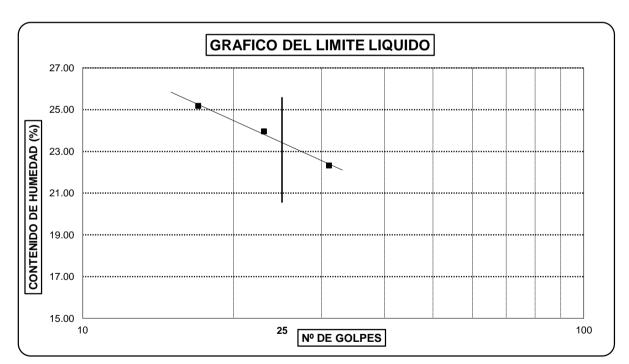
CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 67 ml

FECHA : 10.05.2022

DATOS DE ENSAYO		L	IMITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		23	31	17				
1. Recipiente N°		255	669	588	558			
2. Peso suelo húmedo + tara	(gr)	36.39	34.07	37.72	41.72			
3. Peso suelo seco + Tara	(gr)	33.04	30.97	33.80	38.46			
4. Peso de la Tara	(gr)	18.64	17.27	18.47	18.30			
5. Peso del agua	(gr)	3.35	3.10	3.92	3.26			
6. Peso del suelo seco	(gr)	14.4	13.7	15.33	20.16			
7. Contenido de humedad	(%)	23.26	22.63	25.57	16.17			

LIMITE DE CONSISTENCIA DE	LA MUESTRA
Límite Líquido	23.41
Límite Plástico	16.17
Índice de Plasticidad	7.24

MUESTRA:	
Clasificación SUCS	CL
Clasificación AASHTO	A-4 (6)

Observaciones.				
	•			_

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

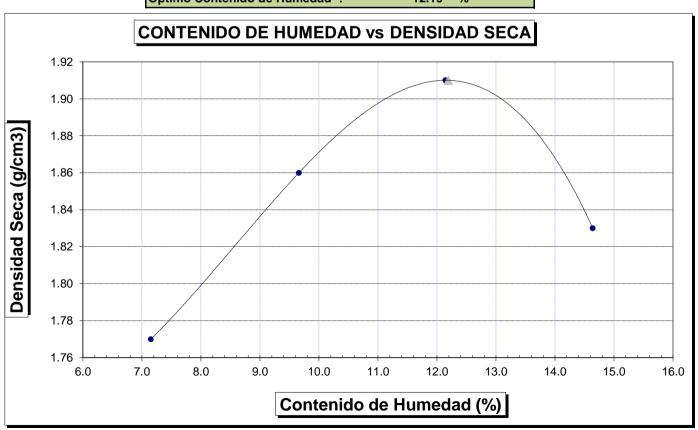
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL

CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 67 ml


FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

		7 7 17 10	<u> </u>		
MOLDE №	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6645	6932	7137	7055
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3895	4182	4387	4305
Peso Volumétrico Húmedo	(g)	1.900	2.040	2.140	2.100
Recipiente Nº		181	201	199	254
Peso de Suelo Húmedo + Tara	(g)	65.62	64.04	66.51	67.41
Peso de Suelo Seco + Tara	(g)	63.08	60.79	62.06	61.92
Tara	(g)	27.56	27.15	25.41	24.42
Peso de Agua	(g)	2.54	3.25	4.45	5.49
Peso de Suelo Seco	(g)	35.52	33.64	36.65	37.50
Contenido de agua	(%)	7.15	9.66	12.14	14.64
Peso Volumétrico Seco	(g/cm ³)	1.77	1.86	1.91	1.83
1					

Máxima Densidad Seca : 1.91 gr/cm³

Optimo Contenido de Humedad : 12.19 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

ANGELLO ARANA CUMPA EFFIO SOLICITANTE

PROYECTO EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 67 ml CALICATA

04.06.2022 FECHA

C.B.R.

MOLDE Nº			3	1	8	29		
Nº DE GOLPES POR CAPA		Ļ	56	2	25	12		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PESO MOLDE + SUELO HUMEDO	(g)	11,705	11,783	11,777	11,882	11,539	11,747	
PESO DEL MOLDE	(g)	7,113	7,113	7,313	7,313	7,281	7,281	
PESO DEL SUELO HUMEDO	(g)	4592	4670	4464	4569	4258	4466	
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA	(g/cm ³)	2.14	2.18	2.08	2.13	1.99	2.08	
CAPSULA №		447	469	498	526	540	570	
PESO CAPSULA + SUELO HUMEDO	(g)	53.34	63.39	62.23	59.55	45.16	71.10	
PESO CAPSULA + SUELO SECO	(g)	49.73	58.51	57.79	54.38	42.35	63.90	
PESO DE AGUA CONTENIDA	(g)	3.61	4.88	4.44	5.17	2.81	7.2	
PESO DE CAPSULA	(g)	20.15	22.33	22.52	19.08	19.46	21.75	
PESO DE SUELO SECO	(g)	29.58	36.18	35.27	35.3	22.89	42.15	
HUMEDAD	(%)	12.20%	13.49%	12.59%	14.65%	12.28%	17.08%	
DENSIDAD SECA		1.91	1.92	1.85	1.86	1.77	1.78	

EXPANSION

FECHA	HORA	TIEMPO	DIAL	EXPANSION	DIAL EXF		EXPANSION		DIAL	EXPANSION	٧	
			5	mm.	%		mm.	1	%		mm.	%
				N	O REGIS	IRA	J					

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	3		MOLDE Nº 18			MOLDE Nº 29			
pulg.	ESTANDAR	CARGA	(CORECCIO	N	CARGA	CORECCION		CARGA	ARGA CORECCIO		N	
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg²	%	Lectura	lbs	lbs/pulg²	%
0.020		11.00	129	43.00		7.90	93	31.00		4.60	54	18.00	
0.040		22.80	267	89.00		16.40	192	64.00		9.70	114	38.00	
0.060		33.30	390	130.00		24.10	282	94.00		14.40	168	56.00	
0.080		43.60	510	170.00		31.50	369	123.00		19.00	222	74.00	
0.100	1000	54.60	638.4	212.80	21.28	39.50	462	154.00	15.40	23.60	276	92.00	9.20
0.200	1500	89.00	1041	347.00		64.40	753	251.00		38.50	450	150.00	
0.300		112.80	1320	440.00		81.80	957	319.00		48.70	570	190.00	
0.400		131.00	1533	511.00		94.90	1110	370.00		56.70	663	221.00	
0.500		136.40	1596	532.00		98.70	1155	385.00		59.00	690	230.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

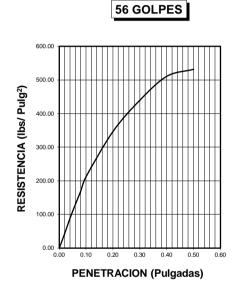
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

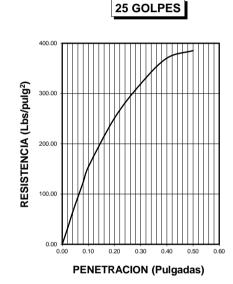
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

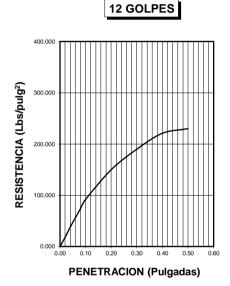
PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

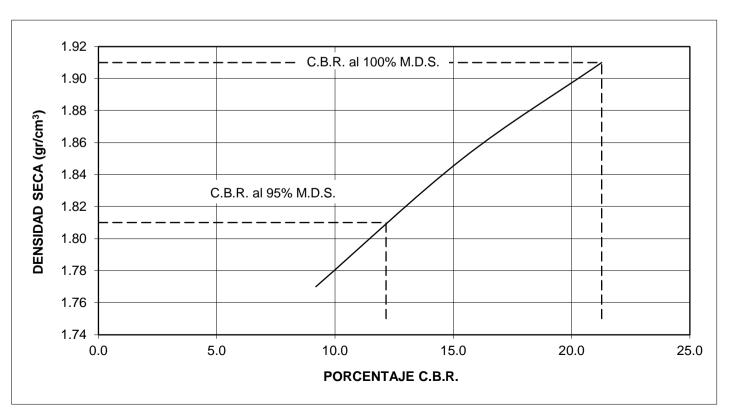
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO ADITIVO AGGREBIND 67 ml


FECHA : 04.06.2022


DATOS DEL PROCTOR							
Densidad Máxima (gr/cm³)	1.91						
Humedad Optima (%)	12.19						

DATOS DEL C.B.R.								
C.B.R. al 100% de M.D.S. (%) 21.28								
C.B.R. al 95% de M.D.S. (%)	12.16							

ANEXO 2.3. ENSAYOS CON ADICIÓN DE MAXXSEAL 200

CALICATA 2 AGREGANDO 47ml DE ADITIVO MAXXSEAL 200

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

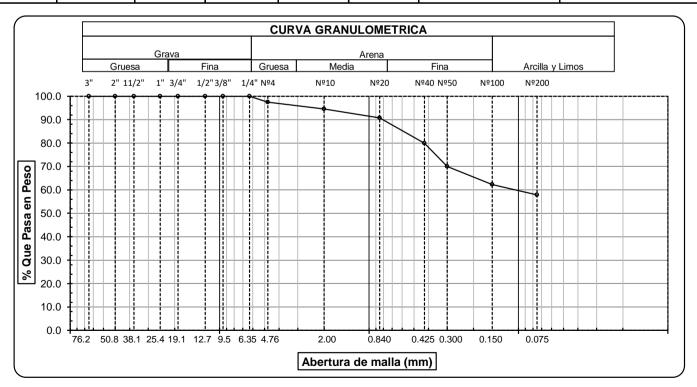
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 47 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIBCION	DE LA MUESTRA	
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA MUESTRA		
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	115.7 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	31.56 %	
1"	25.400					LIMITE PLASTICO :	15.65 %	
3/4"	19.050					INDICE PLASTICIDAD :	15.91 %	
1/2"	12.700					CLASF. AASHTO :	A-6 (7)	
3/8"	9.525					CLASF. SUCS :	CL	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEI	O: MALO	
Nº4	4.760	5.10	2.55	2.55	97.45	Arcilla arenosa de baja p	lasticidad	
Nº10	2.000	5.84	2.92	5.47	94.53	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	7.51	3.76	9.23	90.78		200.0 116 42.2	
N40	0.425	21.62	10.81	20.04	79.97			
Nº50	0.300	19.95	9.98	30.01	69.99			
Nº100	0.150	15.47	7.74	37.75	62.26	MODULO DE FINEZA	1.050	
Nº200	0.075	8.84	4.42	42.17	57.84	Coef. Uniformidad	16.6	
< Nº 200	FONDO	115.67	57.84	100.00	0.00	Coef. Curvatura	0.0	

Observaciones:		
·		

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE

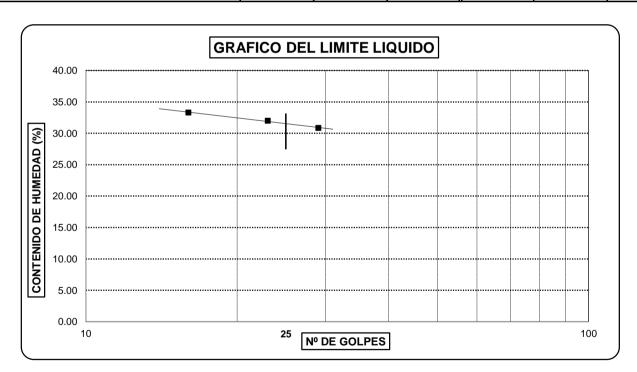
: ANGELLO ARANA CUMPA EFFIO

PROYECTO

: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN


: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA

: CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 47 ml

FECHA : 10.05.2022

DATOS DE ENSAYO	LI	MITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		29	16	23			
1. Recipiente N°		329	339	355	330		
2. Peso suelo húmedo + tara	(gr)	32.82	32.30	31.87	39.06		
3. Peso suelo seco + Tara	(gr)	29.35	28.91	28.52	36.22		
4. Peso de la Tara	(gr)	18.00	18.66	18.23	18.07		
5. Peso del agua	(gr)	3.47	3.39	3.35	2.84		
6. Peso del suelo seco	(gr)	11.35	10.25	10.29	18.15		
7. Contenido de humedad	(%)	30.57	33.07	32.56	15.65		

LIMITE DE CONSISTENCIA DE LA MUESTRA						
Límite Líquido	31.56					
Límite Plástico	15.65					
Índice de Plasticidad	15.91					

MUESTRA:	
Clasificación SUCS	CL
Clasificación AASHTO	A-6 (7)

Observaciones:				
				_

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI

RUC. 20605369139

: ANGELLO ARANA CUMPA EFFIO **SOLICITANTE**

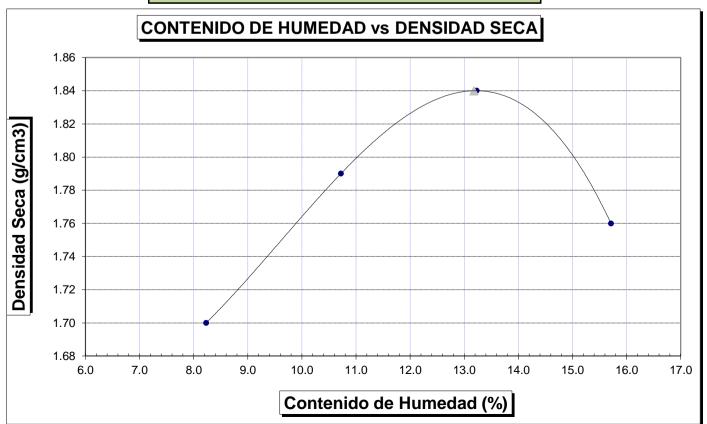
: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD **PROYECTO**

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE **UBICACION**

MATERIAL : TERRENO NATURAL


: CALICATA 02 - AGREGANDO MAXXSEAL 200 - 47 ml. **CALICATA**

FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

I INGGIGINIOD	11 10/ (1	70717	<u> </u>	100 5	
MOLDE Nº	:				
<u>VOLUMEN</u>	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6522	6809	7014	6932
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3772	4059	4264	4182
Peso Volumétrico Húmedo	(g)	1.840	1.980	2.080	2.040
Recipiente Nº		382	402	400	455
Peso de Suelo Húmedo + Tara	(g)	55.78	54.05	56.44	57.22
Peso de Suelo Seco + Tara	(g)	53.26	50.97	52.24	52.10
Tara	(g)	22.65	22.24	20.50	19.51
Peso de Agua	(g)	2.52	3.08	4.20	5.12
Peso de Suelo Seco	(g)	30.61	28.73	31.74	32.59
Contenido de agua	(%)	8.23	10.72	13.23	15.71
Peso Volumétrico Seco	(g/cm ³)	1.70	1.79	1.84	1.76

Máxima Densidad Seca 1.84 gr/cm³ Optimo Contenido de Humedad: 13.18 %

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 47 ml.

FECHA : 14.05.2022

C.B.R. MOLDE Nº 10 25 36 Nº DE GOLPES POR CAPA SIN MOJAR **SIN MOJAR SIN MOJAR MOJADA MOJADA MOJADA** CONDICION DE MUESTRA PESO MOLDE + SUELO HUMEDO 11.472 11.549 11.543 11.646 11.303 11.505 (g) PESO DEL MOLDE (g) 7,010 7,010 7,210 7,210 7,178 7,178 PESO DEL SUELO HUMEDO 4462 4539 4333 4436 4125 4327 (g) VOLUMEN DEL SUELO 2,143 2,143 2,143 2,143 2,143 2,143 (g) (g/cm³) 2.08 2.02 1.92 2.02 DENSIDAD HUMEDA 2.12 2.07 CAPSULA Nº 50 72 101 129 143 173 PESO CAPSULA + SUELO HUMEDO (g) 50.34 60.45 59.29 56.58 42.10 68.16 PESO CAPSULA + SUELO SECO (g) 46.63 55.41 54.69 51.28 39.25 60.80 4.60 7.36 PESO DE AGUA CONTENIDA 3.71 5.04 5.30 2.85 (g) 18.45 20.63 20.82 17.38 17.76 20.05 PESO DE CAPSULA (g) PESO DE SUELO SECO (g) 28.18 34.78 33.87 33.9 21.49 40.75 HUMEDAD (%) 13.17% 14.49% 13.58% 15.63% 13.26% 18.06% DENSIDAD SECA 1.84 1.85 1.78 1.79 1.70 1.71

EXPANSION

FECHA	HORA	TIEMPO	DIAL	EXPANSION		EXPANSION		EXPANSION		EXPANSION		EXPANSION		AI EXPANSION		DIAI EXPANSION		DIAL	EXF	PANSIO	N	DIAL	EXPANSIO	N																		
1201	110101	112	DIJAL	mm.	mm. %		mm	mm.			mm.	%																														
				N	O REGIS	TRA																																				

PENETRACION

PENETRACION	CARGA	MOLDE Nº 10					MOLDE № 25				MOLDE № 36			
pulg.	ESTANDAR	CARGA	ı	CORECCIO		CARGA			CARGA		ORECCION			
	(lbs/pulg²)	Lectura	lbs	lbs/pulg²	%	Lectura	lbs	lbs/pulg²	%	Lectura	lbs	lbs/pulg ²	%	
0.020		7.70	90	30.00		5.40	63	21.00		3.30	39	13.00		
0.040		15.90	186	62.00		11.50	135	45.00		6.90	81	27.00		
0.060		23.10	270	90.00		16.70	195	65.00		10.00	117	39.00		
0.080		30.30	354	118.00		22.10	258	86.00		13.10	153	51.00		
0.100	1000	37.90	444	148.00	14.80	27.40	321	107.00	10.70	16.40	192	64.00	6.40	
0.200	1500	61.80	723	241.00		44.60	522	174.00		26.70	312	104.00		
0.300		78.50	918	306.00		56.70	663	221.00		33.80	396	132.00		
0.400		91.00	1065	355.00		65.90	771	257.00		39.50	462	154.00		
0.500		94.90	1110	370.00		68.70	804	268.00		41.00	480	160.00		

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

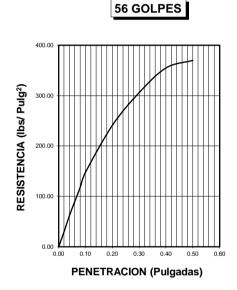
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

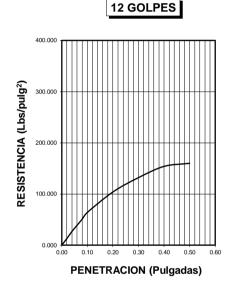
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

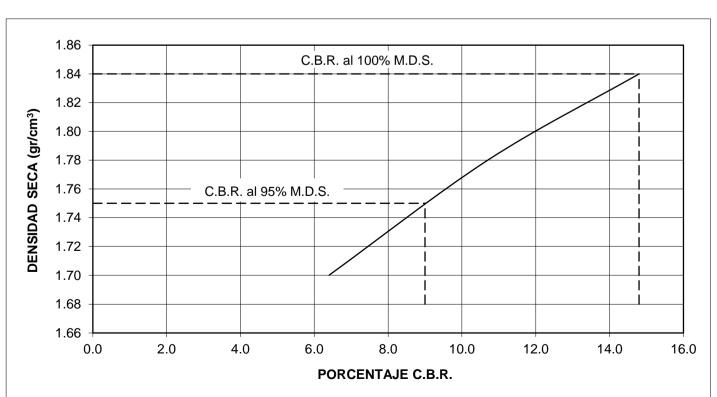
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 47 ml.


FECHA : 14.05.2022


DATOS DEL PROCTOR							
Densidad Máxima (gr/cm³) 1.84							
Humedad Optima (%)	13.18						

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)	14.80						
C.B.R. al 95% de M.D.S. (%)	10.40						

CALICATA 2 AGREGANDO 94ml DE ADITIVO MAXXSEAL 200

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

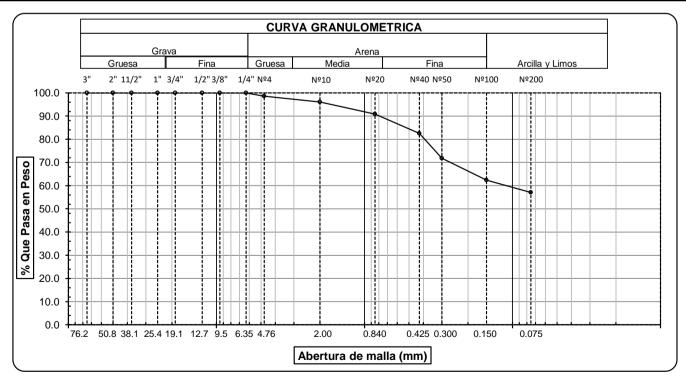
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 94 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION	I DE LA MUESTRA
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION	I DE LA MOESTRA
3"	76.200					PESO TOTAL :	200.0 g.
2 1/2"	63.500					PESO LAVADO :	114.2 g.
2"	50.800						
1 1/2"	38.100					LIMITE LIQUIDO :	25.40 %
1"	25.400					LIMITE PLASTICO :	13.76 %
3/4"	19.050					INDICE PLASTICIDAD:	11.64 %
1/2"	12.700					CLASF. AASHTO :	A-6 (5)
3/8"	9.525					CLASF. SUCS :	CL
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUE	LO: MALO
Nº4	4.760	2.87	1.44	1.44	98.57	Arcilla arenosa de baja p	olasticidad
Nº10	2.000	4.95	2.48	3.91	96.09	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200
Nº20	0.840	10.51	5.26	9.17	90.84		200.0 114 42.9
N40	0.425	16.57	8.29	17.45	82.55		
Nº50	0.300	21.54	10.77	28.22	71.78		
Nº100	0.150	18.84	9.42	37.64	62.36	MODULO DE FINEZA	0.978
Nº200	0.075	10.51	5.26	42.90	57.11	Coef. Uniformidad	34.4
< Nº 200	FONDO	114.21	57.11	100.00	0.00	Coef. Curvatura	0.0

Observaciones:		

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE

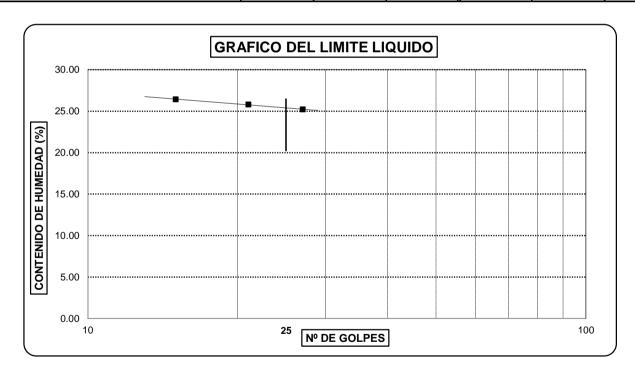
: ANGELLO ARANA CUMPA EFFIO

PROYECTO

: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN


: DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA

: CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 94 ml

FECHA : 10.05.2022

DATOS DE ENSAYO		L	MITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		15	21	27				
1. Recipiente N°		322	324	306	313			
2. Peso suelo húmedo + tara	(gr)	32.67	32.54	35.75	44.64			
3. Peso suelo seco + Tara	(gr)	29.63	29.68	32.17	41.44			
4. Peso de la Tara	(gr)	18.15	18.57	17.99	18.19			
5. Peso del agua	(gr)	3.04	2.86	3.58	3.20			
6. Peso del suelo seco	(gr)	11.48	11.11	14.18	23.25			
7. Contenido de humedad	(%)	26.48	25.74	25.25	13.76			

LIMITE DE CONSISTENCIA DE LA MUESTRA						
Límite Líquido	25.40					
Límite Plástico	13.76					
Índice de Plasticidad	11.64					

MUESTRA:	
Clasificación SUCS	CL
Clasificación AASHTO	A-6 (5)

Observaciones:			

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

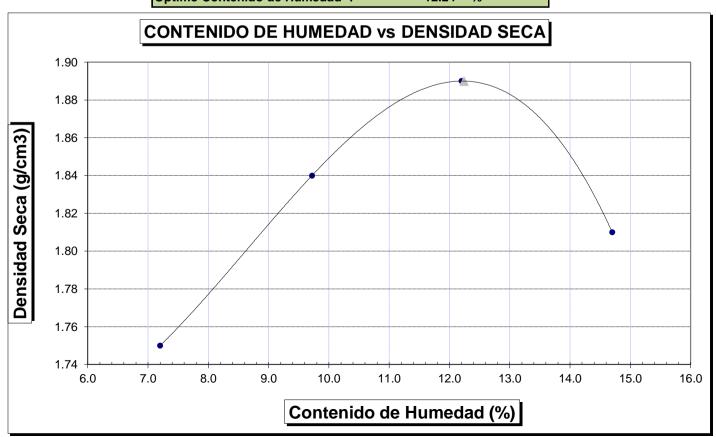
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL

CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 94 ml.


FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

I IXOUTUR IIIOD	11 107 11	5 	<u> </u>	100 2	
MOLDE Nº	:				
VOLUMEN	:	2050	cm ³		pie ³
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6604	6891	7096	7014
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3854	4141	4346	4264
Peso Volumétrico Húmedo	(g)	1.880	2.020	2.120	2.080
Recipiente Nº		310	330	328	383
Peso de Suelo Húmedo + Tara	(g)	53.89	52.17	54.50	55.26
Peso de Suelo Seco + Tara	(g)	51.74	49.45	50.72	50.58
Tara	(g)	21.89	21.48	19.74	18.75
Peso de Agua	(g)	2.15	2.72	3.78	4.68
Peso de Suelo Seco	(g)	29.85	27.97	30.98	31.83
Contenido de agua	(%)	7.20	9.72	12.20	14.70
Peso Volumétrico Seco	(g/cm ³)	1.75	1.84	1.89	1.81

Máxima Densidad Seca : 1.89 gr/cm³

Optimo Contenido de Humedad : 12.24 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 94 ml.

FECHA : 14.05.2022

	C.B.R.											
MOLDE Nº		2	22	3	37	4	8					
Nº DE GOLPES POR CAPA		Ę	56	2	25	1	2					
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA					
PESO MOLDE + SUELO HUMEDO	(g)	11,693	11,770	11,765	11,870	11,529	11,733					
PESO DEL MOLDE	(g)	7,148	7,148	7,348	7,348	7,316	7,316					
PESO DEL SUELO HUMEDO	(g)	4545	4622	4417	4522	4213	4417					
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143					
DENSIDAD HUMEDA	(g/cm ³)	2.12	2.16	2.06	2.11	1.97	2.06					
CAPSULA №		322	344	373	401	415	445					
PESO CAPSULA + SUELO HUMEDO	(g)	53.62	63.68	62.52	59.84	45.44	71.39					
PESO CAPSULA + SUELO SECO	(g)	49.99	58.77	58.05	54.64	42.61	64.16					
PESO DE AGUA CONTENIDA	(g)	3.63	4.91	4.47	5.20	2.83	7.23					
PESO DE CAPSULA	(g)	20.34	22.52	22.71	19.27	19.65	21.94					
PESO DE SUELO SECO	(g)	29.65	36.25	35.34	35.37	22.96	42.22					
HUMEDAD	(%)	12.24%	13.54%	12.65%	14.70%	12.33%	17.12%					
DENSIDAD SECA		1.89	1.90	1.83	1.84	1.75	1.76					

EXPANSION

FECHA	HORA	TIEMPO	DIAL	EXPANSION		EXPANSION		EXPANSION D		DIAL EXPANSION DIAL EXPANSION		N	DIAL	EXPANSION	
0				mm.	%		mm		%		mm.	%			
				N	O REGIS	TRA									

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	22		MOLDE	Nº	37		MOLDE	Nº	48
pulg.	ESTANDAR	CARGA	C	CORECCIO	N	CARGA	O	ORECCIO	N	CARGA	C	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%
0.020		8.70	102	34.00		6.40	75	25.00		3.80	45	15.00	
0.040		18.50	216	72.00		13.30	156	52.00		7.90	93	31.00	
0.060		26.90	315	105.00		19.50	228	76.00		11.50	135	45.00	
0.080		35.40	414	138.00		25.60	300	100.00		15.10	177	59.00	
0.100	1000	44.10	516	172.00	17.20	32.10	375	125.00	12.50	19.00	222	74.00	7.40
0.200	1500	71.80	840	280.00		52.30	612	204.00		31.00	363	121.00	
0.300		91.30	1068	356.00		66.40	777	259.00		39.20	459	153.00	
0.400		105.90	1239	413.00		76.90	900	300.00		45.60	534	178.00	
0.500		110.30	1290	430.00		80.30	939	313.00		47.40	555	185.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

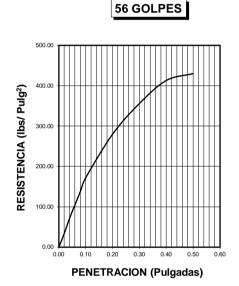
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

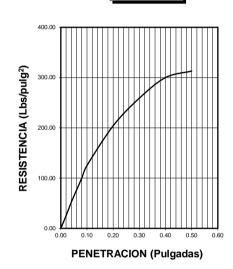
PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

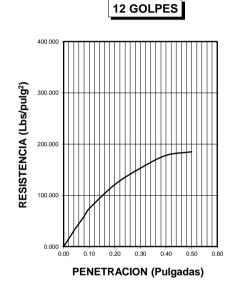
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

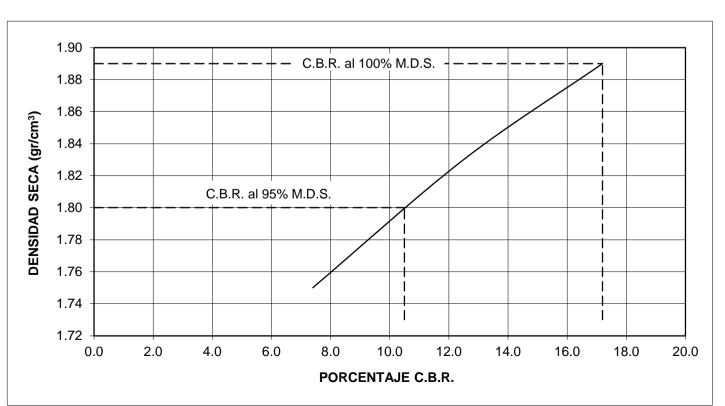
25 GOLPES

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 94 ml.


FECHA : 14.05.2022


DATOS DEL PROCTOR							
Densidad Máxima (gr/cm ³)	1.89						
Humedad Optima (%)	12.24						

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)	17.20						
C.B.R. al 95% de M.D.S. (%)	11.80						

CALICATA 2 AGREGANDO 141ml DE ADITIVO MAXXSEAL 200

CALLE MANUEL SEOANE № 717 - CEL. 954853683 - LAMBAYEQUE **RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139**

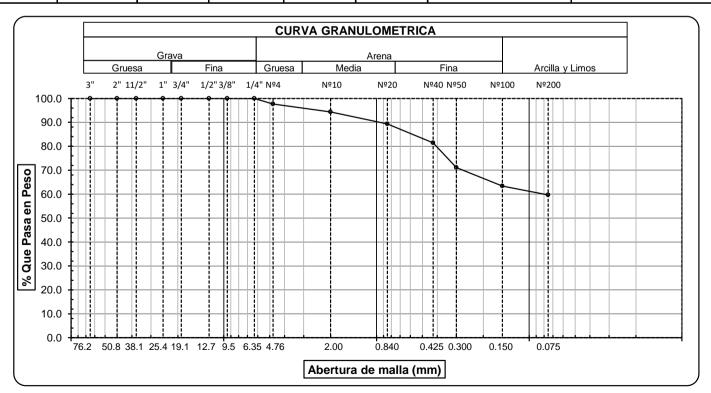
ANALISIS GRANULOMETRICO POR TAMIZADO

(ASTM - D422 / N.T.P. 339.128)

SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

PROYECTO: EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA: CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 141 ml

FECHA : 10.05.2022

ABERTU	RA MALLA	PESO	% RETENIDO	% RETENIDO	% QUE	DESCRIPCION DE LA MUESTRA		
(Pul)	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA	DESCRIPCION DE LA MOESTRA		
3"	76.200					PESO TOTAL :	200.0 g.	
2 1/2"	63.500					PESO LAVADO :	119.3 g.	
2"	50.800							
1 1/2"	38.100					LIMITE LIQUIDO :	21.75 %	
1"	25.400					LIMITE PLASTICO :	15.32 %	
3/4"	19.050					INDICE PLASTICIDAD:	6.43 %	
1/2"	12.700					CLASF. AASHTO :	A-4 (5)	
3/8"	9.525					CLASF. SUCS :	CL-ML	
1/4"	6.350	0.00	0.00	0.00	100.00	DESCRIPCIÓN DEL SUEI	O: REGULAR-MALO	
Nº4	4.760	4.71	2.36	2.36	97.65	Arcilla limo arenoso de b	paja plasticidad	
Nº10	2.000	6.62	3.31	5.67	94.34	Ensayo Malla Nº200	P.S.Sec P.S.Lav (%) 200	
Nº20	0.840	9.95	4.98	10.64	89.36		200.0 119 40.3	
N40	0.425	15.95	7.98	18.62	81.39			
Nº50	0.300	20.51	10.26	28.87	71.13			
Nº100	0.150	15.47	7.74	36.61	63.40	MODULO DE FINEZA	1.028	
Nº200	0.075	7.48	3.74	40.35	59.66	Coef. Uniformidad	664.5	
< Nº 200	FONDO	119.31	59.66	100.00	0.00	Coef. Curvatura	0.0	

Observaciones:	es:	

SERVICIOS DE ESTUDIOS DE MECANICA DE SUELOS PAVIMENTOS, ASFALTOS Y ANALISIS DE MATERIALES DE CONSTRUCCION²03 CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

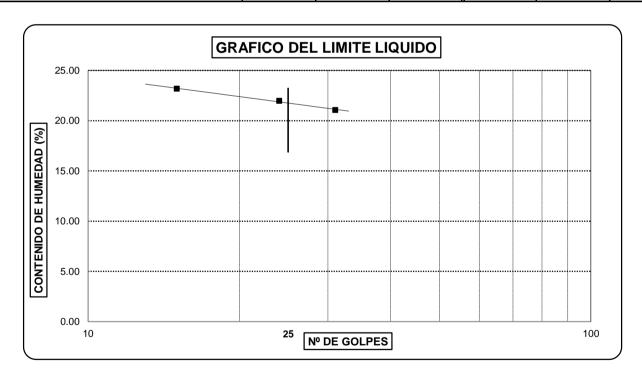
RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

LIMITES DE ATTERBERG (ASTM - D423 / N.T.P. 339.129)

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS


NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACIÓN : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO ADITIVO MAXXSEAL 200 - 141 ml

FECHA : 10.05.2022

DATOS DE ENSAYO	L	MITE LIQUID	00	LIMITE PLASTICO			
N° de golpes		15	31	24			
1. Recipiente N°		330	346	341	321		
2. Peso suelo húmedo + tara	(gr)	33.35	34.31	33.85	45.11		
3. Peso suelo seco + Tara	(gr)	30.47	31.39	31.08	41.52		
4. Peso de la Tara	(gr)	18.07	17.56	18.43	18.08		
5. Peso del agua	(gr)	2.88	2.92	2.77	3.59		
6. Peso del suelo seco	(gr)	12.4	13.83	12.65	23.44		
7. Contenido de humedad	(%)	23.23	21.11	21.90	15.32		

LIMITE DE CONSISTENCIA DE LA MUESTRA						
Límite Líquido	21.75					
Límite Plástico	15.32					
Índice de Plasticidad	6.43					

MUESTRA:	
Clasificación SUCS	CL-ML
Clasificaciòn AASHTO	A-4 (5)

Observaciones:

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

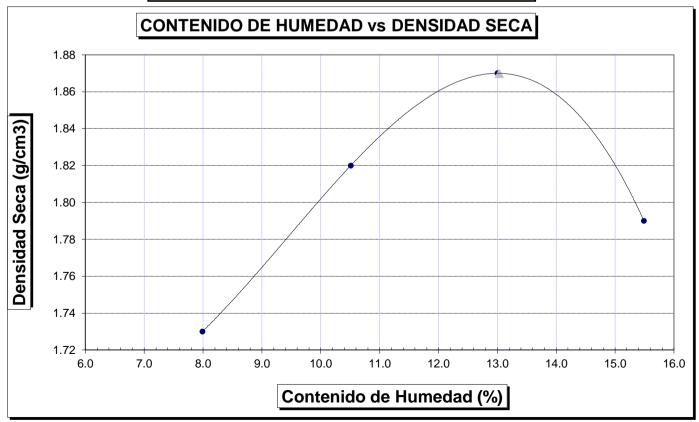
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

MATERIAL : TERRENO NATURAL


CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 141 ml.

FECHA : 10.05.2022

PROCTOR MODIFICADO AASHTO T - 180 D

MOLDE Nº					
	•				
<u>VOLUMEN</u>	2050	cm ³		pie ³	
METODO DE COMPACTACION	:	AASHTO T	- 180 D		
Peso Suelo Humedo + Molde	(g)	6584	6871	7076	6994
Peso de Molde	(g)	2750	2750	2750	2750
Peso Suelo Húmedo Compactado	(g)	3834	4121	4326	4244
Peso Volumétrico Húmedo	(g)	1.870	2.010	2.110	2.070
Recipiente Nº		166	186	184	239
Peso de Suelo Húmedo + Tara	(g)	55.31	53.59	55.96	56.74
Peso de Suelo Seco + Tara	(g)	52.88	50.59	51.86	51.72
Tara	(g)	22.46	22.05	20.31	19.32
Peso de Agua	(g)	2.43	3.00	4.10	5.02
Peso de Suelo Seco	(g)	30.42	28.54	31.55	32.40
Contenido de agua	(%)	7.99	10.51	13.00	15.49
Peso Volumétrico Seco	(g/cm ³)	1.73	1.82	1.87	1.79

Máxima Densidad Seca : 1.87 gr/cm³
Optimo Contenido de Humedad : 13.03 %

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

RESOLUCION № 0031616-2019/DSD - INDECOPI RUC. 20605369139

ENSAYO CALIFORNIA BEARNING RATIO

SOLICITANTE : ANGELLO ARANA CUMPA EFFIO

PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021

UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE

CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 141 ml.

FECHA : 14.05.2022

			C.B.F	₹.				
MOLDE Nº		4	11	Ę	56	67		
Nº DE GOLPES POR CAPA		5	56	2	25	12		
CONDICION DE MUESTRA		SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	SIN MOJAR	MOJADA	
PESO MOLDE + SUELO HUMEDO	(g)	11,397	11,472	11,467	11,572	11,229	11,432	
PESO DEL MOLDE	(g)	6,867	6,867	7,067	7,067	7,035	7,035	
PESO DEL SUELO HUMEDO	(g)	4530	4605	4400	4505	4194	4397	
VOLUMEN DEL SUELO	(g)	2,143	2,143	2,143	2,143	2,143	2,143	
DENSIDAD HUMEDA	(g/cm ³)	2.11	2.15	2.05	2.10	1.96	2.05	
CAPSULA №		195	217	246	274	288	318	
PESO CAPSULA + SUELO HUMEDO	(g)	53.69	63.81	62.64	59.97	45.46	71.60	
PESO CAPSULA + SUELO SECO	(g)	49.74	58.52	57.80	54.39	42.36	63.91	
PESO DE AGUA CONTENIDA	(g)	3.95	5.29	4.84	5.58	3.10	7.69	
PESO DE CAPSULA	(g)	19.42	21.60	21.79	18.35	18.73	21.02	
PESO DE SUELO SECO	(g)	30.32	36.92	36.01	36.04	23.63	42.89	
HUMEDAD	(%)	13.03%	14.33%	13.44%	15.48%	13.12%	17.93%	
DENSIDAD SECA		1.87	1.88	1.81	1.82	1.73	1.74	

EXPANSION

FECHA	HORA	TIEMPO	DIAL	EXPANSION		EXPANSION		EXPANSION		EXPANSION		EXPANSION		DIAL	EXF	PANSIO	N	DIAL	EXPANSIO	N
			5.7.1	mm.	%		mm		%		mm.	%								
				N	O REGIS	TRA														

PENETRACION

PENETRACION	CARGA		MOLDE	Nº	41		MOLDE	Nº	56		MOLDE	Nº	67
pulg.	ESTANDAR	CARGA	C	CORECCIO	N	CARGA	C	ORECCIO	N	CARGA	С	ORECCIO	N
	(lbs/pulg²)	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg ²	%	Lectura	lbs	lbs/pulg²	%
0.020		8.50	99	33.00		6.20	72	24.00		3.60	42	14.00	
0.040		17.70	207	69.00		12.80	150	50.00		7.70	90	30.00	
0.060		25.90	303	101.00		18.70	219	73.00		11.00	129	43.00	
0.080		33.80	396	132.00		24.60	288	96.00		14.60	171	57.00	
0.100	1000	42.30	495	165.00	16.50	30.80	360	120.00	12.00	18.20	213	71.00	7.10
0.200	1500	69.00	807	269.00		50.30	588	196.00		29.70	348	116.00	
0.300		87.70	1026	342.00		63.60	744	248.00		37.70	441	147.00	
0.400		101.50	1188	396.00		73.80	864	288.00		43.60	510	170.00	
0.500		105.90	1239	413.00		76.90	900	300.00		45.60	534	178.00	

CALLE MANUEL SEOANE Nº 717 - CEL. 954853683 - LAMBAYEQUE

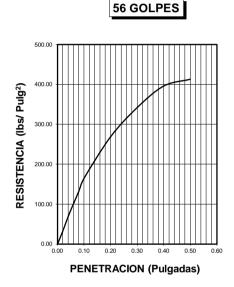
RESOLUCION Nº 0031616-2019/DSD - INDECOPI RUC. 20605369139

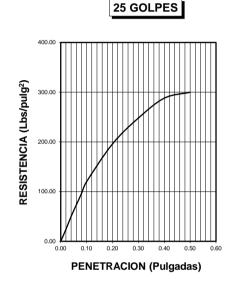
SOLICITANTE: ANGELLO ARANA CUMPA EFFIO

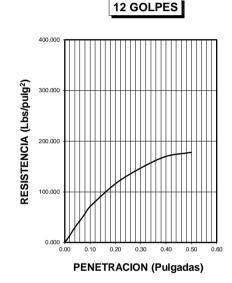
PROYECTO : EVALUACION DE LA ESTABILIZACION DE SUBRASANTE DE BAJA CAPACIDAD

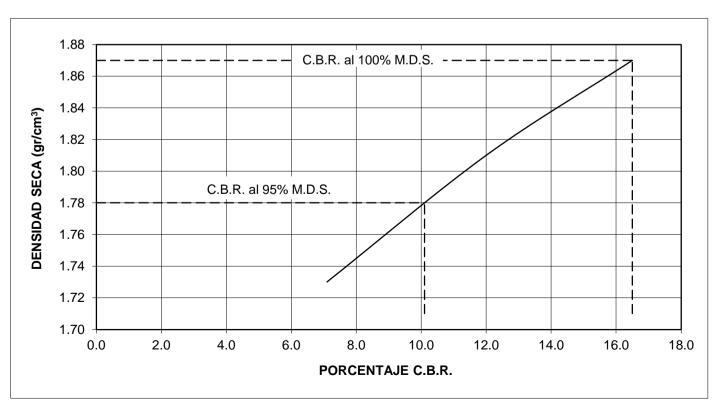
INCORPORANDO ADITIVOS AGGREBIND Y MAXXSEAL 200 EN VIAS URBANAS

NO PAVIMENTADAS EN EL DISTRITO DE LA VICTORIA 2021


UBICACION : DISTRITO LA VICTORIA, PROVINCIA CHICLAYO, DEPARTAMENTO LAMBAYEQUE


CALICATA : CALICATA 02 - AGREGANDO MAXXSEAL 200 - 141 ml.


FECHA : 14.05.2022


DATOS DEL PROCTOR						
Densidad Máxima (gr/cm³)	1.87					
Humedad Optima (%)	13.03					

DATOS DEL C.B.R.							
C.B.R. al 100% de M.D.S. (%)	16.50						
C.B.R. al 95% de M.D.S. (%)	11.40						

ANEXO 2.4. ENSAYO DE PERMEABILIDAD

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SAC

• Terreno Natural

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)
01	1800	100.00	97.56	3.142	70.00	70.882	0.953	0.00004
02	1800	97.56	94.06	3.142	70.00	70.882	0.953	0.00006
03	1800	94.06	92.84	3.142	70.00	70.882	0.953	0.00002
04	1800	92.84	91.45	3.142	70.00	70.882	0.953	0.00002
05	1800	91.45	88.62	3.142	70.00	70.882	0.953	0.00005
06	1800	88.62	85.56	3.142	70.00	70.882	0.953	0.00006
					K pro	omedio	4.27E-05	
					Descripción		MUY POCO PERMEABLE	

• Terreno Natural + 12ml Maxxsal 200

Muestra	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)	
01	1800	100.00	96.26	3.142	70.00	70.882	0.953	0.0000627	
02	1800	96.26	91.45	3.142	70.00	70.882	0.953	0.0000843	
03	1800	91.45	87.29	3.142	70.00	70.882	0.953	0.0000766	
04	1800	87.29	82.65	3.142	70.00	70.882	0.953	0.0000898	
05	1800	82.65	78.84	3.142	70.00	70.882	0.953	0.0000776	
06	1800	78.84	74.26	3.142	70.00	70.882	0.953	0.0000984	
						omedio	8.16E-05		
				Descr	ripción		Y POCO MEABLE		

• Terreno Natural + 24ml Maxxsal 200

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)	
01	1800	100.00	95.16	3.142	70.00	70.882	0.953	0.0000816	
02	1800	95.16	90.56	3.142	70.00	70.882	0.953	0.0000815	
03	1800	90.56	86.23	3.142	70.00	70.882	0.953	0.0000806	
04	1800	86.23	82.26	3.142	70.00	70.882	0.953	0.0000775	
05	1800	82.26	74.62	3.142	70.00	70.882	0.953	0.0001603	
06	1800	74.62	68.56	3.142	70.00	70.882	0.953	0.0001393	
					K pro	omedio	1.0	1.03E-04	
					Descripción		POCO PERMEABLE		

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SAC

• Terreno Natural + 36ml Maxxsal 200

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)	
01	1800	100.00	94.27	3.142	70.00	70.882	0.953	0.0000970	
02	1800	94.27	88.26	3.142	70.00	70.882	0.953	0.0001083	
03	1800	88.26	83.45	3.142	70.00	70.882	0.953	0.0000922	
04	1800	83.45	77.26	3.142	70.00	70.882	0.953	0.0001268	
05	1800	77.26	71.26	3.142	70.00	70.882	0.953	0.0001330	
06	1800	71.26	66.29	3.142	70.00	70.882	0.953	0.0001189	
					K pro	omedio	1.1	1.13E-04	
					Descripción		POCO PERMEABLE		

4.3 Procesamiento de los análisis con la incorporación de Aggrebind.

se realizó el ensayo en el terreno natural y terreno natural más 6ml, 12ml y 17ml de aditivo Aggrebind.

• Terreno Natural

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)	
01	1800	100.00	97.42	3.142	70.00	70.882	0.953	0.00004	
02	1800	97.42	93.98	3.142	70.00	70.882	0.953	0.00006	
03	1800	93.98	92.75	3.142	70.00	70.882	0.953	0.00002	
04	1800	92.75	91.51	3.142	70.00	70.882	0.953	0.00002	
05	1800	91.51	89.26	3.142	70.00	70.882	0.953	0.00004	
06	1800	89.26	87.12	3.142	70.00	70.882	0.953	0.00004	
					K pro	medio	3.78E-05		
					Descripción			MUY POCO PERMEABLE	

• Terreno Natural + 6ml Aggrebind

Muestra	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)
01	1800	100.00	94.26	3.142	70.00	70.882	0.953	0.0000972
02	1800	94.26	87.89	3.142	70.00	70.882	0.953	0.0001151
03	1800	87.89	81.10	3.142	70.00	70.882	0.953	0.0001322
04	1800	81.10	77.40	3.142	70.00	70.882	0.953	0.0000768

SERVICIOS DE LABORATORIOS DE SUELOS Y PAVIMENTOS SAC

					Descr	scripción MUY POCO PERMEABLE		
					K promedio 1.18E-04		L8E-04	
06	1800	71.60	65.10	3.142	70.00	70.882	0.953	0.0001566
05	1800	77.40	71.60	3.142	70.00	70.882	0.953	0.0001281

• Terreno Natural + 12ml Aggrebind

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)
01	1800	100.00	92.54	3.142	70.00	70.882	0.953	0.0001275
02	1800	92.54	85.60	3.142	70.00	70.882	0.953	0.0001282
03	1800	85.60	78.90	3.142	70.00	70.882	0.953	0.0001341
04	1800	78.90	82.40	3.142	70.00	70.882	0.953	-0.0000714
05	1800	82.40	68.00	3.142	70.00	70.882	0.953	0.0003160
06	1800	68.00	62.30	3.142	70.00	70.882	0.953	0.0001440
		•	•		K promedio		1.30E-04	

K promedio	1.30E-04
Descripción	POCO PERMEABLE

• Terreno Natural + 17ml Aggrebind

Lecturas	T (seg)	h1 (cm)	h2 (cm)	a (cm2)	L (cm)	A (cm2)	fc	K20 (cm/s)
01	1800	100.00	89.80	3.142	70.00	70.882	0.953	0.0001769
02	1800	89.80	82.40	3.142	70.00	70.882	0.953	0.0001414
03	1800	82.40	74.00	3.142	70.00	70.882	0.953	0.0001769
04	1800	74.00	65.80	3.142	70.00	70.882	0.953	0.0001932
05	1800	65.80	58.60	3.142	70.00	70.882	0.953	0.0001907
06	1800	58.60	54.26	3.142	70.00	70.882	0.953	0.0001266
				K pro	omedio	1.6	58E-04	

K promedio1.68E-04DescripciónPOCO
PERMEABLE

ANEXO 3. PANEL FOTOGRÁFICO

Esta zona limita con:

✓ Norte: Distritos de Chiclayo y José Leonardo Ortiz.

✓ Sur: Distrito de Monsefú.

✓ Este: Provincia de Chiclayo.

 ✓ Oeste: Distrito de Santa Rosa.

Figura 1. Ubicación geográfica del PJ. Antonio Raymondi del ACQUA Sector 1

Trabajo en campo

Identificación del área del proyecto

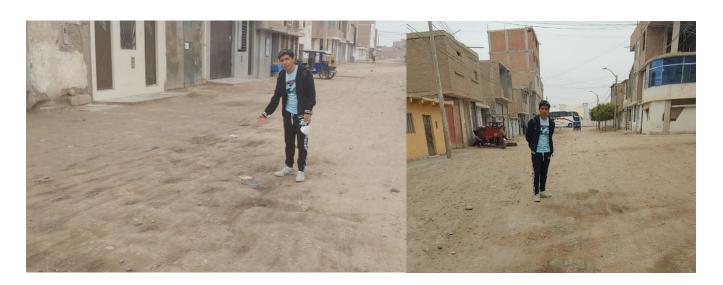


Figura 2. Situación Actual de las calles del PJ. Antonio Raymondi del ACQUA Sector 1

• Extracción de muestra Calicata 01

Figura 3. Calicata 01 – Calle Demetrio Acosta Chávez y Raúl Gustavo Jiménez Chávez

• Extracción de muestra Calicata 02

Figura 4. Calicata 02 – Calle Antonio Raymondi y José Quiñones

• Extracción de muestra Calicata 03

Figura 5. Calicata 03 – Calle Demetrio Acosta Chávez y Pedro Ruiz Gallo

• Extracción de muestra Calicata 04

Figura 6. Calicata 04 – Calle Eloy G. Uretra y José Quiñones

• Extracción de muestra Calicata 05

Figura 7. Calicata 05 – Demetrio Acosta Chávez y Manuel Mesones Muro

Trabajo en Laboratorio

a) Ensayo de Análisis Granulométrico

Figura 8. Conjunto de mallas para el análisis granulométrico

Figura 9. Ensayo de granulometría por tamizado para cada calicata

b) Ensayo de Contenido de Humedad

Figura 10. Muestra de cada calicata llevadas al horno

c) Ensayo para determinar el Límite Líquido, Límite Plástico, e Índice de Plasticidad

Figura 11. Preparación de la mezcla de suelo más agua

Figura 12. Ensayo de Límite Líquido en la Copa Casagrande

Figura 13. Ensayo de Límite Plástico

Figura 14. Ensayo de Límite de Atterberg más aditivo AggreBind (2, 4 y 6 lt/m3)

Figura 15. Ensayo de Límite de Atterberg más aditivo MaxxSeal 200 (2, 4 y 6 lt/m2)

d) Ensayo de Peso específico relativo

Figura 16. Muestra de Suelo vertido en la matriz

e) Ensayo de Proctor Modificado

Figura 17. Compactación de la muestra de suelo

Figura 18. Determinación en peso de la cantidad de aditivo AggreBind (2, 4 y 6lt/m3)

Figura 19. Determinación en peso de la cantidad de aditivo MaxxSeal 200 (2, 4 y 61t/m2)

f) Ensayo de CBR

Figura 20. Preparación de los especímenes de prueba para ensayo CBR

Figura 21. Moldes de ensayo sumergido en la poza con agua

Figura 22. Penetración del espécimen de prueba

Figura 23. Penetración del espécimen de prueba más aditivo AggreBind (2, 4 y 6lt/m3)

Figura 24. Mezcla de la muestra más aditivo MaxxSeal 200 (2, 4 y 6lt/m2)

g) Ensayo de Permeabilidad

Figura 25. Medición del espécimen de prueba en el ensayo de permeabilidad